Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi

Koko: px
Aloita esitys sivulta:

Download "Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemin hypoteesi"

Transkriptio

1 Symbolinen mallintaminen: tausta Kognitiivinen mallintaminen I Symbolinen mallintaminen 1 Tausta Symbolisysteemin hypoteesi von Neumannin arkkitehtuuri LOT Esimerkki kognitiivisesta mallista: produktiosysteemit Rationaalinen agentti Symbolisysteemin hypoteesi 1961 Newell ja Simon antoivat formaalin muodon kognitiotieteen komputationaaliselle mallille: symbolisysteemin hypoteesin (symbol system hypothesis). Hypoteesin mukaan kognitio on informaatiota prosessoiva systeemi (information-processing system). Ajattelu on symbolien ja symbolirakenteiden järjestelyä annetun ohjelman mukaan. Symbolisysteemin hypoteesi Newellille ja Simonille symbolit ja symbolirakenteet ovat todellisia fysikaalisia olioita. Ne ovat aineellisen systeemin merkityksettömiä tiloja. Symbolit ja niille suoritettavat operaatiot ovat kuitenkin semanttisesti tulkittavissa. Saara Huhmarniemi 1

2 Monitoteutuvuusperiaate Symbolien monitoteutuvuusperiaate: salla symbolilla voi olla erilaisia fysikaalisia toteutuksia. Näin aivot olisivat orgaaninen symbolisysteemin toteutus. Tarkastellaan seuraavaksi toista symbolisysteemin toteutusta: von Neumannin konetta. von Neumannin kone Turingin koneen materiaalinen toteutus Lähes kaikki nykyiset tietokoneet ovat von Neumannin koneita Rakenne kontrolliyksikkö (CU, control unit) aritmeettis- looginen yksikkö (ALU) rekisterit muisti ja I/O (input-output) Data von Neumannin kone Data esitettään bittijonoina ( ) (bit=binary unit) Esimerkiksi kirjain A esitetään yhden tavun avulla (tavu (byte) on esim. 8 bittiä). Tietokoneessa bittijonot esitetään sähköisesti rekistereissä. Laskenta tapahtuu bittijonolta toiselle. Rekisteri von Neumannin kone Rekisteriin tallennetaan loogisten operaatioiden syötteet ja vasteet, ennen ja jälkeen muuhun muistiin siirtämistä. Aritmeettis-looginen yksikkö Sisältää toteutukset tärkeimmistä toiminnoista, kuten loogisista operaatioista ja yhteen- ja vähennyslaskusta Saara Huhmarniemi 2

3 von Neumannin kone Kontrolliyksikkö Automaatti, joka toteuttaa koneen primitiiviset käskyt, joiden avulla laajempia ohjelmia voidaan toteuttaa. Muisti ja I/O Joukko osoitteita, joihin on sijoitettu toimintalaitteiden rekisterejä tai muistia. Jokaisella datayksiköllä ja ohjelmakomennolla on representaatio muistiyksikössä ja yksilöllinen sijainti tai osoite. von Neumannin kone Kontrolliyksikkö siirtää tietoa muistista rekistereihin ja valitsee seuraavan toiminnon muistista siirretyn informaation mukaan. Bittijonoja kopioidaan muistirekistereistä eri työrekistereihin, vertaillaan työrekisterien sisältöjä ja kirjoittetaan laskennan tuloksia edelleen rekisteriin. Tehtävä Tietokone on symbolisysteemi. Mitä mieltä olet tietokonemetaforasta von Neumannin arkkitehtuurin perusteella? GOFAI Tekoälyä, joka suoritetaan vonneumann-tyyppisessä koneessa kutsutaan nimellä "Good Old Fashioned Artificial Intelligence" (GOFAI). Saara Huhmarniemi 3

