Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R
|
|
- Timo-Jaakko Jaakkola
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kognitiivinen mallintaminen 1 Kognitiiviset arkkitehtuurit ACT-R
2 Kognitiiviset arkkitehtuurit Mielen(tai jonkin älykkään toimijan) mahdollisimman yleisiä piirteitä ja rakenteellista organisaatiota kuvaava malli. Arkkitehtuurit pyrkivät kuvaamaan kokonaisuutta, siinä missä mallit voivat keskittyvätjohonkinrajoitettuunkognitionosaan/ominaisuuteen. Kuvaavat yleisiä periaatteita, joiden pohjalle malleja voi rakentaa. Saman arkkitehtuurin pohjalta voi kyhätä hyvinkin erilaisia malleja eri tarkoituksiin. Historiallisestidigitaalisentietokoneenns. Von Neumann arkkitehtuurion toiminutpohjanakomputationaalisillemielenteorioille. Muisti Toiminta Keskusyksikkö Aistit Mieli on tietokone ajatuksen mukainen arkkitehtuuri
3 Kognitiiviset arkkitehtuurit Karkeasti voidaan jakaa kahteen tyyppiin(informaatioprosessoinnin tyypin mukaan) Symboliset, digitaalisen tietokoneen motivoimat Informaatio esitetään symboleilla, prosessoidaan algoritmeilla Produktiosysteemit Information processing theory Representaatiomallit Assosiatiiviset Kognitio kuvataan aktivaatioina assosiatiivisessa verkossa Neuroverkot Hyödyntää systeemin ei-symbolisia, emergenttejä ominaisuuksia. Monissa nykyisissä arkkitehtuureissa(act-r, SOAR) yhdistyy molempia piirteitä. -> Hybridiarkkitehtuuri.
4 Produktiosysteemit Produktiosysteemi on sovelluskohteesta riippumaton päätöksenteon ja järkeilyn malli. Pohjana monissa symbolisissa arkkitehtuureissa (SOAR ACT-R), eksperttisysteemeissä yms. Määrittää säännöt (produktiot), jonka mukaan systeemi käyttäytyy kussakin tilanteessa.
5 Produktiosysteemin rakenne Kaksi muistivarastoa Työmuisti (tietoa nykytilasta) Produktiomuisti (sääntöjä, miten toimia jossain tilassa.) Työmuisti Lautasella on hauki Hauki on kala Nälkä on ikävää Produktiomuisti JOS lautasella on hauki, NIIN syö hauki sekä päivitä työmuistiin: lautanen on tyhjä Säännöt voivat määrittää ulkoisia toimintoja ja/tai muuttaa muistivarastojen sisältöä.
6 Produktiosysteemit Työmuisti on tietokanta, joka on joukko toisistaan riippumattomia propositioita p 1,p 2,p 3,... esim. shorter(anna, beth) Sääntömuisti sisältää päättelysääntöjä, jotka ovat muotoa p 1 p 2... act 1 act 2...
7 Produktiosäännöt Sääntöjä sanotaan produktioiksi. Ne määrittelevät ehdollisia toimintoja: IF(ehto ok) THEN (tee jotain) Jos työmuistin sisältö on esimerkiksi shorter(anna, beth) voidaan soveltaa produktiosääntöä: IF: THEN: shorter(anna,beth) delete shorter(anna,beth) add taller(beth,anna) Nyt työmuistin uusi sisältö on taller(beth, anna)
8 Produktiosysteemit Produktiosysteemintoimintakoostuuperäkkäisistäsykleistä. Jokaisessa syklissä: 1. Systeemi etsii ne säännöt, joiden ehdot toteutuvat työmuistin sisällön perusteella. (match phase) 2. Tämän jälkeen systeemi valitsee (jollain tavalla) näistä yhden (conflict resolution). Sanotaan, että kyseinen produktio laukeaa (fires). 3. Jokaisessa syklissä suoritetaan lauenneen produktion määrittelemä toiminta.
