Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)

Koko: px
Aloita esitys sivulta:

Download "Tänään ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus laskarit. Ensi kerralla (11.3.)"

Transkriptio

1 Tänään ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus Nelli Salminen D433 autoassosiaatio, attraktorin käsite esimerkkitapaus: kolme eri tapaa mallintaa kategorista havaitsemista Ensi kerralla (11.3.) ajan esittäminen hermoverkoissa takaisinkytketyt verkot ja dynaamiset systeemit esimerkkitapaus: lyhytkestoinen muisti esimerkkitapaus: tarkkaavaisuus aikaa olisi vielä yhdelle esimerkille 4. laskarit kysymyksiä pohdittaviksi kohtuullisen helppolukuisen mallinnusartikkelin pohjalta artikkelivaihtoehtoja tulee olemaan varmaankin kaksi toivomukset edelleen tervetulleita 1

2 Autoassosiaatio verkko jonka tehtävänä on syötteen perusteella tuottaa tuo syöte itse verkko voi olla käyttökelpoinen jos esim. halutaan kohinaisen tai osittaisen kuvion perusteella löytää virheetön kuvio tai epätyypillisen esimerkin perusteella löytää prototyyppi takaisinkytketty verkko (recurrent) kaikki solut ovat yhteydessä toisiinsa kaikki solut ovat samassa kerroksessa (eli käytännössä verkossa ei ole kerroksia) toinen tapa piirtää neuronit ja niiden väliset yhteydet Hopfieldin verkossa w jk = w kj syöte annetaan kaikille verkon neuroneille syöte toimii neuronien aktiviteetin alkuarvoina tämän jälkeen aktiviteetti muuttuu painokertoimien määräämällä tavalla 2

3 aktiviteetti etenee ajassa, saman solun aktiviteetti lasketaan moneen kertaan vaihtoehto 1: lasketaan kaikkien solujen aktiviteetti kerralla vaihtoehto 2: päivitetään aktiviteetti yhdelle satunnaisesti valitulle solulle kerrallaan tätä jatketaan kunnes aktiviteetti ei enää muutu solun j aktiviteetti: a j = w j a oppimissääntö jolla verkko saadaan tekemään autoassosiaatiota: w jk = in j in k eli w jk = a j a k w jk = a j a k miksi tämä toimii? tarkastellaan tilannetta jossa a:t ovat 1 tai = 1 ja -1 (-1) = 1, eli solut joilla on syötteessä sama aktiviteetti saavat positiivisen yhteyden eli yhteys pyrkii pitämään solujen aktiviteetit samoina 1 (-1) = -1 ja -1 1 = -1, eli solut joilla on syötteessä eri aktiviteetti saavat negatiivisen yhteyden eli yhteys pyrkii pitämään solujen aktiviteetit vastakkaisina 3

4 samaan verkkoon voidaan tallettaa useita kuvioita laskemalla keskiarvo kutakin kuviota vastaavista painokertoimista verkon kapasiteetilla on rajansa, kun kuvioita talletetaan liikaa ne häiritsevät toisiaan Demo: talletetaan on kuvia yksi pikseli vastaa verkon yhtä solua määritetään painokertoimet virheettömillä syötteillä ja katsotaan miten verkko toimii kohinaisella tai puutteellisella syötteellä Demo: verkko palauttaa virheettömän kuvion kohinaisen syötteen pohjalta Demo: verkko palauttaa virheettömän kuvion puutteelisen syötteen pohjalta 4

5 Demo: verkko palauttaa aina jonkun siihen talletetun kuvion vaikka sen syöte olisi mitä tahansa Demo: verkko saattaa epämääräisellä syötteellä palauttaa myös sinne talletetun kuvion vastakohdan Attraktorit verkon vakaita tiloja kutsutaan attraktoreiksi kun aktiviteetti päätyy attraktoriin se ei enää muutu Hopfieldin verkossa päädytään lopuksi attraktoriin, aktiviteetin alkuarvot ratkaisevat mihin niistä Attraktorit mahdollisten alkuarvojen joukko on jaettavissa osiin sen mukaan mihin attraktoriin ne lopulta johtavat 5

