14 Tasapainotetut puurakenteet

Koko: px
Aloita esitys sivulta:

Download "14 Tasapainotetut puurakenteet"

Transkriptio

1 TIE Tietorakenteet ja algoritmit Tasapainotetut puurakenteet Binäärihakupuu toteuttaa kaikki dynaamisen joukon operaatiot O(h) ajassa Kääntöpuolena on, että puu voi joskus litistyä listaksi, jolloin tehokkuus menetetään (O(n)) Tässä luvussa käsitellään tapoja pitää huolta siitä, ettei litistymistä käy Ensin opitaan tasapainoitus puna-mustan puun invarianttia ylläpitämällä Lopuksi vilkaistaan muista tasapainotetuista binäärihakupuista Splay- ja AVL-puita

2 TIE Tietorakenteet ja algoritmit Puna-musta binäärihakupuu Puna-mustat puut ovat tasapainotettuja binäärihakupuita. Ne tekevät lisäysten ja poistojen yhteydessä tasapainotustoimenpiteitä, jotka takaavat, ettei haku ole koskaan tehoton vaikka alkiot olisikin lisätty puuhun epäsuotuisassa järjestyksessä. puna-musta puu ei voi koskaan litistyä listaksi, kuten perusbinäärihakupuu Kuva 23: Punamustapuu (via Wikipedia, c Colin M.L. Burnett (CC BY-SA 3.0))

3 TIE Tietorakenteet ja algoritmit 310 Puna-mustien puiden perusidea: jokaisessa solmussa on yksi lisäbitti: väri (colour) arvot punainen ja musta muut kentät ovat vanhat tutut key, left, right ja p jätämme oheisdatan näyttämättä, jotta pääideat eivät hukkuisi yksityiskohtien taakse värikenttien avulla ylläpidetään puna-mustan puun invarianttia, joka takaa, että puun korkeus on aina kertaluokassa Θ(lg n)

4 TIE Tietorakenteet ja algoritmit 311 Puna-mustien puiden invariantti: 1. Jos solmu on punainen, niin sillä joko ei ole lapsia, tai on kaksi lasta, ja ne molemmat ovat mustia. 2. Jokaiselle solmulle pätee: jokainen solmusta alas 1- tai 0-lapsiseen solmuun vievä polku sisältää saman määrän mustia solmuja. 3. Juuri on musta. Solmun x musta-korkeus (black-height) bh(x) on siitä alas 1- tai 0-lapsiseen solmuun vievällä polulla olevien mustien solmujen määrä. invariantin osan 3 mukaisesti jokaisen solmun mustakorkeus on yksikäsitteinen jokaisella vaihtoehtoisella polulla on sama määrä mustia solmuja koko puun mustakorkeus on sen juuren mustakorkeus

5 TIE Tietorakenteet ja algoritmit 312 Puna-mustan puun maksimikorkeus merkitään korkeus = h ja solmujen määrä = n kunkin juuresta lehteen vievän polun solmuista vähintään puolet ( h 2 + 1) ovat mustia (invariantin osat 1 ja 3) jokaisella juuresta lehteen vievällä polulla on saman verran mustia solmuja (invariantin osa 2) ainakin h ylintä tasoa täysiä n 2 h 2 h 2 lg n Invariantti siis todellakin takaa puun korkeuden pysymisen logaritmisena puun alkioiden määrään nähden. Dynaamisen joukon operaatiot SEARCH, MINIMUM, MAXIMUM, SUCCESSOR ja PREDECESSOR saadaan toimimaan puna-mustille puille ajassa O(lg n). binäärihakupuulle operaatiot toimivat ajassa O(h), ja puna-musta puu on binäärihakupuu, jolle h = Θ(lg n)

6 TIE Tietorakenteet ja algoritmit 313 Puna-mustien puiden ylläpitämiseen ei kuitenkaan voida käyttää samoja lisäys- ja poistoalgoritmeja kuin tavallisilla binäärihakupuilla, koska ne saattavat rikkoa invariantin. Niiden sijaan käytetään algoritmeja RB-INSERT ja RB-DELETE. operaatiot RB-INSERT ja RB-DELETE perustuvat kiertoihin (rotation) kiertoja on kaksi: vasemmalle ja oikealle ne muuttavat puun rakennetta, mutta säilyttävät binäärihakupuiden perusominaisuuden kaikille solmuille A x B y y x C A B C kierto vasemmalle olettaa, että solmut x ja y ovat olemassa kierto oikealle vastaavasti left ja right vaihtaneet paikkaa