4 Turingin kone Turingin kone on eräs yksinkertainen malli symboleja prosessoivasta systeemistä. b#:# c i Turingin kone (Turing Machine, TM) koostuu äärettömän (so. rajattoman) pitkästä nauhasta, ja lukupäästä joka pystyy lukemaan ja kirjoittamaan symboleja nauhalta/nauhalle, ja liikkumaan nauhaa pitkin molempiin suuntiin. Symbolit ovat yleensä 0 ja 1, mutta periaatteessa mikä tahansa äärellinen diskreetti aakkosto kelpaa b#:# c i Jokaisena ajan hetkenä lukupää on täsmälleen yhden symbolin kohdalla, ja täsmälleen tietyssä tilassa, joita lukupäällä on niinikään äärellinen määrä. Lukupään kohdalla oleva symboli ja lukupään tila yhdessä määräävät sen, mihin tilaan kone seuraavaksi siirtyy lisäksi lukupää voi korvata symbolin b#:# c toisella, muuttaa sisäistä tilaansa, ja siirtyä yhden askeleen vasemmalle tai oikealle tai pysähtyä. a Lukupään toimintasäännöt voidaan ilmaista äärellisesti (ne voidaan antaa esim. taulukkona joka määrää jokaista mahdollista tilan ja symbolin yhdistelmää vastaavan toiminnon) Saara Huhmarniemi 4

5 b#:# c a b#:# c a b#:# c b b# :# c b Saara Huhmarniemi 5

6 b# :# c c b# :# c c b# :# c H Turingin kone suorittaa komputaatioita siten, että se muuntaa annetun syötteen tulosteeksi systemaattisesti, aina tiettyä matemaattista funktiota noudattaen. input, "syöteinformaatio", symbolirakenne/merkkijono nauhalla ennen ensimmäistä laskennan askelta output, "tulosteinformaatio", symbolirakenne/merkkijono nauhalla koneen pysähtyessä Universaali Turingin kone 1936 Alan Turing osoitti, että oli olemassa yleinen kone, joka voi suorittaa minkä tahansa laskettavan funktion. Koneella voi simuloida mitä tahansa tietokoneohjelmaa. Ehtona on, että laskenta-aikaan ja muistin määrään ei kiinnitetä huomiota. Universaalin Turingin koneen idea on, että ohjelman suoritusohjeet on kirjoitettu samalle nauhalle kuin ohjelman syöte ja tulos. Saara Huhmarniemi 6

7 Universaali Turingin kone Church-Turing -teesi: Universaali symbolisysteemi voi simuloida mitä tahansa algoritmisesti laskettavaa systeemiä. (Churchin menetelmä on ekvivalentti.) Systeemi on algoritmisesti laskettava, jos on olemassa jokin algoritmi, joka kuvaa sen toiminnan. (algoritmi, joka kuvaa systeemin tuloksen kaikilla mahdollisilla syötteillä) Esimerkiksi neuraaliverkot ovat algoritmisesti laskettavia systeemejä. Ratkeavuus Turingin kone M voi jättää hyväksymättä merkkijonon joko joutumalla hylkäävään lopputilaan tai jäämällä ikuiseen silmukkaan. Totaalinen Turingin kone pysähtyy joko hyväksyvään tai hylkäävään lopputilaan. Päätösongelmia kutsutaan ratkeaviksi. Ongelmia, joissa Turingin kone pysähtyy ainoastaan myönteisissä tapauksissa kutsutaan osittain ratkeaviksi. Ratkeamattomuus Algoritmin tai Turingin koneen toimintaa koskevat ongelmat ovat usein ratkeamattomia. Turingin koneen M toimintaa koskevia ominaisuuksia ovat esimerkiksi: M pysähtyy kaikilla syötejonoilla M hyväksyy jonkin syötejonon n kappaleessa askeleita. M hyväksyy äärettömän monta merkkijonoa Universaali Turingin kone Muodostetaan Turingin kone, joka tutkii Turingin koneiden ominaisuuksia: universaalikone. saa syötteenään koneen M koodin ja tämän syötteen w. pysähtyy vain jos M pysähtyy syötteellä w. tulostaa saman kuin M tulostaa syötteellä w. Universaalikone simuloi siis mitä tahansa Turingin konetta. Ja tunnistaa jokaisen kielen, joka voidaan tunnistaa jollain Turingin koneella. Saara Huhmarniemi 7