6 Attraktorit verkkoon talletetuista kuvioista tulee verkon attraktoreita talletettujen kuvioiden vastakohdista (eli 1 kertaa talletettu kuvio) tulee myös attraktoreita esimerkin verkossa oli siis neljä attraktoria, kaksi kuviota ja niiden vastakohdat verkon kapasiteetin ylittyminen saattaa ilmetä ylimääräisinä attraktoreina Muita tapoja tehdä autoassosiaatiota takaisinkytketyn autoassosiatiivisen muistin voi opettaa myös virheeseen (halutun ja saadun aktiviteetin erotukseen) perustuvalla oppimissäännöllä autoassosiatiivisen muistin voi tehdä myös backpropagation verkolla (esimerkki tulee kategorisen havaitsemisen yhteydessä) Esimerkkitapaus: Kategorisen havaitsemisen mallintaminen katsotaan miten samaa havaintopsykologista ilmiötä on mallinnettu erityyppisillä verkoilla 1. attraktori-verkko 2. backpropagation-verkko 3. hebbiläinen kilpaileva verkko muitakin malleja samasta ilmiöstä on olemassa Kategorisen havaitsemisen määritelmä (tässä yhteydessä) otetaan joukko stimuluksia jotka jonkin fyysisen ominaisuutensa perusteella ovat tasavälein toisistaan (esim. neliön koko tai kirkkaus, puheäänessä voice onset time) tutkitaan ovatko nämä stimulukset myös koehenkilön kokemuksen mukaan tasavälein mitataan siis havaittuja etäisyyksiä ja verrataan niitä todellisiin etäisyyksiin etäisyyden mittana toimii yleensä erottelukyky 6

7 Kategorisen havaitsemisen määritelmä (tässä yhteydessä) kategorioiden rajojen ja erottelukyvyn välinen suhde lähekkäin olevat stimulukset erotetaan toisistaan paremmin jos ne kuuluvat eri kategorioihin kuin jos ne kuuluvat samaan kategoriaan Kategorisen havaitsemisen määritelmä (tässä yhteydessä) todellisuudessa kategorioiden ja erottelukyvyn suhde ei ole näin jyrkkä erottelu onnistuu kategorioiden sisällä erottelukyky muuttuu asteittain Kategorinen havaitseminen stimuluksille altistumisen tuloksena puheäänten kategoriat opitaan puhetta kuulemalla puheen havaitseminen on eniten kokeellisesti tutkittu kategorisen havaitsemisen tapaus Kategorinen havaitseminen laboratoriossa tuotettuna kategorista havaitsemista voidaan tuottaa myös uusille stimuluksille kokeissa koehenkilö opetetaan ensin kategorisoimaan stimuluksia ja sen jälkeen mitataan tämän kategorisoinnin vaikutusta stimulusten erottelukykyyn 7

8 Vaihtoehto 1: attraktorit Hopfield-tyyppisen verkon attraktorit voidaan ajatella kategorioiden prototyypeiksi aktivaatiolle annettavat arvot ovat verkon syöte = koehenkilölle esitetty stimulus aktivaatiolla on jokin lopputila = koehenkilön havainto Attraktorit eri kategorioihin kuuluvat syötteet johtavat eri attraktoreihin eri eli havaintoihin erottelu on mahdollista samaan kategoriaan kuuluvat syötteet johtavat samaan attraktoriin eli identtisiin havaintoihin erottelu ei ole mahdollista Attraktorit Hopfield-tyyppinen verkko jossa kolme solua jotka ovat kaikki yhteydessä toisiinsa syötteet koodataan kolmen solun aktiviteeteiksi opetetaan verkko kuvioilla joissa aktiviteetit ovat ääriarvoissa, kahdeksan mahdollista ääriasentoa, näistä tulee kahdeksan attraktoria kun verkko saa syötteeksi jotain muuta se päätyy aina näihin opetettuihin ääritiloihin Attraktorit verkon eri tilat voidaan kuvata pisteiksi kuution sisällä, kukin ulottuvuus vastaa yhtä neuronia verkossa attraktorit ovat tämän kuution kulmissa tästä tulee mallin nimi brain-state-in-a-box 8