7 TIE Tietorakenteet ja algoritmit 314 LEFT-ROTATE(T, x) 1 y := x right; x right := y left 2 if y left NIL then 3 y left p := x 4 y p := x p 5 if x p = NIL then 6 T.root := y 7 else if x = x p left then 8 x p left := y 9 else 10 x p right := y 11 y left := x; x p := y molempien kiertojen ajoaika on Θ(1) ainoastaan osoittimia muutetaan

8 TIE Tietorakenteet ja algoritmit 315 Lisäyksen perusidea ensin uusi solmu lisätään kuten tavalliseen binäärihakupuuhun sitten lisätty väritetään punaiseksi mitä puna-mustien puiden perusominaisuuksia näin tehty lisäys voi rikkoa?

9 TIE Tietorakenteet ja algoritmit 316 Invariantin osa 1 rikkoutuu lisätyn solmun osalta, jos sen isä on punainen; muuten se ei voi rikkoutua. 2 ei rikkoudu, koska minkään solmun alla olevien mustien solmujen määrät ja sijainnit eivät muutu, ja lisätyn alla ei ole solmuja. 3 rikkoutuu, jos puu oli alun perin tyhjä.

10 TIE Tietorakenteet ja algoritmit 317 korjataan puu seuraavasti: ominaisuutta 2 pilaamatta siirretään 1:n rike ylöspäin kunnes se katoaa lopuksi 3 korjataan värittämällä juuri mustaksi (ei voi pilata ominaisuuksia 1 ja 2) 1:n rike = sekä solmu että sen isä ovat punaisia siirto tapahtuu värittämällä solmuja ja tekemällä kiertoja

11 TIE Tietorakenteet ja algoritmit 318 RB-INSERT(T, x) 1 TREE-INSERT(T, x) 2 x colour := RED (suoritetaan silmukkaa kunnes rike on hävinnyt tai ollaan saavutettu juuri) 3 while x T.root and x p colour = RED do 4 if x p = x p p left then 5 y := x p p right 6 if y NIL and y colour = RED then (siirretään rikettä ylöspäin) 7 x p colour := BLACK 8 y colour := BLACK 9 x p p colour := RED 10 x := x p p 11 else (siirto ei onnistu korjataan rike) 12 if x = x p right then 13 x := x p; LEFT-ROTATE(T, x) 14 x p colour := BLACK 15 x p p colour := RED 16 RIGHT-ROTATE(T, x p p) 17 else... sama kuin rivit paitsi left ja right vaihtaneet paikkaa 30 T.root colour := BLACK (väritetään juuri mustaksi)

12 TIE Tietorakenteet ja algoritmit 319 x x >p >p x >p A A x B B y C C Ominaisuuden 1 rikkeen siirto ylöspäin: solmu x ja sen isä ovat molemmat punaisia. myös solmun x setä on punainen ja isoisä musta. rike siirretään ylöspäin värittämällä sekä x:n setä että isä mustiksi ja isoisä punaiseksi. Korjauksen jälkeen: ominaisuus 1 saattaa olla edelleen rikki solmu x ja sen isä saattavat molemmat olla punaisia ominaisuus 2 ei rikkoudu kaikkien polkujen mustien solmujen määrä pysyy samana ominaisuus 3 saattaa rikkoutua jos ollaan noustu juureen asti, se on saatettu värittää punaiseksi

13 TIE Tietorakenteet ja algoritmit 320 x >p >p x >p y A x B C D Mikäli punaista setää ei ole olemassa, rikettä ei voi siirtää ylöspäin vaan se täytyy poistaa käyttäen monimutkaisempaa menetelmää: x >p >p Varmistetaan ensin, että x on isänsä vasen lapsi tekemällä tarvittaessa kierto vasemmalle. x >p y x D C A B

14 TIE Tietorakenteet ja algoritmit 321 x >p x >p >p y tämän jälkeen väritetään x:n isä mustaksi ja isoisä punaiseksi, ja suoritetaan kierto oikealle x C D isoisä on varmasti musta, koska muuten puussa olisi ollut kaksi punaista solmua päällekkäin jo ennen lisäystä A x B Korjauksen jälkeen: puussa ei enää ole päällekkäisiä punaisia solmuja korjausoperaatiot yhdessä eivät riko 2. ominaisuutta puu on ehjä ja korjausalgoritmin suorittaminen voidaan lopettaa A B C D