8 Pysähtymisongelma Annetaan universaalikoneelle syötteenä Turingin kone M ja kysytään, pysähtyykö M syötteellä w. Universaalikone suorittaa tehtävän simuloimalla M:n laskentaa syötteellä w. Kone pysähtyy hyväksyvään lopputilaan jos koneen M suoritus pysähtyy. Jos Turingin kone M pysähtyy syötteellä w, myös universaalikone pysähtyy. Kuitenkin jos M ei pysähdy jollain syötteellä w, ei universaalikonekaan pysähdy. Ratkeamattomuus Pysähtymisongelma on osittain ratkeava ongelma. (osittain ratkeavatkin kuuluvat ratkeamattomiin) Joitain ratkeamattomia ongelmia: Predikaattikalkyylin ratkeamattomuus Church/Turing 1936: Ei ole olemassa algoritmia, joka ratkaisisi onko annettu ensimmäisen kertaluvun predikaattikalkyylin kaava s loogisesti tosi. Hilbertin 10. ongelma Ei ole olemassa algoritmia, joka ratkaisisi, onko annetulla kokonaislukukertoimisella polynomilla kokonaislukuratkaisuja. Ratkeamattomuus Ratkeamattomien ongelmien olemassaolo voidaan päätellä myös siitä, että Turingin koneiden joukko on numeroituvasti ääretön. Turingin koneet ovat äärellisiä. siispä voimme luetella kaikki Turingin koneet. Toisaalta kaikkien ongelmien joukko ei voi olla numeroituva (kaikkien päätösongelmien joukko on ylinumeroituva). Esimerkiksi jo reaalilukujen joukko on ylinumeroituva. Seuraus: on olemassa ongelmia, joita ei voida ratkaista Turingin koneen avulla. Church-Turing -teesi Church-Turing -teesistä seuraa, että jos kognitiiviset prosessit ovat algoritmisesti laskettavia, niitä voidaan simuloida tietokoneella. Ovatko kognitiiviset prosessit algoritmisesti laskettavia? Vaikka kognitiivisia prosesseja voitaisiin simuloida universaalikoneella, se voi olla käytännössä mahdotonta. Saara Huhmarniemi 8

9 Laskennallisesti vaikeat ongelmat Laskennan vaativuusteoria käsittelee ongelmien ratkaisumenetelmien aikavaatimuksia. Esimerkki: kauppamatkustajan ongelma, lähde: Kauppamatkustajan on löydettävä annetun tiekartan avulla lyhin reitti, joka kulkee jokaisen kaupungin kautta. Kauppamatkustajan ongelma Ratkaisu: kokeillaan kaikki mahdolliset reitit ja valitaan lyhin. Ei onnistu käytännössä, esimerkiksi jos kaupunkeja on 22, reittejä on Jos yhden reitin laskeminen kestää 1ms, algoritmin suoritus kestää 36 mrd vuotta. P-tyyppiset ongelmat Ongelmaluokka on P-tyyppinen (polynomial time) jos sen suoritusaika kasvaa polynomisesti. Sanotaan, että funktiolla on polynominen kasvu, jos on olemassa jokin polynomi p(n), siten että Kauppamatkustajan ongelma Kauppamatkustajan ongelmassa reittien määrä kasvaa eksponentiaalisesti. Tapahtuu "kombinatorinen räjähdys" Luku n, joka kuvaa ongelman suoritusaskelien määrää. Polynomissa luku n ei esiinny eksponentiaalissa. Ongelmia, jotka kuuluvat tähän vaikeusluokkaan, kutsutaan NP-tyyppisiksi (nondeterministic polynomial time). Ne ratkaistaan arvaamalla oikeita vastauksia ja testaamalla arvauksen oikeellisuutta polynomisessa ajassa. Saara Huhmarniemi 9

10 Tehtävä On olemassa hyvin tunnettu luokka ongelmia, jotka ovat liian vaikeita tietokoneelle tai jotka ovat todistettavasti ratkeamattomia. Tarkoittaako tämä että tekoäly on mahdotonta? The Language of Thought Combinatorial syntax Compositional semantics Brain's symbol manipulation is languagelike. Relation of LOT to natural language is an open issue. The Language of Thought Combinatorial syntax: Formal properties of representations are such that constituent representations can be combined according to rules specifying allowed modes of combination into complex representations (cf. wff). Rules are specified over representational elements that are shared by different complex representations and different individuals. The Language of Thought Compositional semantics: the meaning of a complex representation is determined by the meanings of its constituents and its mode of combination (and only them) what determines the meaning of primitive representations? conceptual role? representation-world relation? teleological function? grounding problem, problem of intrinsic intentionality, narrow vs. broad content, naturalizing semantic properties Saara Huhmarniemi 10

11 The Language of Thought Accounts for productivity and systematicity of cognition productivity: it is possible (in principle) to represent an infinite number of propositions with a finite architecture systematicity: being able to represent proposition P guarantees being able to represent a certain class of propositions Q, but not others R. An account of systematicity tells you which propositions Q, R are or are not thus systematically related to P (and what it is about the architecture that makes it so). Vahva symbolisysteemin hypoteesi Strong Symbol System Hypothesis Ainoastaan universaalit symbolisysteemit ovat kykeneviä ajattelemaan. Informaatio Aivot ja analogia Mitä ihmisen kognitiivisia ominaisuuksia voidaan mallintaa? Mitä ei voida? Laadullisesti erilaisia kognition ominaisuuksia Niille ominaisuuksille, joita on yritetty mallintaa yhteistä on se, että ne käsittelevät informaatiota. Aivot voidaan nähdä informaatiota prosessoivina systeemeinä laajassa merkityksessä, ainoastaan symbolien laskennallisen manipuloinnin sijaan. (Tällöin saadaan mukaan määritelmään myös hermoverkot ym.) Esimerkkejä analogia-representaatioista: Arkkitehti rakentaa pienoismallin talosta. Kaaviot ovat analogia-representaatioita. Kaavioissa viiva voi tarkoittaa kappaleen massaa, matkaa, nopeutta, ym. On ehdotettu, että aivot muodostavat ulkomaailmasta analogia-representaatiota, eräänlaisia "malleja", joita voi manipuloida kuten fysikaalisia objekteja (yhdistellä, käännellä, jne.) Analogia-representaatio olisi siis hyvin erilainen kuin kielellinen representaatio. Saara Huhmarniemi 11

12 Produktiosysteemit Tarkastellaan erästä keskeistä kognitiivista mallia: produktiosysteemiä. Produktiosysteemejä on käytetty useissa kognitiivisissa arkkitehtuureissa, kuten ACT (Anderson 1983) ja SOAR (Laird et. al. 1987) Produktiosysteemit Produktiosysteemi on sovelluskohteesta riippumaton päätöksenteon ja järkeilyn malli. Kaksi muistivarastoa työmuisti produktiomuisti Prosessointi tapahtuu kahdessa vaiheessa: Tunnistus, jossa systeemi valitsee säännön. Toiminta, jossa systeemi käyttää sääntöä. Sääntö muuttaa työmuistin sisältöä ja/tai aiheuttaa jonkin ulkoisen toiminnon. Produktiosysteemit Työmuisti on tietokanta, joka on joukko toisistaan riippumattomia propositioita p 1, p 2, p 3,... Produktiosäännöt Sääntömuisti sisältää päättelysääntöjä, jotka ovat muotoa: p 1 " p 2... # act 1 " act 2... esim. shorter(anna, beth) Sääntömuisti sisältää päättelysääntöjä, jotka ovat muotoa: p 1 " p 2...# act 1 " act 2... IF : THEN: shorter(x,y) delete shorter(x,y) add taller(y,x) Saara Huhmarniemi 12

13 Produktiosäännöt Jos työmuistin sisältö on esimerkiksi shorter(anna, beth) voidaan soveltaa produktiosääntöä: IF: THEN: shorter(anna,beth) delete shorter(anna,beth) add taller(beth,anna) Nyt työmuistin uusi sisältö on taller(anna, beth) Produktiosysteemit Mahdollisia toimintoja ovat esimerkiksi elementtien lisääminen ja poistaminen työmuistista. Jokaisella suoritussyklissä systeemi etsii ne säännöt, joiden vasen puoli toteutuu työmuistin sisällön perusteella. (match phase) Tämän jälkeen systeemi päättää, mikä produktioista "laukeaa". (conflict resolution) Jokaisessa syklissä suoritetaan valittujen sääntöjen määrittelemä toiminta. Produktiosysteemit Produktiosysteemiin voidaan lisätä tavoitteita kuvaavia meta-produktioita, jotka ohjaavat ongelmanratkaisua. Konfliktinratkaisussa (conflict resolution) valitaan sopivista produktioista se joka laukeaa. Tähän voidaan käyttää erilaisia strategioita. Produktioille voidaan määritellä esim. että ne laukeavat vain kerran ongelmanratkaisun aikana. Oletetaan seuraava sääntömuisti, jossa kaikki produktiot ovat vain kerran laukeavia: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 2. IF: nisäkäs(x) & ihminen(x) THEN: lisää jalat(x,2) 3. IF: jalat(x,2) THEN: lisää seisoo(x) 4. IF: jalat(x) THEN: lisää kävelee(x) 5. IF: kotieläin(x) & ihminen(y) THEN: lisää hoitaa(y,x) Oletetaan työmuisti: { kotieläin(lehmä), ihminen(pekka), nisäkäs(pekka)} Saara Huhmarniemi 13

14 1. syklissä etsitään sopivat säännöt: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 2. IF: nisäkäs(x) & ihminen(x) THEN: lisää jalat(x,2), poista nisäkäs(x) 5. IF: kotieläin(x) & ihminen(y) THEN: lisää hoitaa(y,x) Työmuisti: { kotieläin(lehmä), ihminen(pekka), nisäkäs(pekka)} Säännöt 1 ja 2 muodostavat konfliktin, joka ratkaistaan tässä valitsemalla tarkempi sääntö. Suoritettavat toiminnot: lisää jalat(pekka,2), poista nisäkäs(x), lisää hoitaa(pekka, lehmä) Uusi työmuisti: {kotieläin(lehmä), ihminen(pekka), jalat(pekka,2), hoitaa(pekka,lehmä)} Sääntömuisti, josta käytetyt säännöt on poistettu: 1. IF: nisäkäs(x) THEN: lisää jalat(x,4) 3. IF: jalat(x,2) THEN: lisää seisoo(x) 4. IF: seisoo(x) THEN: lisää kävelee(x) 2. syklissä valitaan sääntö 3 jolloin toiminto on: lisää seisoo(pekka) Uusi työmuisti: {kotieläin(lehmä), ihminen(pekka), jalat(pekka,2), hoitaa(pekka,lehmä), seisoo(pekka)} Produktiosysteemin toiminta jatkuu sykleittäin, kunnes sopivia produktioita ei enää löydy tai päästään haluttuun lopputilaan. Oppiminen Systeemi "oppii" muodostamalla päättelyketjuista produktioita. Edellisessä esimerkissä esimerkiksi päättely: IF: nisäkäs(x) & ihminen(x) THEN: jalat(x,2) IF: jalat(x,2) THEN: seisoo(x) IF: seisoo(x) THEN: kävelee(x) voi päättelyketjun suorituksen jälkeen automatisoitua produktioksi: IF: nisäkäs(x) & ihminen(x) THEN: kävelee(x) Saara Huhmarniemi 14