9 Vaihtoehto 2: backpropagation opetetaan backpropagation-säännöllä verkko luokittelemaan syötteet kahteen ryhmään, tässä tapauksessa eri mittaiset viivat pitkiin ja lyhyisiin katsotaan miten kategorioiden opetus vaikuttaa viivojen pituuden edustukseen verkossa Backpropagation muodostetaan ensin autoassosiatiivinen verkko syötteet ovat samat kuin halutut tulosteet piilokerroksessa on vähemmän soluja kuin syöteja tulostekerroksissa Backpropagation lisätään tuloste-kerrokseen kaksi kategoria-solua, solun 1 tehtävä on aktivoitua lyhyille, solun 2 pitkille viivoille jatketaan opetusta Backpropagation opetuksen jälkeen tutkitaan miten kategorisoinnin opetus vaikutti autoassosiatiiviseen osaan tulosteesta tulosteessa lyhyet viivat lähellä kategorioiden rajaa lyhenevät syötteeseen verrattuna, samoin pitkät viivat lähellä rajaa pidentyvät rajan läheisyydessä olevat syötteet ovat tulosteessa kauempana toisistaan 9

10 Vaihtoehto 3: kilpaileva verkko kilpaileva verkko on itseorganisoituva eli se on herkkä sille kuinka usein mitäkin stimulusta esitetään opetetaan verkkoa niin että sille esitetään ainoastaan prototyyppejä eli kategorioiden tyypillisimpiä jäseniä Kilpaileva verkko tällä opetuksella syntyy verkko jonka neuronit ovat erikoistuneet jollekin tietylle prototyypille kuvassa kukin piste vastaa yhden neuronin painokertoimia eli syötettä joka aktivoi neuronin parhaiten Kilpaileva verkko verkon havaintoa muodostuu siten että neuronit äänestävät siitä mikä syöte oli kyseessä neuronin vaikutusvalta on sitä suurempi mitä suurempi on sen aktiviteetti havainto = keskiarvo(neuronin aktiviteetti*neuronin suosikkisyöte) tästä seuraa että havainnot keskittyvät lähelle prototyyppejä prototyyppien läheisyydessä havainnot lähenevät toisiaan, prototyyppien puolivälissä etäisyydet kasvavat Attraktori-malli + verkon rakenne melko realistinen + opetus ei vaadi virhe- tai ohjaussignaaleja + verkon tuottama tuloste helposti tulkittava aktivaatio päätyy aina prototyyppiin eli havaitaan ainoastaan mihin kategoriaan syöte kuuluu, kaikki muu informaatio katoaa, todellisuudessa kategorinen havaitseminen ei ole näin äärimmäistä opetuksessa esiintyy ainoastaan prototyyppejä 10

11 Backpropagation-malli + verkon tuottama kategorinen havaitseminen vastaa melko hyvin todellisuutta + tuloste on helposti tulkittava backpropagation on oppimissääntönä epärealistinen Kilpaileva oppiminen + oppimismekanismi on realistinen + mitään ulkoisia opetussignaaleja ei tarvita tulosteen tulkinta on hankalaa opetuksessa esiintyy ainoastaan prototyyppejä 11

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 1.12. Nelli Salminen nelli.salminen@tkk.fi Tänään ohjelmassa autoassosiaatio, Hopfieldin verkko attraktorin käsite ajan esittäminen hermoverkoissa esimerkkitapaus:

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Kognitiivinen mallintaminen. Nelli Salminen

Kognitiivinen mallintaminen. Nelli Salminen Kognitiivinen mallintaminen Neuraalimallinnus 24.11. Nelli Salminen nelli.salminen@tkk.fi Tällä kerralla ohjelmassa vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko oppimissääntöjen

Lisätiedot

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö

Tällä kerralla ohjelmassa. Kognitiivinen mallintaminen Neuraalimallinnus Kertausta: Perseptronin oppimissääntö Tällä kerralla ohjelmassa Kognitiivinen mallintaminen Neuraalimallinnus 19.2. Nelli Salminen nelli.salminen@helsinki.fi D433 vielä perseptronista ja backpropagationista kilpaileva oppiminen, Kohosen verkko

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus 11.3.

Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Kognitiivinen mallintaminen Neuraalimallinnus 11.3. Nelli Salminen nelli.salminen@helsinki.fi D433 Tällä kertaa ajan esittäminen neuroverkoissa dynaamiset systeemit esimerkkitapaus: lyhytkestoinen muisti

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004

Tuotteen oppiminen. Käytettävyyden psykologia syksy 2004. T-121.200 syksy 2004 Tuotteen oppiminen Käytettävyyden psykologia syksy 2004 Oppiminen Havainto Kognitiiviset muutokset yksilössä Oppiminen on uuden tiedon omaksumista, joka perustuu havaintoon Ärsyke Behavioristinen malli

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.381 Laskennallinen Neurotiede Projektityö 30.1.007 Heikki Hyyti 60451P Tehtävä 1: Virityskäyrästön laskeminen Luokitellaan neuroni ensin sen mukaan, miten se vastaa sinimuotoisiin syötteisiin. Syöte

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa

Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Sanajärjestyksen ja intensiteetin vaikutus suomen intonaation havaitsemisessa ja tuotossa Martti Vainio, Juhani Järvikivi & Stefan Werner Helsinki/Turku/Joensuu Fonetiikan päivät 2004, Oulu 27.-28.8.2004

Lisätiedot

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( )

Königsbergin sillat. Königsberg 1700-luvulla. Leonhard Euler ( ) Königsbergin sillat 1700-luvun Königsbergin (nykyisen Kaliningradin) läpi virtasi joki, jonka ylitti seitsemän siltaa. Sanotaan, että kaupungin asukkaat yrittivät löytää reittiä, joka lähtisi heidän kotoaan,

Lisätiedot

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto)

Tekoäly tänään , Vadim Kulikov (Helsingin Yliopisto) Tekoäly tänään 6.6.2017, Vadim Kulikov (Helsingin Yliopisto) Lyhyesti: kehitys kognitiotieteessä Representationalismi, Kognitio on symbolien manipulointia. Symbolinen tekoäly. Sääntöpohjaiset järjestelmät

Lisätiedot

Partikkelit pallon pinnalla

Partikkelit pallon pinnalla Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen

Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen Seurantalaskimen simulointi- ja suorituskykymallien vertailu (valmiin työn esittely) Joona Karjalainen 08.09.2014 Ohjaaja: DI Mikko Harju Valvoja: Prof. Kai Virtanen Työn saa tallentaa ja julkistaa Aalto-yliopiston

Lisätiedot

Kirjoita ohjelma jossa luetaan kokonaislukuja taulukkoon (saat itse päättää taulun koon, kunhan koko on vähintään 10)

Kirjoita ohjelma jossa luetaan kokonaislukuja taulukkoon (saat itse päättää taulun koon, kunhan koko on vähintään 10) Tehtävä 40. Kirjoita ohjelma, jossa luetaan 20 lukua, joiden arvot ovat välillä 10 100. Kun taulukko on täytetty, ohjelma tulostaa vain ne taulukon arvot, jotka esiintyvät taulukossa vain kerran. Tehtävä

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

Partikkelit pallon pinnalla

Partikkelit pallon pinnalla Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 20 12 11 21. Turun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut a) 31 b) 0 c) 9 d) 31 Ratkaisu. Suoralla laskulla 20 12 11 21 = 240 231 = 9. (2) Kahden peräkkäisen

Lisätiedot

KOHTI TIETOISIA ROBOTTEJA

KOHTI TIETOISIA ROBOTTEJA SESKOn kevätseminaari 2017 KOHTI TIETOISIA ROBOTTEJA Dr. Pentti O A Haikonen Adjunct Professor Department of Philosophy University of Illinois at Springfield pentti.haikonen@pp.inet.fi ESITYKSEN PÄÄAIHEET

Lisätiedot

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite 2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite Tämän päivän lukiogeometrian sisältöjä on melkoisesti supistettu siitä, mitä ne olivat joku vuosikymmen sitten. Sisällöistä ei enää kasata sellaista rakennelmaa,

Lisätiedot

Sisällysluettelo ja ohjeet tilastojen tulkintaan (osa 1) 1.1 Esittelee kyselyn tulokset kokonaisuudessa

Sisällysluettelo ja ohjeet tilastojen tulkintaan (osa 1) 1.1 Esittelee kyselyn tulokset kokonaisuudessa Sisällysluettelo ja ohjeet tilastojen tulkintaan (osa 1) 1.1 Esittelee kyselyn tulokset kokonaisuudessa - Kurin määritelmät ovat x-koordinaatistolla - Vastaukset on esitetty graafi sesti värikoodeja käyttäen.

Lisätiedot

EI MIKÄÄN NÄISTÄ. KUVITETTU MINI-MENTAL STATE EXAMINATION Ohjeet viimeisellä sivulla. 1. Mikä vuosi nyt on? 2. Mikä vuodenaika nyt on?

EI MIKÄÄN NÄISTÄ. KUVITETTU MINI-MENTAL STATE EXAMINATION Ohjeet viimeisellä sivulla. 1. Mikä vuosi nyt on? 2. Mikä vuodenaika nyt on? POTILAS: SYNTYMÄAIKA: TUTKIJA: PÄIVÄMÄÄRÄ: 1. Mikä vuosi nyt on? 2000 2017 2020 1917 EI MIKÄÄN NÄISTÄ 2. Mikä vuodenaika nyt on? KEVÄT KESÄ SYKSY TALVI 3. Monesko päivä tänään on? 1 2 3 4 5 6 7 8 9 10

Lisätiedot

S Laskennallinen Neurotiede

S Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 3 8.12.2006 Heikki Hyyti 60451P Tehtävä 2 Tehtävässä 2 piti tehdä 100 hermosolun assosiatiivinen Hopfield-muistiverkko. Verkko on rakennettu Matlab-ohjelmaan

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

Mielenterveys voimavarana

Mielenterveys voimavarana Hyvinvoiva oppilaitos - Tietoa ja hyviä käytänteitä opetukseen Mielenterveys voimavarana Psykologi Psykoterapeutti, YET Tiina Röning Yhteistyössä: Mielen hyvinvoinnin opettajakoulutukset, SMS Mielen terveys

Lisätiedot

11.4. Context-free kielet 1 / 17

11.4. Context-free kielet 1 / 17 11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä

Lisätiedot

Kenguru 2016 Student lukiosarja

Kenguru 2016 Student lukiosarja sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

S-114.2720 Havaitseminen ja toiminta

S-114.2720 Havaitseminen ja toiminta S-114.2720 Havaitseminen ja toiminta Heikki Hyyti 60451P Harjoitustyö 3 puheen havaitseminen Mikä on akustinen vihje (acoustic cue)? Selitä seuraavat käsitteet ohjelman ja kirjan tietoja käyttäen: Spektrogrammi

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Pistetulo eli skalaaritulo

Pistetulo eli skalaaritulo Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Viikko 6: 1 Kalmanin suodatin Aiemmin käsitellyt

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Signaalien generointi

Signaalien generointi Signaalinkäsittelyssä joudutaan usein generoimaan erilaisia signaaleja keinotekoisesti. Tyypillisimpiä generoitavia aaltomuotoja ovat eritaajuiset sinimuotoiset signaalit (modulointi) sekä normaalijakautunut