15 TIE Tietorakenteet ja algoritmit 322 Poistoalgoritmin yleispiirteet ensin solmu poistetaan kuten tavallisesta binäärihakupuusta w osoittaa poistettua solmua jos w oli punainen tai puu tyhjeni kokonaan, puna-musta-ominaisuudet säilyvät voimassa ei tarvitse tehdä muuta muussa tapauksessa korjataan puu RB-DELETE-FIXUPin avulla aloittaen w:n (mahdollisesta) lapsesta x ja sen isästä w p TREE-DELETE takaa, että w:llä oli enintään yksi lapsi RB-DELETE(T, z) 1 w := TREE-DELETE(T, z) 2 if w colour = BLACK and T.root NIL then 3 if w left NIL then 4 x := w left 5 else 6 x := w right 7 RB-DELETE-FIXUP(T, x, w p) 8 return w

16 TIE Tietorakenteet ja algoritmit 323 RB-DELETE-FIXUP(T, x, y) 1 while x T.root and (x = NIL or x colour = BLACK) do 2 if x = y left then 3 w := y right 4 if w colour = RED then 5 w colour := BLACK; y colour := RED 6 LEFT-ROTATE(T, y); w := y right 7 if (w left = NIL or w left colour = BLACK) and (w right = NIL or w right colour = BLACK) then 8 w colour := RED; x := y 9 else 10 if w right = NIL or w right colour = BLACK then 11 w left colour := BLACK 12 w colour := RED 13 RIGHT-ROTATE(T, w); w := y right 14 w colour := y colour; y colour := BLACK 15 w right colour := BLACK; LEFT-ROTATE(T, y) 16 x := T.root 17 else... sama kuin rivit paitsi left ja right vaihtaneet paikkaa 32 y := y p 33 x colour := BLACK

17 TIE Tietorakenteet ja algoritmit AVL-puut ja Splay-puut AVL puu (Adelson-Velsky, Landis mukaan) on binäärihakupuu, jossa jokaisella solmulla on tasapainokerroin: 0, +1, tai -1, kun tasapainossa. kerroin määräytyy solmun oikean ja vasemman alipuun korkeuksien erotuksesta. Kun uuden solmun lisäys tekee AVL-puusta epätasapainoisen, puu palautetaan tasapainoiseksi tekemällä rotaatioita.

18 TIE Tietorakenteet ja algoritmit 325 Mahdollisia rotaatioita on neljä: Oikealle Vasemmalle Kaksois-rotaatio vasen-oikea Kaksois-rotaatio oikea-vasen R 2 1 LR L RL 1 2 3

19 TIE Tietorakenteet ja algoritmit 326 Splay puu on binäärihakupuu, jossa lisäominaisuutena viimeksi haetut alkiot ovat nopeita hakea uudelleen. Splay-operaatio suoritetaan solmulle haun yhteydessä. Tämä ns. splay-askelien sekvenssi siirtää solmun askel askeleelta lähemmäksi juurta ja lopulta juureksi. Zig-askel:

20 TIE Tietorakenteet ja algoritmit 327 Zig-Zig-askel: Zig-Zag-askel:

21 TIE Tietorakenteet ja algoritmit Monihaaraiset puut Binääripuissa solmuilla on 0-2 lasta. Puurakenne on kuitenkin mahdollista toteuttaa haarautumaan hyvinkin paljon Tutustutaan näistä merkkijonojen käsittelyyn tarkoitettuun merkkijonopuuhun (Trie) ja voimakkaasti haarautuvaan puurakenteeseen (B-puu)

22 TIE Tietorakenteet ja algoritmit Merkkijonopuu (trie) Kun dynaamisen joukon alkiot ovat merkkijonoja, soveltuu merkkijonopuu binääripuuta paremmin niiden tallentamiseen. Merkkijonopuussa solmut ovat merkkejä. Kukin solmu edustaa siihen juuresta johtavan polun varrelta löytyvää merkkijonoa. solmun edustama merkkijono on siis sen isän edustama merkkijono + solmun sisältämä merkki solmun edustama merkkijono on kaikkien sen lasten edustamien merkkijonojen alkuosa Lisäksi kussakin solmussa on yksi bitti, joka kertoo, onko solmun edustama merkijono mukana joukossa vai ei.