9 Produktiosysteemit Produktiosysteemiin voidaan lisätä tavoitteita kuvaavia meta-produktioita, jotka ohjaavat ongelmanratkaisua. Konfliktinratkaisuun (conflict resolution) voidaan käyttää erilaisia taktiikoita. Voidaan esim. valita aina spesifein sääntö sääntö, joka hyödyntää uusimpia työmuistin faktoja sääntö, jota ei vielä ole käytetty
10 Esimerkki Oletetaan seuraava sääntömuisti, ja sallitaan jokaista sääntöä käytettävän vain kerran: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 2. IF: nisäkäs(x) & ihminen(x) THEN: lisää jalat(x,2) & poista nisäkäs(x) 3. IF: jalat(x,2) THEN: lisää seisoo(x) 4. IF: jalat(x) THEN: lisää kävelee(x) Oletetaan työmuisti: { kotieläin(lehmä), ihminen(pekka), nisäkäs(pekka)}
11 1. syklissä etsitään sopivat säännöt: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 2. IF: nisäkäs(x) & ihminen(x) THEN: lisää jalat(x,2), poista nisäkäs(x) Työmuisti: { kotieläin(lehmä), ihminen(pekka), nisäkäs(pekka)} Säännöt 1 ja 2 muodostavat konfliktin, joka ratkaistaan tässä valitsemalla tarkempi sääntö. Suoritettavat toiminnot: lisää jalat(pekka,2), poista nisäkäs(x)
12 Uusi työmuisti: {kotieläin(lehmä), ihminen(pekka), jalat(pekka,2) } Sääntömuisti, josta käytetyt säännöt on poistettu: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 3. IF: jalat(x,2) THEN: lisää seisoo(x) 4. IF: seisoo(x) THEN: lisää kävelee(x)
13 2. syklissä valitaan sääntö 3 jolloin toiminto on: lisää seisoo(pekka) Uusi työmuisti: {kotieläin(lehmä), ihminen(pekka), jalat(pekka,2), seisoo(pekka)} Produktiosysteemin toiminta jatkuu sykleittäin, kunnes sopivia produktioita ei enää löydy tai päästään haluttuun lopputilaan.
14 Oppiminen Systeemi "oppii" muodostamalla päättelyketjuista uusia produktioita. Edellisessä esimerkissä esimerkiksi päättely: IF: nisäkäs(x) & ihminen(x) THEN: jalat(x,2) IF: jalat(x,2) THEN: seisoo(x) IF: seisoo(x) THEN: kävelee(x) voi päättelyketjun suorituksen jälkeen automatisoitua produktioksi: IF: nisäkäs(x) & ihminen(x) THEN: kävelee(x)
15 ACT-R The Adaptive Control of Thought Rational Ihmisen kognition rakennetta kuvaava teoria, motivaationa psykologian tulokset. Käytännössäohjelmointiympäristö(LISP), jossaarkkitehtuurinkehyson valmiina. Riittää koodata ongelmakohtaiset asiat ACT-R skripteillä
16 ACT-R Arkkitehtuuri pyrkii jäljittelemään ihmiskognition piirteitä kvantitatiivisesti (reaktioajat, tarkkuus, oppiminen, neurologiset tulokset ) Arkkitehtuurin rakenne riittää tuottamaan yleensä kvalitatiivisesti oikeansuuntaista käytöstä. Kvantitatiivinen taso saavutetaan sovittamalla parametreja koetuloksiin.
17 ACT-R Malleja sovellettu hyvin monipuolisesti
18 ACT-R (rakenne) Arkkitehtuuri koostuu moduuleista (työmuisti, sääntömuisti, ympäristöä havainnoivat osat etc.) Bufferit kontrolloivat tiedonvälitystä moduulien välillä Produktiosysteemi valitsee säännöt, joiden ehdot vastaavat bufferien sisältöjä.
19 ACT-R Hybridiarkkitehtuuri: produktiosysteemisymbolinen, muiden moduulien sisäinen toiminta pääasiassa eisymbolista rinnakkaislaskentaa. Produktiosysteemi koordinoi kokonaisuuden toimintaa. Produktiosysteemi saa tietoa muista moduleista bufferienvälityksellä. Bufferisisältääkulloinkinvain pienen osan kokonaistiedosta. Produktiosysteemin suoritus etenee 50ms sykleissä (ihmiskognition aikaskaala). Teoria ei kiinnitä moduulien määrää(voidaan lisätä erikoistuneita kognitiivisia palasia tarpeen mukaan)
20
21 Moduulit Moduulien sisäinen suoritus ei-symbolista ja rinnakkaista. Moduulit ovat itsenäisiä ja voivat tehdä asioita samanaikaisesti toisistaan riippumatta. Havainto/motorinen moduuli toimivat siltana ulkomaailmaan Havaintomoduuli koostuu kahdesta palasta 1. Tieto objektin lokaatiosta 2. Tieto objektin ominaisuuksista Voidaan etsiä havaintoja lokaation tai ominaisuuden perusteella-> mahdollistaa pop-out efektin
22 Moduulit Tavoitemoduuli (intentional module, goal buffer) Pitää kirjaa mitä ollaan tekemässä Pitää kirjaa välitavoitteista Tavoitteet oleellisia oikean toiminnan valitsemiseen.