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä

DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä 1 DC-moottorin pyörimisnopeuden mittaaminen back-emf-menetelmällä JK 23.10.2007 Johdanto Harrasteroboteissa käytetään useimmiten voimanlähteenä DC-moottoria. Tämä moottorityyppi on monessa suhteessa kätevä

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

GSRELE ohjeet. Yleistä

GSRELE ohjeet. Yleistä GSRELE ohjeet Yleistä GSM rele ohjaa Nokia 3310 puhelimen avulla releitä, mittaa lämpötilaa, tekee etähälytyksiä GSM-verkon avulla. Kauko-ohjauspuhelin voi olla mikä malli tahansa tai tavallinen lankapuhelin.

Lisätiedot

LIITE 2. PERUSOPETUKSEN OPPIMISYMPÄRISTÖJEN NYKYTILANNE JA OPETTAJIEN VALMIUDET RAPORTTIIN LIITTYVIÄ TAULUKOITA JA KUVIOITA

LIITE 2. PERUSOPETUKSEN OPPIMISYMPÄRISTÖJEN NYKYTILANNE JA OPETTAJIEN VALMIUDET RAPORTTIIN LIITTYVIÄ TAULUKOITA JA KUVIOITA LIITE 2. PERUSOPETUKSEN OPPIMISYMPÄRISTÖJEN NYKYTILANNE JA OPETTAJIEN VALMIUDET RAPORTTIIN LIITTYVIÄ TAULUKOITA JA KUVIOITA Toukokuu 2016 Valtioneuvoston selvitysja tutkimustoiminnan julkaisusarja 18/2016

Lisätiedot

Taulukot. Jukka Harju, Jukka Juslin 2006 1

Taulukot. Jukka Harju, Jukka Juslin 2006 1 Taulukot Jukka Harju, Jukka Juslin 2006 1 Taulukot Taulukot ovat olioita, jotka auttavat organisoimaan suuria määriä tietoa. Käsittelylistalla on: Taulukon tekeminen ja käyttö Rajojen tarkastus ja kapasiteetti

Lisätiedot

2.1 Yksinkertaisen geometrian luonti

2.1 Yksinkertaisen geometrian luonti 2.1 Yksinkertaisen geometrian luonti Kuva 2.1 Tiedon portaat Kuva 2.2 Ohjelman käyttöliittymä suoran luonnissa 1. Valitse Luo, Suora, Luo suora päätepistein. 2. Valitse Pystysuora 3. Valitse Origo Origon

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato

Luentotesti 3. Kun tutkimuksen kävelynopeustietoja analysoidaan, onko näiden tutkittavien aiheuttama kato Tehtävä 1 Osana laajempaa tutkimusprojektia mitattiin kävelynopeutta yli 80-vuotiaita tutkittavia. Osalla tutkittavista oli lääkärintarkastuksen yhteydessä annettu kielto osallistua fyysistä rasitusta

Lisätiedot

Tentti erilaiset kysymystyypit

Tentti erilaiset kysymystyypit Tentti erilaiset kysymystyypit Monivalinta Monivalintatehtävässä opiskelija valitsee vastauksen valmiiden vastausvaihtoehtojen joukosta. Tehtävään voi olla yksi tai useampi oikea vastaus. Varmista, että

Lisätiedot

Kolmion kulmien summa. Maria Sukura

Kolmion kulmien summa. Maria Sukura Kolmion kulmien summa Maria Sukura Oppituntien johdanto Oppilaat kuulevat triangelin äänen. He voivat katsoa sitä ja yrittää nimetä tämän soittimen. Tutkimme, miksi triangelia kutsutaan tällä nimellä,

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku.

Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. 1/11 4 MITTAAMINEN Mittaaminen menettely (sääntö), jolla tilastoyksikköön liitetään tiettyä ominaisuutta kuvaava luku, mittaluku. Mittausvirhettä johtuen mittarin tarkkuudesta tai häiriötekijöistä Mittarin

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Yliopistopedagogiikan suuntaviivoja

Yliopistopedagogiikan suuntaviivoja Yliopistopedagogiikan suuntaviivoja Sari Lindblom Ylänne Yliopistopedagogiikan professori Yliopistopedagogiikan tutkimus ja kehittämisyksikkö Kasvatustieteen laitos Tutkimuspohjainen opetuksen kehittäminen

Lisätiedot

Hyvän tieteellisen käytännön oppiminen ja Turnitinin käyttöönotto

Hyvän tieteellisen käytännön oppiminen ja Turnitinin käyttöönotto Hyvän tieteellisen käytännön oppiminen ja Turnitinin käyttöönotto Strateginen rasti 15.5.2013: Hyvä tieteellinen käytäntö opetuksessa Markku Ihonen TENK:n ohje Hyvä tieteellinen käytäntö ja sen loukkausepäilyjen

Lisätiedot

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.

Lisätiedot

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu. RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion

Lisätiedot

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu Harjoite 2 Tavoiteltava toiminta: Materiaalit: Eteneminen: TUTUSTUTAAN OMINAISUUS- JA Toiminnan tavoite ja kuvaus: SUHDETEHTÄVIEN TUNNISTAMISEEN Kognitiivinen taso: IR: Toiminnallinen taso: Sosiaalinen

Lisätiedot

Aki Taanila AIKASARJOJEN ESITTÄMINEN

Aki Taanila AIKASARJOJEN ESITTÄMINEN Aki Taanila AIKASARJOJEN ESITTÄMINEN 4.12.2012 Viivakaavio Excelissä voit toteuttaa viivakaavion kaaviolajilla Line (Viiva). Viivakaavio onnistuu varmimmin, jos taulukon ensimmäisessä sarakkeessa ovat

Lisätiedot

Kuulohavainto ympäristössä

Kuulohavainto ympäristössä Weber-Fechner Kivun gate control fys _ muutos hav _ muutos k fys _ taso Jos tyypillisessä sisätilavalaistuksessa (noin 100 cd/m2), voi havaita seinällä valotäplän, jonka kirkkaus on 101 cd/m2). Kuinka

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Ecolier, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos

Lisätiedot

KUVATAITEEN PAINOTUSOPETUS LUOKAT. Oppiaineen tehtävä

KUVATAITEEN PAINOTUSOPETUS LUOKAT. Oppiaineen tehtävä KUVATAITEEN PAINOTUSOPETUS 7. -9. LUOKAT Oppiaineen tehtävä Kuvataiteen opetuksen tehtävä on ohjata oppilaita tutkimaan ja ilmaisemaan kulttuurisesti moninaista todellisuutta taiteen keinoin. Oppilaiden

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Kuvataide. Vuosiluokat 7-9

Kuvataide. Vuosiluokat 7-9 Kuvataide Vuosiluokat 7-9 Kuvataiteen tehtävänä on kulttuurisesti moniaistisen todellisuuden tutkiminen ja tulkitseminen. Kuvataide tukee eri oppiaineiden tiedon kehittymistä eheäksi käsitykseksi maailmasta.

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Dynaamisten systeemien identifiointi 1/2

Dynaamisten systeemien identifiointi 1/2 Dynaamisten systeemien identifiointi 1/2 Mallin rakentaminen mittausten avulla Epäparametriset menetelmät: tuloksena malli, joka ei perustu parametreille impulssi-, askel- tai taajusvaste siirtofunktion

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Lähtökohdat puheenvuorolle

Lähtökohdat puheenvuorolle Aistitoiminnot - Kognitiiviset toiminnot - Muisti ja oppiminen - Missä voi mennä pieleen? - Miten voi auttaa ja helpottaa muistamista? - Sosio-emotionaalinen alue - Summa Summarum KM Susanna Paloniemen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 30. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 30. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 30. marraskuuta 2015 Sisällys t Väitöstilaisuus 4.12.2015 kello 12 vanhassa juhlasalissa S212 saa tulla 2 demoruksia

Lisätiedot

ARVO - verkkomateriaalien arviointiin

ARVO - verkkomateriaalien arviointiin ARVO - verkkomateriaalien arviointiin Arvioitava kohde: Jenni Rikala: Aloittavan yrityksen suunnittelu, Arvioija: Heli Viinikainen, Arviointipäivämäärä: 12.3.2010 Osa-alue 1/8: Informaation esitystapa

Lisätiedot

2. luentokrt KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA

2. luentokrt KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA KOTITEHTÄVÄ: VASTAA UUDELLEEN KAHTEEN KYSYMYKSEESI TÄMÄN PÄIVÄN TIEDON PERUSTEELLA 13.4.2015 1 2. luentokrt Taksonomiataulu osa 2 eli miten suunnitella opetusta ja oppilasarviointia tehtävien vaativuustasot

Lisätiedot

Käytännössä toimintakyvyllä tarkoitetaan henkilön suoriutumista jossakin toimintaympäristössä:

Käytännössä toimintakyvyllä tarkoitetaan henkilön suoriutumista jossakin toimintaympäristössä: Joensuu 2.12.2014 Käytännössä toimintakyvyllä tarkoitetaan henkilön suoriutumista jossakin toimintaympäristössä: Työssä Kotona Harrastuksissa Liikkumisessa (esim. eri liikennevälineet) Ym. WHO on kehittänyt

Lisätiedot

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3 . Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat

Lisätiedot

Skenaariot suurpetokantojen verotuksen suunnittelussa

Skenaariot suurpetokantojen verotuksen suunnittelussa Skenaariot suurpetokantojen verotuksen suunnittelussa Katja Holmala Riistapäivät 19.1.2016 Esityksen rakenne Tausta Mallit ilveksen populaatiokehityksestä Malli 1: populaatiomalli Malli 2: skenaario- eli

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010

S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010 1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

Suravage-aineiston tuottaminen tien suunnittelijan näkökulmasta

Suravage-aineiston tuottaminen tien suunnittelijan näkökulmasta Suravage-aineiston tuottaminen tien suunnittelijan näkökulmasta Infotilaisuus 7.4.2015, Jan-Erik Berg Ympäristösi parhaat tekijät Agenda 2 Johdanto Ohjeen kuvaus Käytännön tekeminen ja erikoistapaukset

Lisätiedot

Geneettiset algoritmit

Geneettiset algoritmit Geneettiset algoritmit Evoluution piirteitä laskennassa Optimoinnin perusteet - Kevät 2002 / 1 Sisältö Geneettisten algoritmien sovelluskenttä Peruskäsitteitä Esimerkkejä funktion ääriarvon etsintä vangin

Lisätiedot

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne

Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

Smart Board lukion lyhyen matematiikan opetuksessa

Smart Board lukion lyhyen matematiikan opetuksessa Smart Board lukion lyhyen matematiikan opetuksessa Haasteita opettajalle lukion lyhyen matematiikan opetuksessa ovat havainnollistaminen ja riittämätön aika. Oppitunnin aikana opettaja joutuu usein palamaan

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

Tentti erilaiset kysymystyypit

Tentti erilaiset kysymystyypit Tentti erilaiset kysymystyypit Kysymystyyppien kanssa kannatta huomioida, että ne ovat yhteydessä tentin asetuksiin ja erityisesti Kysymysten toimintatapa-kohtaan, jossa määritellään arvioidaanko kysymykset

Lisätiedot

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS

RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS 466111S Rakennusfysiikka, 5 op. RAKENNUSAKUSTIIKKA - ILMAÄÄNENERISTÄVYYS Opettaja: Raimo Hannila Luentomateriaali: Professori Mikko Malaska Oulun yliopisto LÄHDEKIRJALLISUUTTA Suomen rakentamismääräyskokoelma,

Lisätiedot

Kenguru 2011 Cadet (8. ja 9. luokka)

Kenguru 2011 Cadet (8. ja 9. luokka) sivu 1 / 7 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi, jos et halua

Lisätiedot