23 TIE Tietorakenteet ja algoritmit 330 a b T a b F a b F a b T a b F a b T a b T

24 TIE Tietorakenteet ja algoritmit 331 Kuvan esimerkkipuun aakkosto on {a, b}. koska juurisolmun totuusarvo on true, kuuluu sen edustama tyhjä merkkijono ɛ mukaan joukkoon pelkät a ja b eivät kuulu joukkoon, koska ne on merkitty falsella merkkijonot aa, aba ja ba kuuluvat joukkoon TRIE-SEARCH(p, A, n) 1 for i := 1 to n do (käydään lisättävän sanan merkkejä läpi) 2 if p C[A[i]] = NIL then (jos valittu haara päättyy...) 3 return FALSE (...tiedetään, ettei sanaa löydy) 4 p := p C[A[i]] (siirrytään alaspäin) 5 return p bit (palautetaan löydetyn solmun totuusarvo) Etsittävä merkkijono on taulukossa A[1,, n] ja p osoittaa puun juureen. Solmut sisältävät taulukon C, jossa on osoitin C[a] jokaista merkkijonon mahdollista merkkiä a kohti, sekä bittikentän bit, joka ilmoittaa, kuuluuko merkkijono joukkoon vai ei.

25 TIE Tietorakenteet ja algoritmit 332 Etsinnässä puuta laskeudutaan alaspäin kunnes kohdataan NIL-osoitin, jolloin sana ei ole puussa tai sana loppuu, jolloin palautetaan bit-kentän arvo TRIE-INSERT(p, A, n) 1 for i := 1 to n do (käydään lisättävän sanan merkkejä läpi) 2 if p C[A[i]] = NIL then (tarvittaessa lisätään uusi solmu) 3 varaa uusi solmutietue ja alusta kunkin osoittimen uusi C[i] arvoksi NIL ja bit FALSE 4 p C[A[i]] := uusi (linkitetään uusi solmu paikalleen) 5 p := p C[A[i]] (siirrytään alaspäin) 6 p bit := TRUE (asetetaan viimeisen solmun totuusarvoksi TRUE) Lisättäessä uutta alkiota puuhun laskeudutaan uuden merkkijonon mukaisesti kohti lehtisolmuja. jos kohdataan NIL-osoitin luodaan uusi solmu kun ollaan päästy sanan loppuun, käännetään solmun bit-kenttä arvoon TRUE sen merkiksi, että sana kuuluu joukkoon

26 TIE Tietorakenteet ja algoritmit 333 TRIE-DELETE(p, A, n) 1 for i := 1 to n do (käydään poistettavan sanan merkkejä läpi) 2 if p C[A[i]] = NIL then (jos valittu haara päättyy...) 3 return FALSE (...tiedetään, ettei sanaa löydy) 4 P [i] := p (otetaan solmun i isän osoite talteen) 5 p := p C[A[i]] (siirrytään alaspäin) 6 p bit := FALSE (asetetaan löydetyn solmun totuusarvoksi FALSE) 7 i := n 8 while i > 1 and Leafnode(p) and p bit = FALSE do 9 vapautetaan p:n osoittama alkio 10 p := P [i] (jatketaan vapauttamista talteen otetusta isästä) 11 p C[A[i]] = NIL (nollataan osoitin poistettuun solmuun) 12 i := i 1 13 return TRUE Puusta etsitään vapautettava merkkijono ja poistetaan se joukosta asettamalla bit arvoon FALSE.

27 TIE Tietorakenteet ja algoritmit 334 Tämän jälkeen poistetaan ne solmut, jotka poisto on tehnyt turhiksi. koska trien solmuissa ei ole parent-osoittimia, talletetaan taulukkoon P laskeutumisen aikana kohdatut osoittimet Dynaamisen joukon operaatiot ovat trielle erittäin tehokkaita Riippumatta talletettujen merkkijonojen määrästä operaatiot ovat enintään lineaarisia käsiteltävän merkkijonon pituuteen nähden. Haittapuolena on runsas muistinkäyttö erityisesti jos erilaisten mahdollisten merkkien määrä on suuri. toisaalta jos talletettavilla merkkijonoilla on pitkiä yhteisiä alkuosia, tilaa jopa säästyy, koska yhteiset osat talletetaan vain kerran