23 Muistimoduuli (tietomuisti) Systeemin tuntemat faktat ovat koodattu muistimoduuliin. Ihmismuisti ei kuitenkaan ole täydellinen asiat eivälttämättäpalaudumieleenonnistuneesti, eivätkä välittömästi. ACT-R:ssä muistiin koodatuilla faktoilla on jokin (muuttuva) aktivaatioarvo, joka määrittää kuinka helpostitietoon saatavilla. Usein käytetty tieto on helpommin saatavissa kuinharvemminhyödynnetty.
24 Muistimoduuli Muistissa olevan tiedon aktivaatiotaso määrittyy sen yleisestä hyödyllisyydestä menneisyydessä, sekä sen elementtien assosiaatioiden voimakkuudesta kontekstiin. A i + = Bi WjSji j B i : muistijäljeniaktivaationperustaso W j : attention alaistenkohteiden(esim. näkökentänobjektit) painokertoimet. (Yleensä 1/n, missä n on kohteiden lukumäärä) S ji : kohteiden(j) assosiaatiotmuistijälkeen(i)
25 Muistimoduuli Esim. Aktivaatiotaso tiedolle = 12, kun havaitaan 8+4 A i = B i + j W j S ji
26 Muistimoduuli Muistijäljen aktivaatio määrittää todennäköisyyden onnistuneeseen palautukseen(lisäksi aktivaation tulee ylittää jokin minimi kynnysarvo) Palautukseen kuluva aika määräytyy myös aktivaatiosta Aktivaation perustaso on edellisistä harjoituskerroista kuluneiden aikojen (t j ) funktio
27 Muistimoduuli A i = B i + j W j S ji EntätermiS ji? Havainnon j assosiaatio muistijälkeen i pienenee sen mukaan, kuinka moneen muuhun muistijälkeen se lisäksi on assosioitunut: S ji = S ln( fan) Esim: muistikoe lauseilla muotoa: X on Y:ssä, missä henkilö X ja paikka Y voi liittyä yhteen tai kolmeen lauseeseen.
28 Reaktioajat muistikokeessa: Pisteet: empiirinen tulos. viiva: ACT-R ennuste
29 Produktiomuisti Produktiosäännöille määritellään utiliteetti P: todennäköisyys, että produktio(i) vie tavoitteeseen (onnistuneiden suoritusten osuus menneisyydessä) G: tavoitteen palkintoarvo C: produktioon liittyvä kustannus Utiliteettiin liittyy lisäksi satunnaisvariaatiota syklistä toiseen. Valitaan aina se produktio, jonka utiliteetti on suurin
30 Produktiomuisti Toistojen lisääntyessä parhaiten toimineen produktiosäännön utiliteetti kasvaa. Satunnaisvariaatiolla saadaan ihmisen tekemiseen liittyvä epäsäännöllisyys huomioitua. Produktiosääntöjä ketjuttamalla luodaan mahdollisuuksien mukaan uusia sääntöjä, joilla tavoitteeseen päästään nopeammin
31 ACT-R sovelluksia Useita satoja artikkeleita esim. Tietokoneavusteinen matematiikan opetus koululaisille Käyttöliittymien ja niiden oppimisen mallinnus (esim. Lennonohjausjärjestelmät) Neurologiset kokeet(fmri:n BOLD signaali voidaan yhdistää vastaavan moduulin aktivaatioon.) Autoilua ensi luennolla
Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08
Rationaalinen agentti Kognitiivinen mallintaminen I Yksinkertainen refleksiagentti Toiminta perustuu ainoastaan agentin havaintoihin kullakin ajanhetkellä. Luento III Symbolinen mallintaminen Ongelmanratkaisu
Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi
Symbolinen mallintaminen: tausta Kognitiivinen mallintaminen I Symbolinen mallintaminen 1 Tausta Symbolisysteemin hypoteesi von Neumannin arkkitehtuuri LOT Esimerkki kognitiivisesta mallista: produktiosysteemit
Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari
Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä
Kognitiivinen mallintaminen Neuraalimallinnus, luento 1
Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä
Matematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat
Luento 2. Kieli merkitys ja logiikka 2: Helpot ja monimutkaiset Helpot ja monimutkaiset ongelmat Tehtävä: etsi säkillinen rahaa talosta, jossa on monta huonetta. Ratkaisu: täydellinen haku käy huoneet
11.4. Context-free kielet 1 / 17
11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä
Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)
Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 26.2. Nelli Salminen nelli.salminen@helsinki.fi D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Pino Pinon määritelmä Pinon sovelluksia Järjestyksen kääntäminen Palindromiprobleema Postfix-lausekkeen laskenta Infix-lausekkeen muunto postfix-lausekkeeksi Sisäkkäiset funktiokutsut
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet 9.1 9.5) 30.11. 3.12.2004 1. Osoita lauselogiikan avulla oheisten ehtolausekkeiden ekvivalenssi. (a)!(a
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Datatähti 2019 loppu
Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio
KOHTI TIETOISIA ROBOTTEJA
SESKOn kevätseminaari 2017 KOHTI TIETOISIA ROBOTTEJA Dr. Pentti O A Haikonen Adjunct Professor Department of Philosophy University of Illinois at Springfield pentti.haikonen@pp.inet.fi ESITYKSEN PÄÄAIHEET
Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs
Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013
Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP
Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }
Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)
Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä
Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )
Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ
UML -mallinnus TILAKAAVIO
UML -mallinnus TILAKAAVIO SISÄLLYS 3. Tilakaavio 3.1 Tilakaavion alku- ja lopputilat 3.2 Tilan nimi, muuttujat ja toiminnot 3.3 Tilasiirtymä 3.4 Tilasiirtymän vai tilan toiminnot 3.5 Tilasiirtymän tapahtumat
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun
Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Käsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti
Käsitteistä Reliabiliteetti, validiteetti ja yleistäminen KE 62 Ilpo Koskinen 28.11.05 empiirisessä tutkimuksessa puhutaan peruskurssien jälkeen harvoin "todesta" ja "väärästä" tiedosta (tai näiden modernimmista
Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin
Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio
Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä
Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.
Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Pelin kautta opettaminen
Pelin kautta opettaminen Pelin kautta opettaminen Pelaamaan oppii vain pelaamalla?? Totta, mutta myös harjoittelemalla pelinomaisissa tilanteissa havainnoimista, päätöksentekoa ja toimintaa. Pelikäsitystä
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja
582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Matematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää
Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-
Kombinatorinen optimointi
Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein
Kognitiiviset arkkitehtuurit ja symbolinen mallinnus
Kognitiiviset arkkitehtuurit ja symbolinen mallinnus Luento Cog241 kurssille Lassi A. Liikkanen Kognitiotiede, HY Luennon sisältö 1. Arkkitehtuurien idea 2. Demo 3. Sovelluksia 4. Arviointia Symbolisen
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan
Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.
Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman
811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto
811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
Tähtitieteen käytännön menetelmiä Kevät 2009
Tähtitieteen käytännön menetelmiä Kevät 2009 2009-01-12 Yleistä Luennot Luennoija hannu.p.parviainen@helsinki.fi Aikataulu Observatoriolla Maanantaisin 10.00-12.00 Ohjattua harjoittelua maanantaisin 9.00-10.00
Scratch ohjeita. Perusteet
Perusteet Scratch ohjeita Scratch on graafinen ohjelmointiympäristö koodauksen opetteluun. Se soveltuu hyvin alakouluista yläkouluunkin asti, sillä Scratchin käyttömahdollisuudet ovat monipuoliset. Scratch
1 Ratkaisuja 2. laskuharjoituksiin
1 1 Ratkaisuja 2. laskuharjoituksiin Tehtävä 1. (a) Yksinkertainen reeksiagentti ei voi toimia rationaalisesti tässä tilanteessa, eli maksimoida suoriutumismittaansa (performance measure). Yksinkertainen
Dynaamiset regressiomallit
MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen
Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi
Luovuus ja assosiationismi Kieli merkitys ja logiikka 4: Luovuus, assosiationismi Käsittelemme ensin assosiationismin kokonaan, sen jälkeen siirrymme kombinatoriseen luovuuteen ja konstituenttimalleihin
Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta
Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,
Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos
Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden
Tarkennamme geneeristä painamiskorotusalgoritmia
Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Cog311 Resurssit ja monitehtäväsuoritus
Cog311 Resurssit ja monitehtäväsuoritus Esko Lehtonen... @helsinki.fi Resursseja? Ihminen havaintokognitiivisena kokonaisuutena voi Keskittyä johonkin kerrallaan Yhteen asiaan keskittyminen sulkee pois
Tilastotiede ottaa aivoon
Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen
Verkon värittämistä hajautetuilla algoritmeilla
Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)
Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto
Condess ratamestariohjelman käyttö Aloitus ja alkumäärittelyt Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto Kun kysytään kilpailun nimeä, syötä kuvaava nimi. Samaa nimeä käytetään oletuksena
Kognitiivinen mallintaminen Neuraalimallinnus 11.3.
Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Nelli Salminen nelli.salminen@helsinki.fi D433 Tällä kertaa ajan esittäminen neuroverkoissa dynaamiset systeemit esimerkkitapaus: lyhytkestoinen muisti
VEKTOR- HARJOITUSOHJELMA
VEKTOR- HARJOITUSOHJELMA Ha Vektor On suunniteltu 6-8-vuotiaille lapsille matematiikan perusteiden oppimiseen MUTTA sopii iästä riippumatta kaikille, joilla on matematiikan oppimisvaikeuksia ja/tai hahmotusvaikeuksia
Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja
581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen
Likimääräisratkaisut ja regularisaatio
Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.
ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit
IDL - proseduurit 25. huhtikuuta 2017 Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
7.4 Sormenjälkitekniikka
7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan
Laskut käyvät hermoille
Laskut käyvät hermoille - Miten ja miksi aivoissa lasketaan todennäköisyyksiä Aapo Hyvärinen Matematiikan ja tilastotieteen laitos & Tietojenkäsittelytieteen laitos Helsingin Yliopisto Tieteen päivät 13.1.2011
Tieto- ja viestintätekniikka. Internetistä toimiva työväline 1,5 osp (YV10TV2) (HUOM! Ei datanomeille)
Kuvaukset 1 (5) Tieto- ja viestintätekniikka Internetistä toimiva työväline 1,5 osp (YV10TV2) (HUOM! Ei datanomeille) Tavoitteet omaksuu verkko-oppimisympäristön ja sähköpostin keskeiset toiminnot tutustuu
ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014
18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,
Tilastotiede ottaa aivoon
Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen
Geneettiset algoritmit
Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin
Bayesilainen päätöksenteko / Bayesian decision theory
Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena
1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään
8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151
Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät
Liikenneongelmien aikaskaalahierarkia
J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät
Opetusmateriaali. Fermat'n periaatteen esittely
Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja
Tietorakenteet ja algoritmit
Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin
Rinnakkaistietokoneet luento S
Rinnakkaistietokoneet luento 5 521475S Silmukalliset ohjelmat Silmukat joissa ei ole riippuvuussyklejä voidaan vektoroida eli suorittaa silmukan vektorointi Jokainen yksittäinen käsky silmukan rungossa
Opetussuunnitelma ja selviytymisen kertomukset. Eero Ropo
Opetussuunnitelma ja selviytymisen kertomukset Tapaus Ahmed 2 3 Minuuden ja maailman kertomuksellisuus Itseä voi tuntea ja ymmärtää vain kertomuksina ja kertomusten kautta Oppimisen ja opetuksen ymmärtäminen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
etunimi, sukunimi ja opiskelijanumero ja näillä
Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi
2 Konekieli, aliohjelmat, keskeytykset
ITK145 Käyttöjärjestelmät, kesä 2005 Tenttitärppejä Tässä on lueteltu suurin piirtein kaikki vuosina 2003-2005 kurssin tenteissä kysytyt kysymykset, ja mukana on myös muutama uusi. Jokaisessa kysymyksessä
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI
1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä
Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin
Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.
Opetussuunnitelmasta oppimisprosessiin
Opetussuunnitelmasta oppimisprosessiin Johdanto Opetussuunnitelman avaamiseen antavat hyviä, perusteltuja ja selkeitä ohjeita Pasi Silander ja Hanne Koli teoksessaan Verkko-opetuksen työkalupakki oppimisaihioista
815338A Ohjelmointikielten periaatteet
815338A Ohjelmointikielten periaatteet 2015-2016 VII Logiikkaohjelmointi Sisältö 1. Johdanto 2. Predikaattilogiikan käsitteistöä 3. Prolog 815338A Ohjelmointikielten periaatteet, Logiikkaohjelmointi 2
Insinöörimatematiikka A
Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan
Kognitiivinen mallintaminen I
Kognitiivinen mallintaminen I Symbolinen mallintaminen: 2. luento Ongelmanratkaisu Ongelmanratkaisu Rationaalinen agentti Ongelma-avaruus Hakustrategiat ongelma-avaruudessa sokea haku tietoinen haku heuristiikat
Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004
Tuotteen oppiminen Käytettävyyden psykologia syksy 2004 Oppiminen Havainto Kognitiiviset muutokset yksilössä Oppiminen on uuden tiedon omaksumista, joka perustuu havaintoon Ärsyke Behavioristinen malli
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa