Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R

Koko: px
Aloita esitys sivulta:

Download "Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R"

Transkriptio

1 Kognitiivinen mallintaminen 1 Kognitiiviset arkkitehtuurit ACT-R

2 Kognitiiviset arkkitehtuurit Mielen(tai jonkin älykkään toimijan) mahdollisimman yleisiä piirteitä ja rakenteellista organisaatiota kuvaava malli. Arkkitehtuurit pyrkivät kuvaamaan kokonaisuutta, siinä missä mallit voivat keskittyvätjohonkinrajoitettuunkognitionosaan/ominaisuuteen. Kuvaavat yleisiä periaatteita, joiden pohjalle malleja voi rakentaa. Saman arkkitehtuurin pohjalta voi kyhätä hyvinkin erilaisia malleja eri tarkoituksiin. Historiallisestidigitaalisentietokoneenns. Von Neumann arkkitehtuurion toiminutpohjanakomputationaalisillemielenteorioille. Muisti Toiminta Keskusyksikkö Aistit Mieli on tietokone ajatuksen mukainen arkkitehtuuri

3 Kognitiiviset arkkitehtuurit Karkeasti voidaan jakaa kahteen tyyppiin(informaatioprosessoinnin tyypin mukaan) Symboliset, digitaalisen tietokoneen motivoimat Informaatio esitetään symboleilla, prosessoidaan algoritmeilla Produktiosysteemit Information processing theory Representaatiomallit Assosiatiiviset Kognitio kuvataan aktivaatioina assosiatiivisessa verkossa Neuroverkot Hyödyntää systeemin ei-symbolisia, emergenttejä ominaisuuksia. Monissa nykyisissä arkkitehtuureissa(act-r, SOAR) yhdistyy molempia piirteitä. -> Hybridiarkkitehtuuri.

4 Produktiosysteemit Produktiosysteemi on sovelluskohteesta riippumaton päätöksenteon ja järkeilyn malli. Pohjana monissa symbolisissa arkkitehtuureissa (SOAR ACT-R), eksperttisysteemeissä yms. Määrittää säännöt (produktiot), jonka mukaan systeemi käyttäytyy kussakin tilanteessa.

5 Produktiosysteemin rakenne Kaksi muistivarastoa Työmuisti (tietoa nykytilasta) Produktiomuisti (sääntöjä, miten toimia jossain tilassa.) Työmuisti Lautasella on hauki Hauki on kala Nälkä on ikävää Produktiomuisti JOS lautasella on hauki, NIIN syö hauki sekä päivitä työmuistiin: lautanen on tyhjä Säännöt voivat määrittää ulkoisia toimintoja ja/tai muuttaa muistivarastojen sisältöä.

6 Produktiosysteemit Työmuisti on tietokanta, joka on joukko toisistaan riippumattomia propositioita p 1,p 2,p 3,... esim. shorter(anna, beth) Sääntömuisti sisältää päättelysääntöjä, jotka ovat muotoa p 1 p 2... act 1 act 2...

7 Produktiosäännöt Sääntöjä sanotaan produktioiksi. Ne määrittelevät ehdollisia toimintoja: IF(ehto ok) THEN (tee jotain) Jos työmuistin sisältö on esimerkiksi shorter(anna, beth) voidaan soveltaa produktiosääntöä: IF: THEN: shorter(anna,beth) delete shorter(anna,beth) add taller(beth,anna) Nyt työmuistin uusi sisältö on taller(beth, anna)

8 Produktiosysteemit Produktiosysteemintoimintakoostuuperäkkäisistäsykleistä. Jokaisessa syklissä: 1. Systeemi etsii ne säännöt, joiden ehdot toteutuvat työmuistin sisällön perusteella. (match phase) 2. Tämän jälkeen systeemi valitsee (jollain tavalla) näistä yhden (conflict resolution). Sanotaan, että kyseinen produktio laukeaa (fires). 3. Jokaisessa syklissä suoritetaan lauenneen produktion määrittelemä toiminta.