28 TIE Tietorakenteet ja algoritmit 335 Merkkijonopuu sallii myös siihen talletettujen merkkijonojen tulostamisen aakkosjärjestyksessä tehokkaasti. Esimerkiksi matkapuhelimissa yleisesti käytetty ennakoiva tekstinsyöttö T9, on toteutettu trierakenteen avulla. erona tässä esitettyyn malliin on, että saman näppäimen takana olevat kirjaimet kuuluvat samaan solmuun lisäksi kullekin kirjaimelle on laskettu todennäköisyys, jonka perusteella päätetään, mikä merkkijono painalluksista todennäköisimmin muodostuu

29 TIE Tietorakenteet ja algoritmit B-puut B-puut ovat nopeasti haarautuvia hakupuita, jotka on tarkoitettu isojen dynaamisten joukkojen tallettamiseen levylle. tavoitteena pitää levyltä hakujen / kirjoittamisten määrä mahdollisimman pienenä kaikki lehdet ovat samalla syvyydellä yksi solmu täyttää yhden levylohkon mahdollisimman tarkkaan B-puu haarautuu yleensä nopeasti: jokaisella solmulla kymmeniä, satoja tai tuhansia lapsia käytännössä B-puut ovat hyvin matalia puu pidetään tasapainossa vaihtelemalla solmun lasten määrää välillä t,..., 2t jollekin t N, t 2 jokaisella sisäsolmulla juurta lukuunottamatta on lapsia aina vähintään 1 2 maksimimäärästä

30 TIE Tietorakenteet ja algoritmit 337 B-puun avaimet jakavat hakualueen kuvan esittämällä tavalla. Haku B-puusta tapahtuu samaan tapaan kuin binäärihakupuustakin. lähdetään laskeutumaan juuresta kohti lehtiä jokaisessa solmussa valitaan se haara, jossa haetun alkion täytyy olla - haaroja vain on huomattavasti enemmän

31 TIE Tietorakenteet ja algoritmit 338 Lisäys B-puuhun edetään juuresta lehteen, ja matkan varrella jaetaan jokainen täysi solmu kahtia aina kun tullaan solmuun, sen isä ei ole täysi lopullinen lisäys tapahtuu lehteen jos juuri jaetaan, luodaan uusi juuri, jonka lapsiksi tulevat vanhan juuren puolikkaat B-puu kasvaa korkeutta vain juuria jakamalla tarvitaan vain yksi kulku alas puussa, eikä yhtään ylös B-puun solmun jako tapahtuu raivaamalla isään tilaan yhdelle avaimelle, minkä jälkeen jaettavan solmun keskimmäinen avain nostetaan saatuun tilaan. Loput avaimet jaetaan keskimmäistä avainta pienempien avainten solmuun ja suurempien avainten solmuun.

32 TIE Tietorakenteet ja algoritmit 339

33 TIE Tietorakenteet ja algoritmit 340 Poisto B-puusta on samantyyppinen operaatio kuin lisäys. edetään juuresta lehteen, ja aina ennen solmuun menoa huolehditaan, että siinä on vähintään minimimäärä + 1 avainta tämä takaa, että avainten määrä säilyy laillisena, vaikka yksi avaimista poistettaisikin kun etsitty avain löydetään, se poistetaan, ja tarvittaessa solmu yhdistetään jommankumman sisaruksensa kanssa tämä on varmasti tehtävissä, koska isä-solmussa on vähintään yksi ylimääräinen avain jos lopputuloksen juurella on vain yksi lapsi, niin juuri poistetaan, ja sen lapsesta tehdään uusi juuri

1.1 Tavallinen binäärihakupuu

1.1 Tavallinen binäärihakupuu TIE-20100 Tietorakenteet ja algoritmit 1 1 Puurakenteet http://imgur.com/l77fy5x Tässä luvussa käsitellään erilaisia yleisiä puurakenteita. ensin käsitellään tavallinen binäärihakupuu sitten tutustutaan

Lisätiedot

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta

AVL-puut. eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta AVL-puut eräs tapa tasapainottaa binäärihakupuu siten, että korkeus on O(log n) kun puussa on n avainta pohjana jo esitetyt binäärihakupuiden operaatiot tasapainotus vie pahimmillaan lisäajan lisäys- ja

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Kierros 4: Binäärihakupuut

Kierros 4: Binäärihakupuut Kierros 4: Binäärihakupuut Tommi Junttila Aalto University School of Science Department of Computer Science CS-A1140 Data Structures and Algorithms Autumn 2017 Tommi Junttila (Aalto University) Kierros

Lisätiedot

CS-A1140 Tietorakenteet ja algoritmit

CS-A1140 Tietorakenteet ja algoritmit CS-A1140 Tietorakenteet ja algoritmit Kierros 4: Binäärihakupuut Tommi Junttila Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Syksy 2016 Sisältö Binäärihakupuut Avainten lisääminen,

Lisätiedot

9.3 Algoritmin valinta

9.3 Algoritmin valinta TIE-20100 Tietorakenteet ja algoritmit 218 9.3 Algoritmin valinta Merkittävin algoritmin valintaan vaikuttava tekijä on yleensä sen suorituskyky käyttötilanteessa. Muitakin perusteita kuitenkin on: toteutuksen

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen)

TKT20001 Tietorakenteet ja algoritmit Erilliskoe , malliratkaisut (Jyrki Kivinen) TKT0001 Tietorakenteet ja algoritmit Erilliskoe 5.1.01, malliratkaisut (Jyrki Kivinen) 1. [1 pistettä] (a) Esitä algoritmi, joka poistaa kahteen suuntaan linkitetystä järjestämättömästä tunnussolmullisesta

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PUURAKENTEET, BINÄÄRIPUU, TASAPAINOTETUT PUUT MIKÄ ON PUUTIETORAKENNE? Esim. Viereinen kuva esittää erästä puuta. Tietojenkäsittelytieteessä puut kasvavat alaspäin.

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

1 Puu, Keko ja Prioriteettijono

1 Puu, Keko ja Prioriteettijono TIE-20100 Tietorakenteet ja algoritmit 1 1 Puu, Keko ja Prioriteettijono Tässä luvussa käsitellään algoritmien suunnitteluperiaatetta muunna ja hallitse (transform and conquer) Lisäksi esitellään binääripuun

Lisätiedot

7. Tasapainoitetut hakupuut

7. Tasapainoitetut hakupuut 7. Tasapainoitetut hakupuut Tässä luvussa jatketaan järjestetyn sanakirjan tarkastelua esittämällä kehittynyt puutietorakenne. Luvussa 7.1. esitetään monitiehakupuun käsite. Se on järjestetty puu, jonka

Lisätiedot

Tietorakenteet, laskuharjoitus 6,

Tietorakenteet, laskuharjoitus 6, Tietorakenteet, laskuharjoitus, 23.-2.1 1. (a) Kuvassa 1 on esitetty eräät pienimmistä AVL-puista, joiden korkeus on 3 ja 4. Pienin h:n korkuinen AVL-puu ei ole yksikäsitteinen juuren alipuiden keskinäisen

Lisätiedot

Algoritmit 2. Luento 4 To Timo Männikkö

Algoritmit 2. Luento 4 To Timo Männikkö Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

B + -puut. Kerttu Pollari-Malmi

B + -puut. Kerttu Pollari-Malmi B + -puut Kerttu Pollari-Malmi Tämä monista on alunperin kirjoitettu sksn 2005 kurssille osittain Luukkaisen ja Nkäsen vanhojen luentokalvojen pohjalta. Maaliskuussa 2010 pseudokoodiesits on muutettu vastaamaan

Lisätiedot

4 Tehokkuus ja algoritmien suunnittelu

4 Tehokkuus ja algoritmien suunnittelu TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin

Lisätiedot

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja 1 Tietorakenteet (kevät 08) 1. kurssikoe, ratkaisuja Tehtävän 1 korjasi Mikko Heimonen, tehtävän 2 Jaakko Sorri ja tehtävän Tomi Jylhä-Ollila. 1. (a) Tehdään linkitetty lista kaikista sukunimistä. Kuhunkin

Lisätiedot

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ...

1.1 Pino (stack) Koodiluonnos. Graafinen esitys ... 1. Tietorakenteet Tietorakenteet organisoivat samankaltaisten olioiden muodostaman tietojoukon. Tämä järjestys voidaan saada aikaan monin tavoin, esim. Keräämällä oliot taulukkoon. Liittämällä olioihin

Lisätiedot

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min

Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Koe Koe ma 1.3 klo 16-19 salissa A111, koeaika kuten tavallista 2h 30min Kokeessa saa olla mukana A4:n kokoinen kaksipuolinen käsiten tehty, itse kirjoitettu lunttilappu 1 Tärkeää ja vähemmäntärkeää Ensimmäisen

Lisätiedot

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen) 58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.

Lisätiedot

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla;

private TreeMap<String, Opiskelija> nimella; private TreeMap<String, Opiskelija> numerolla; Tietorakenteet, laskuharjoitus 7, ratkaisuja 1. Opiskelijarekisteri-luokka saadaan toteutetuksi käyttämällä kahta tasapainotettua binäärihakupuuta. Toisen binäärihakupuun avaimina pidetään opiskelijoiden

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen

Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen Tietorakenteet ja algoritmit Hakurakenteet Ari Korhonen 27.10. & 3.11.2015 Tietorakenteet ja algoritmit - syksy 2015 1 8. HAKURAKENTEET (dictionaries) 8.1 Haku (vrt. sanakirjahaku) 8.2 Listat tallennusrakenteina

Lisätiedot

8. Puna-mustat puut ja tietorakenteiden täydentäminen

8. Puna-mustat puut ja tietorakenteiden täydentäminen 8. Puna-mustat puut ja tietorakenteiden täydentäminen Tässä osassa perehdytään puna-mustiin puihin, jotka toteuttavat yhden tavan pitää binäärinen hakupuu tasapainossa. Teoksessa [Cor] käsitellään puna-mustia

Lisätiedot

4. Joukkojen käsittely

4. Joukkojen käsittely 4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

811312A Tietorakenteet ja algoritmit V Hash-taulukot ja binääriset etsintäpuut

811312A Tietorakenteet ja algoritmit V Hash-taulukot ja binääriset etsintäpuut 811312A Tietorakenteet ja algoritmit 2018-2019 V Hash-taulukot ja binääriset etsintäpuut Sisältö 1. Hash-taulukot 2. Binääriset etsintäpuut 811312A TRA, Hash-taulukot, binääripuut 2 V.1 Hash-taulukot Käytetään

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu

811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu 832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa

Lisätiedot

5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat:

5. Keko. Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: 5. Keko Tietorakenne keko eli kasa (heap) on tehokas toteutus abstraktille tietotyypille prioriteettijono, jonka operaatiot ovat seuraavat: Insert(S, x): lisää avaimen x prioriteettijonoon S Maximum(S):

Lisätiedot

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 1, 25.2.2013, vastauksia 1. (a) O-merkintä Ω-merkintä: Kyseessä on (aika- ja tila-) vaativuuksien kertalukumerkinnästä. O-merkintää käytetään ylärajan

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa

lähtokohta: kahden O(h) korkuisen keon yhdistäminen uudella juurella vie O(h) operaatiota vrt. RemoveMinElem() keossa Kekolajittelu Prioriteettijonolla toteutettu keko InsertItem ja RemoveMinElem: O(log(n)) Lajittelu prioriteettijonolla: PriorityQueueSort(lajiteltava sekvenssi S) alusta prioriteettijono P while S.IsEmpty()

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (syksy 2015) Toinen välikoe, malliratkaisut Tietorakenteet ja algoritmit (syksy 0) Toinen välikoe, malliratkaisut. (a) Alussa puu näyttää tältä: Lisätään 4: 4 Tasapaino rikkoutuu solmussa. Tehdään kaksoiskierto ensin oikealle solmusta ja sitten

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 6, ratkaisuja (Antti Laaksonen) 1. Avaimet 1, 2, 3 ja 4 mahtuvat samaan lehtisolmuun. Tässä tapauksessa puussa on vain yksi solmu, joka on samaan aikaan juurisolmu

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit

Lisätiedot

TIE Tietorakenteet ja algoritmit 261

TIE Tietorakenteet ja algoritmit 261 TIE-20100 Tietorakenteet ja algoritmit 261 12 Graafit Seuraavaksi tutustutaan tietorakenteeseen, jonka muodostavat pisteet ja niiden välille muodostetut yhteydet graafiin. Keskitymme myös tyypillisimpiin

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)

58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen) 58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.

Lisätiedot

Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla.

Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. 4.2 Fibonacci-kasat Fibonacci-kasoilla voidaan toteuttaa samat operaatiot kuin binomikasoilla. Pääsiallinen ero on, että paljon Decrease-Key-operaatioita sisältävät jonot nopeutuvat. Primin algoritmi pienimmälle

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Algoritmit 2. Luento 10 To Timo Männikkö

Algoritmit 2. Luento 10 To Timo Männikkö Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan

Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti tasapainotetuksi binääripuuksi, jonka juuri on talletettu taulukon paikkaan TIE-20100 Tietorakenteet ja algoritmit 178 Keko Taulukko A[1... n] on keko, jos A[i] A[2i] ja A[i] A[2i + 1] aina kun 1 i n 2 (ja 2i + 1 n). Tämä on helpompi ymmärtää, kun tulkitaan keko täydellisesti

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Kysymyksiä koko kurssista?

Kysymyksiä koko kurssista? Kysymyksiä koko kurssista? Lisää kysymyksesi osoitteessa slido.com syötä event code: #8777 Voit myös pyytää esimerkkiä jostain tietystä asiasta Vastailen kysymyksiin luennon loppupuolella Tätä luentoa

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta

811312A Tietorakenteet ja algoritmit Kertausta jälkiosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta jälkiosasta IV Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden aikakompleksisuus

Lisätiedot

D B. Harvat hakemistot. Harvat hakemistot

D B. Harvat hakemistot. Harvat hakemistot Harvassa hakemistossa on ei ole hakemistomerkintöjä jokaista tietuetta kohden vaan yksi merkintä jotain isompaa kokonaisuutta esimerkiksi sivua tai sivujoukkoa (esim. saman uran sivut) kohti Harvan hakemiston

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 25.2.2009 1 / 34 Syötteessä useita lukuja samalla rivillä Seuraavassa esimerkissä käyttäjä antaa useita lukuja samalla

Lisätiedot

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen

Lisätiedot

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00

A TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE KLO 12:00 A274101 TIETORAKENTEET JA ALGORITMIT KORVAAVAT HARJOITUSTEHTÄVÄT 3, DEADLINE 9.2.2005 KLO 12:00 PISTETILANNE: www.kyamk.fi/~atesa/tirak/harjoituspisteet-2005.pdf Kynätehtävät palautetaan kirjallisesti

Lisätiedot

4. Perustietorakenteet

4. Perustietorakenteet 4. Perustietorakenteet Tässä osassa käsitellään erilaisia tietorakenteita, joita algoritmit käyttävät toimintansa perustana. Aluksi käydään läpi tietorakenteen abstrakti määritelmä. Tämän jälkeen käsitellään

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

TIE Tietorakenteet ja algoritmit 25

TIE Tietorakenteet ja algoritmit 25 TIE-20100 Tietorakenteet ja algoritmit 25 Tällä kurssilla keskitytään algoritmien ideoihin ja algoritmit esitetään useimmiten pseudokoodina ilman laillisuustarkistuksia, virheiden käsittelyä yms. Otetaan

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

6. Sanakirjat. 6. luku 298

6. Sanakirjat. 6. luku 298 6. Sanakirjat Tässä luvussa tarkastellaan käsitettä sanakirja (dictionary). Tällaisen tietorakenteen tehtävä on tallettaa alkioita niin, että tiedonhaku rakenteesta on tehokasta. Nimi vastaa melko hyvin

Lisätiedot

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet

58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe malliratkaisut ja arvosteluperusteet 58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 15.6.2018 malliratkaisut ja arvosteluperusteet 1. [10 pistettä] Hakemistorakenteet. Vertaa linkitettyjen listojen, tasapainoisten hakupuiden ja

Lisätiedot

9 Erilaisia tapoja järjestää

9 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa)

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi (jatkoa) Antti Leino 4. huhtikuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

Stabiloivat synkronoijat ja nimeäminen

Stabiloivat synkronoijat ja nimeäminen Stabiloivat synkronoijat ja nimeäminen Mikko Ajoviita 2.11.2007 Synkronoija Synkronoija on algoritmi, joka muuntaa synkronoidun algoritmin siten, että se voidaan suorittaa synkronoimattomassa järjestelmässä.

Lisätiedot

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi

Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon hallinta ja analyysi 4. Paikkatiedon indeksointi Antti Leino 29. maaliskuuta 2005 Tietojenkäsittelytieteen

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan

Lisätiedot

Kuva 1: J+-puun rakenne [HXS09].

Kuva 1: J+-puun rakenne [HXS09]. Johdanto Tietotekniikka on kehittynyt viime vuosikymmenten aikana nopeata vauhtia. Tämä on näkynyt niin tietokoneiden tehoissa kuin myös hinnoissa. Myös tietokoneiden keskusmuistit ovat kasvaneet ja ovat

Lisätiedot