9 Produktiosysteemit Produktiosysteemiin voidaan lisätä tavoitteita kuvaavia meta-produktioita, jotka ohjaavat ongelmanratkaisua. Konfliktinratkaisuun (conflict resolution) voidaan käyttää erilaisia taktiikoita. Voidaan esim. valita aina spesifein sääntö sääntö, joka hyödyntää uusimpia työmuistin faktoja sääntö, jota ei vielä ole käytetty

10 Esimerkki Oletetaan seuraava sääntömuisti, ja sallitaan jokaista sääntöä käytettävän vain kerran: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 2. IF: nisäkäs(x) & ihminen(x) THEN: lisää jalat(x,2) & poista nisäkäs(x) 3. IF: jalat(x,2) THEN: lisää seisoo(x) 4. IF: jalat(x) THEN: lisää kävelee(x) Oletetaan työmuisti: { kotieläin(lehmä), ihminen(pekka), nisäkäs(pekka)}

11 1. syklissä etsitään sopivat säännöt: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 2. IF: nisäkäs(x) & ihminen(x) THEN: lisää jalat(x,2), poista nisäkäs(x) Työmuisti: { kotieläin(lehmä), ihminen(pekka), nisäkäs(pekka)} Säännöt 1 ja 2 muodostavat konfliktin, joka ratkaistaan tässä valitsemalla tarkempi sääntö. Suoritettavat toiminnot: lisää jalat(pekka,2), poista nisäkäs(x)

12 Uusi työmuisti: {kotieläin(lehmä), ihminen(pekka), jalat(pekka,2) } Sääntömuisti, josta käytetyt säännöt on poistettu: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 3. IF: jalat(x,2) THEN: lisää seisoo(x) 4. IF: seisoo(x) THEN: lisää kävelee(x)

13 2. syklissä valitaan sääntö 3 jolloin toiminto on: lisää seisoo(pekka) Uusi työmuisti: {kotieläin(lehmä), ihminen(pekka), jalat(pekka,2), seisoo(pekka)} Produktiosysteemin toiminta jatkuu sykleittäin, kunnes sopivia produktioita ei enää löydy tai päästään haluttuun lopputilaan.

14 Oppiminen Systeemi "oppii" muodostamalla päättelyketjuista uusia produktioita. Edellisessä esimerkissä esimerkiksi päättely: IF: nisäkäs(x) & ihminen(x) THEN: jalat(x,2) IF: jalat(x,2) THEN: seisoo(x) IF: seisoo(x) THEN: kävelee(x) voi päättelyketjun suorituksen jälkeen automatisoitua produktioksi: IF: nisäkäs(x) & ihminen(x) THEN: kävelee(x)

15 ACT-R The Adaptive Control of Thought Rational Ihmisen kognition rakennetta kuvaava teoria, motivaationa psykologian tulokset. Käytännössäohjelmointiympäristö(LISP), jossaarkkitehtuurinkehyson valmiina. Riittää koodata ongelmakohtaiset asiat ACT-R skripteillä

16 ACT-R Arkkitehtuuri pyrkii jäljittelemään ihmiskognition piirteitä kvantitatiivisesti (reaktioajat, tarkkuus, oppiminen, neurologiset tulokset ) Arkkitehtuurin rakenne riittää tuottamaan yleensä kvalitatiivisesti oikeansuuntaista käytöstä. Kvantitatiivinen taso saavutetaan sovittamalla parametreja koetuloksiin.

17 ACT-R Malleja sovellettu hyvin monipuolisesti

18 ACT-R (rakenne) Arkkitehtuuri koostuu moduuleista (työmuisti, sääntömuisti, ympäristöä havainnoivat osat etc.) Bufferit kontrolloivat tiedonvälitystä moduulien välillä Produktiosysteemi valitsee säännöt, joiden ehdot vastaavat bufferien sisältöjä.

19 ACT-R Hybridiarkkitehtuuri: produktiosysteemisymbolinen, muiden moduulien sisäinen toiminta pääasiassa eisymbolista rinnakkaislaskentaa. Produktiosysteemi koordinoi kokonaisuuden toimintaa. Produktiosysteemi saa tietoa muista moduleista bufferienvälityksellä. Bufferisisältääkulloinkinvain pienen osan kokonaistiedosta. Produktiosysteemin suoritus etenee 50ms sykleissä (ihmiskognition aikaskaala). Teoria ei kiinnitä moduulien määrää(voidaan lisätä erikoistuneita kognitiivisia palasia tarpeen mukaan)

20

21 Moduulit Moduulien sisäinen suoritus ei-symbolista ja rinnakkaista. Moduulit ovat itsenäisiä ja voivat tehdä asioita samanaikaisesti toisistaan riippumatta. Havainto/motorinen moduuli toimivat siltana ulkomaailmaan Havaintomoduuli koostuu kahdesta palasta 1. Tieto objektin lokaatiosta 2. Tieto objektin ominaisuuksista Voidaan etsiä havaintoja lokaation tai ominaisuuden perusteella-> mahdollistaa pop-out efektin

22 Moduulit Tavoitemoduuli (intentional module, goal buffer) Pitää kirjaa mitä ollaan tekemässä Pitää kirjaa välitavoitteista Tavoitteet oleellisia oikean toiminnan valitsemiseen.

23 Muistimoduuli (tietomuisti) Systeemin tuntemat faktat ovat koodattu muistimoduuliin. Ihmismuisti ei kuitenkaan ole täydellinen asiat eivälttämättäpalaudumieleenonnistuneesti, eivätkä välittömästi. ACT-R:ssä muistiin koodatuilla faktoilla on jokin (muuttuva) aktivaatioarvo, joka määrittää kuinka helpostitietoon saatavilla. Usein käytetty tieto on helpommin saatavissa kuinharvemminhyödynnetty.

24 Muistimoduuli Muistissa olevan tiedon aktivaatiotaso määrittyy sen yleisestä hyödyllisyydestä menneisyydessä, sekä sen elementtien assosiaatioiden voimakkuudesta kontekstiin. A i + = Bi WjSji j B i : muistijäljeniaktivaationperustaso W j : attention alaistenkohteiden(esim. näkökentänobjektit) painokertoimet. (Yleensä 1/n, missä n on kohteiden lukumäärä) S ji : kohteiden(j) assosiaatiotmuistijälkeen(i)

25 Muistimoduuli Esim. Aktivaatiotaso tiedolle = 12, kun havaitaan 8+4 A i = B i + j W j S ji

26 Muistimoduuli Muistijäljen aktivaatio määrittää todennäköisyyden onnistuneeseen palautukseen(lisäksi aktivaation tulee ylittää jokin minimi kynnysarvo) Palautukseen kuluva aika määräytyy myös aktivaatiosta Aktivaation perustaso on edellisistä harjoituskerroista kuluneiden aikojen (t j ) funktio

27 Muistimoduuli A i = B i + j W j S ji EntätermiS ji? Havainnon j assosiaatio muistijälkeen i pienenee sen mukaan, kuinka moneen muuhun muistijälkeen se lisäksi on assosioitunut: S ji = S ln( fan) Esim: muistikoe lauseilla muotoa: X on Y:ssä, missä henkilö X ja paikka Y voi liittyä yhteen tai kolmeen lauseeseen.

28 Reaktioajat muistikokeessa: Pisteet: empiirinen tulos. viiva: ACT-R ennuste

29 Produktiomuisti Produktiosäännöille määritellään utiliteetti P: todennäköisyys, että produktio(i) vie tavoitteeseen (onnistuneiden suoritusten osuus menneisyydessä) G: tavoitteen palkintoarvo C: produktioon liittyvä kustannus Utiliteettiin liittyy lisäksi satunnaisvariaatiota syklistä toiseen. Valitaan aina se produktio, jonka utiliteetti on suurin

30 Produktiomuisti Toistojen lisääntyessä parhaiten toimineen produktiosäännön utiliteetti kasvaa. Satunnaisvariaatiolla saadaan ihmisen tekemiseen liittyvä epäsäännöllisyys huomioitua. Produktiosääntöjä ketjuttamalla luodaan mahdollisuuksien mukaan uusia sääntöjä, joilla tavoitteeseen päästään nopeammin

31 ACT-R sovelluksia Useita satoja artikkeleita esim. Tietokoneavusteinen matematiikan opetus koululaisille Käyttöliittymien ja niiden oppimisen mallinnus (esim. Lennonohjausjärjestelmät) Neurologiset kokeet(fmri:n BOLD signaali voidaan yhdistää vastaavan moduulin aktivaatioon.) Autoilua ensi luennolla

Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08

Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08 Rationaalinen agentti Kognitiivinen mallintaminen I Yksinkertainen refleksiagentti Toiminta perustuu ainoastaan agentin havaintoihin kullakin ajanhetkellä. Luento III Symbolinen mallintaminen Ongelmanratkaisu

Lisätiedot

Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi

Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi Symbolinen mallintaminen: tausta Kognitiivinen mallintaminen I Symbolinen mallintaminen 1 Tausta Symbolisysteemin hypoteesi von Neumannin arkkitehtuuri LOT Esimerkki kognitiivisesta mallista: produktiosysteemit

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat

Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat Luento 2. Kieli merkitys ja logiikka 2: Helpot ja monimutkaiset Helpot ja monimutkaiset ongelmat Tehtävä: etsi säkillinen rahaa talosta, jossa on monta huonetta. Ratkaisu: täydellinen haku käy huoneet

Lisätiedot

11.4. Context-free kielet 1 / 17

11.4. Context-free kielet 1 / 17 11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä

Lisätiedot

Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)

Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.) Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 26.2. Nelli Salminen nelli.salminen@helsinki.fi D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Pino Pinon määritelmä Pinon sovelluksia Järjestyksen kääntäminen Palindromiprobleema Postfix-lausekkeen laskenta Infix-lausekkeen muunto postfix-lausekkeeksi Sisäkkäiset funktiokutsut

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet 9.1 9.5) 30.11. 3.12.2004 1. Osoita lauselogiikan avulla oheisten ehtolausekkeiden ekvivalenssi. (a)!(a

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

KOHTI TIETOISIA ROBOTTEJA

KOHTI TIETOISIA ROBOTTEJA SESKOn kevätseminaari 2017 KOHTI TIETOISIA ROBOTTEJA Dr. Pentti O A Haikonen Adjunct Professor Department of Philosophy University of Illinois at Springfield pentti.haikonen@pp.inet.fi ESITYKSEN PÄÄAIHEET

Lisätiedot

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto) Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Todennäköisyyslaskennan käsitteitä Satunnaisuus ja deterministisyys Deterministisessä ilmiössä alkutila määrää lopputilan yksikäsitteisesti. Satunnaisilmiö puolestaan arpoo - yhdestä alkutilasta voi päätyä

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ

Lisätiedot

UML -mallinnus TILAKAAVIO

UML -mallinnus TILAKAAVIO UML -mallinnus TILAKAAVIO SISÄLLYS 3. Tilakaavio 3.1 Tilakaavion alku- ja lopputilat 3.2 Tilan nimi, muuttujat ja toiminnot 3.3 Tilasiirtymä 3.4 Tilasiirtymän vai tilan toiminnot 3.5 Tilasiirtymän tapahtumat

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Käsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti

Käsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti Käsitteistä Reliabiliteetti, validiteetti ja yleistäminen KE 62 Ilpo Koskinen 28.11.05 empiirisessä tutkimuksessa puhutaan peruskurssien jälkeen harvoin "todesta" ja "väärästä" tiedosta (tai näiden modernimmista

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Pelin kautta opettaminen

Pelin kautta opettaminen Pelin kautta opettaminen Pelin kautta opettaminen Pelaamaan oppii vain pelaamalla?? Totta, mutta myös harjoittelemalla pelinomaisissa tilanteissa havainnoimista, päätöksentekoa ja toimintaa. Pelikäsitystä

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Kognitiiviset arkkitehtuurit ja symbolinen mallinnus

Kognitiiviset arkkitehtuurit ja symbolinen mallinnus Kognitiiviset arkkitehtuurit ja symbolinen mallinnus Luento Cog241 kurssille Lassi A. Liikkanen Kognitiotiede, HY Luennon sisältö 1. Arkkitehtuurien idea 2. Demo 3. Sovelluksia 4. Arviointia Symbolisen

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m.

Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Väite: T (n) (a + b)n 2 + a. Induktiotodistus: Tapaus n = 0 selvä; ol. väite pätee kun n < m. Huomaa että funktion x x 2 + (m 1 x) 2 kuvaaja on ylöspäin aukeava paraabeli, joten funktio saavuttaa suurimman

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Tähtitieteen käytännön menetelmiä Kevät 2009

Tähtitieteen käytännön menetelmiä Kevät 2009 Tähtitieteen käytännön menetelmiä Kevät 2009 2009-01-12 Yleistä Luennot Luennoija hannu.p.parviainen@helsinki.fi Aikataulu Observatoriolla Maanantaisin 10.00-12.00 Ohjattua harjoittelua maanantaisin 9.00-10.00

Lisätiedot

Scratch ohjeita. Perusteet

Scratch ohjeita. Perusteet Perusteet Scratch ohjeita Scratch on graafinen ohjelmointiympäristö koodauksen opetteluun. Se soveltuu hyvin alakouluista yläkouluunkin asti, sillä Scratchin käyttömahdollisuudet ovat monipuoliset. Scratch

Lisätiedot

1 Ratkaisuja 2. laskuharjoituksiin

1 Ratkaisuja 2. laskuharjoituksiin 1 1 Ratkaisuja 2. laskuharjoituksiin Tehtävä 1. (a) Yksinkertainen reeksiagentti ei voi toimia rationaalisesti tässä tilanteessa, eli maksimoida suoriutumismittaansa (performance measure). Yksinkertainen

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi

Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi Luovuus ja assosiationismi Kieli merkitys ja logiikka 4: Luovuus, assosiationismi Käsittelemme ensin assosiationismin kokonaan, sen jälkeen siirrymme kombinatoriseen luovuuteen ja konstituenttimalleihin

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Cog311 Resurssit ja monitehtäväsuoritus

Cog311 Resurssit ja monitehtäväsuoritus Cog311 Resurssit ja monitehtäväsuoritus Esko Lehtonen... @helsinki.fi Resursseja? Ihminen havaintokognitiivisena kokonaisuutena voi Keskittyä johonkin kerrallaan Yhteen asiaan keskittyminen sulkee pois

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Verkon värittämistä hajautetuilla algoritmeilla

Verkon värittämistä hajautetuilla algoritmeilla Verkon värittämistä hajautetuilla algoritmeilla 5 12 30 19 72 34 Jukka Suomela 15 77 18 4 9. tammikuuta 2012 19 2 68 Verkko 2 Verkko solmu 3 Verkko solmu kaari 4 Hajautettu järjestelmä solmu (tietokone)

Lisätiedot

Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto

Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto Condess ratamestariohjelman käyttö Aloitus ja alkumäärittelyt Avaa ohjelma ja tarvittaessa Tiedosto -> Uusi kilpailutiedosto Kun kysytään kilpailun nimeä, syötä kuvaava nimi. Samaa nimeä käytetään oletuksena

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus 11.3.

Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Nelli Salminen nelli.salminen@helsinki.fi D433 Tällä kertaa ajan esittäminen neuroverkoissa dynaamiset systeemit esimerkkitapaus: lyhytkestoinen muisti

Lisätiedot

VEKTOR- HARJOITUSOHJELMA

VEKTOR- HARJOITUSOHJELMA VEKTOR- HARJOITUSOHJELMA Ha Vektor On suunniteltu 6-8-vuotiaille lapsille matematiikan perusteiden oppimiseen MUTTA sopii iästä riippumatta kaikille, joilla on matematiikan oppimisvaikeuksia ja/tai hahmotusvaikeuksia

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

Likimääräisratkaisut ja regularisaatio

Likimääräisratkaisut ja regularisaatio Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit IDL - proseduurit 25. huhtikuuta 2017 Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Laskut käyvät hermoille

Laskut käyvät hermoille Laskut käyvät hermoille - Miten ja miksi aivoissa lasketaan todennäköisyyksiä Aapo Hyvärinen Matematiikan ja tilastotieteen laitos & Tietojenkäsittelytieteen laitos Helsingin Yliopisto Tieteen päivät 13.1.2011

Lisätiedot

Tieto- ja viestintätekniikka. Internetistä toimiva työväline 1,5 osp (YV10TV2) (HUOM! Ei datanomeille)

Tieto- ja viestintätekniikka. Internetistä toimiva työväline 1,5 osp (YV10TV2) (HUOM! Ei datanomeille) Kuvaukset 1 (5) Tieto- ja viestintätekniikka Internetistä toimiva työväline 1,5 osp (YV10TV2) (HUOM! Ei datanomeille) Tavoitteet omaksuu verkko-oppimisympäristön ja sähköpostin keskeiset toiminnot tutustuu

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

1. Algoritmi 1.1 Sisällys Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. Muuttujat ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään

Lisätiedot

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151 Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät

Lisätiedot

Liikenneongelmien aikaskaalahierarkia

Liikenneongelmien aikaskaalahierarkia J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 5 521475S Silmukalliset ohjelmat Silmukat joissa ei ole riippuvuussyklejä voidaan vektoroida eli suorittaa silmukan vektorointi Jokainen yksittäinen käsky silmukan rungossa

Lisätiedot

Opetussuunnitelma ja selviytymisen kertomukset. Eero Ropo

Opetussuunnitelma ja selviytymisen kertomukset. Eero Ropo Opetussuunnitelma ja selviytymisen kertomukset Tapaus Ahmed 2 3 Minuuden ja maailman kertomuksellisuus Itseä voi tuntea ja ymmärtää vain kertomuksina ja kertomusten kautta Oppimisen ja opetuksen ymmärtäminen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1

Lisätiedot

etunimi, sukunimi ja opiskelijanumero ja näillä

etunimi, sukunimi ja opiskelijanumero ja näillä Sisällys 1. Algoritmi Algoritmin määritelmä. Aiheen pariin johdatteleva esimerkki. ja operaatiot (sijoitus, aritmetiikka ja vertailu). Algoritmista ohjelmaksi. 1.1 1.2 Algoritmin määritelmä Ohjelmointi

Lisätiedot

2 Konekieli, aliohjelmat, keskeytykset

2 Konekieli, aliohjelmat, keskeytykset ITK145 Käyttöjärjestelmät, kesä 2005 Tenttitärppejä Tässä on lueteltu suurin piirtein kaikki vuosina 2003-2005 kurssin tenteissä kysytyt kysymykset, ja mukana on myös muutama uusi. Jokaisessa kysymyksessä

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

Opetussuunnitelmasta oppimisprosessiin

Opetussuunnitelmasta oppimisprosessiin Opetussuunnitelmasta oppimisprosessiin Johdanto Opetussuunnitelman avaamiseen antavat hyviä, perusteltuja ja selkeitä ohjeita Pasi Silander ja Hanne Koli teoksessaan Verkko-opetuksen työkalupakki oppimisaihioista

Lisätiedot

815338A Ohjelmointikielten periaatteet

815338A Ohjelmointikielten periaatteet 815338A Ohjelmointikielten periaatteet 2015-2016 VII Logiikkaohjelmointi Sisältö 1. Johdanto 2. Predikaattilogiikan käsitteistöä 3. Prolog 815338A Ohjelmointikielten periaatteet, Logiikkaohjelmointi 2

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan

Lisätiedot

Kognitiivinen mallintaminen I

Kognitiivinen mallintaminen I Kognitiivinen mallintaminen I Symbolinen mallintaminen: 2. luento Ongelmanratkaisu Ongelmanratkaisu Rationaalinen agentti Ongelma-avaruus Hakustrategiat ongelma-avaruudessa sokea haku tietoinen haku heuristiikat

Lisätiedot

Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004

Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004 Tuotteen oppiminen Käytettävyyden psykologia syksy 2004 Oppiminen Havainto Kognitiiviset muutokset yksilössä Oppiminen on uuden tiedon omaksumista, joka perustuu havaintoon Ärsyke Behavioristinen malli

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset

HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa

Lisätiedot