15 Produktiosysteemi Produktiosysteemit Havainnot Tietopohjainen mietintä Refleksit Toiminta Nykyaikaiset modernit produktiosyteemit voivat käsitellä reaaliaikaisesti jopa yli miljoonaa sääntöä. Sääntöjen valinta voidaan toteuttaa rinnakkaisesti, joten se on tehokasta. Sen sijaan sääntöjen sovellus on sarjallista. Tehtävä Produktiosysteemit Mitkä produktiosysteemin ominaisuudet mallintavat ihmisen kognitiota? Psykologinen uskottavuus? Psykologinen uskottavuus? työmuisti, pitkäkestoinen muisti? ajattelu nähdään hahmontunnistuksena Tietty kuvio laukaisee pitkäkestoisesta muistista tietyn toiminnon. Vastaavasti, kun tiettyä vihjettä ei ole läsnä, haluttua ajatusta ei saada mieleen tai toimintoa ei pystytä suorittamaan. modulaarinen Saara Huhmarniemi 15

16 ketjutus ja taaksepäinketjutus Produktiosysteemi on käyttää loogista päättelyä ketjuttamalla (forward chaining): siinä lähdetään atomilauseista soveltaen Modus Ponens -sääntöä ja lisäten faktoja työmuistiin, kunnes kaikki mahdolliset johtopäätökset on tehty. Toinen tapa käyttää loogista päättelyä algoritmissa on taaksepäinketjutus (backward chaining). Tällaiset algoritmit lähtevät lopputilasta taaksepäin, kunnes löytävät faktoja jotka tukevat todistusta. Rationaalinen agentti Agentti on jokin joka toimii. Joitain ominaisuuksi: autonominen kontrolli ympäristön havainnointi muutokseen sopeutuminen Rationaalinen agentti saavuttaa parhaan lopputuloksen olosuhteet huomioon ottaen. Rationaalinen agentti Rationaalinen = tehdä "järkevin" valinta Rationaalisuus kullakin ajanhetkellä riippuu neljästä asiasta: Suoritusarvo, joka määrää onnistumisen Agentin a priori tieto Agentin toimenpidevalikoima Agentin havaintohistoria Järkevyyden kriteeri = suoritusarvo (performance measure), jonka perusteella agentti arvioi toimintaansa. Rationaalinen agentti Esimerkiksi asuntoa imuroivan agentin suoritusarvo voisi olla asunnon puhtaus ajan funktiona. Suoritusarvon valinta vaikuttaa siihen, miten agentti toimii. Miten toimii agentti, jonka suoritusarvo on suorittaa mahdollisimman paljon imurointia ajan funktiona? Saara Huhmarniemi 16

17 Rationaalinen agentti Rationaalinen agentti valitsee jokaiselle havaintohistorialle toimenpiteen, joka maksimoi suoritusarvon odotusarvon. Toimenpiteen valinnassa agentti käyttää havaintohistoriaa sekä agentin a priori tietoa. Rationaalisuus? Rationaalisuus Kaikkitietävyys Ei ole mahdollista todellisuudessa Selvänäköisyys Saara Huhmarniemi 17

Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08

Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08 Rationaalinen agentti Kognitiivinen mallintaminen I Yksinkertainen refleksiagentti Toiminta perustuu ainoastaan agentin havaintoihin kullakin ajanhetkellä. Luento III Symbolinen mallintaminen Ongelmanratkaisu

Lisätiedot

Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R

Kognitiivinen mallintaminen 1. Kognitiiviset arkkitehtuurit ACT-R Kognitiivinen mallintaminen 1 Kognitiiviset arkkitehtuurit ACT-R Kognitiiviset arkkitehtuurit Mielen(tai jonkin älykkään toimijan) mahdollisimman yleisiä piirteitä ja rakenteellista organisaatiota kuvaava

Lisätiedot

Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemi

Symbolinen mallintaminen: tausta. Kognitiivinen mallintaminen I. Symbolisysteemin hypoteesi. Symbolisysteemi Kognitiivinen mallintaminen I Luento II Symbolinen mallintaminen Tausta Symbolinen mallintaminen: tausta Symbolisysteemin hypoteesi LOT von Neumannin arkkitehtuuri (Rationaalinen agentti) Symbolisysteemin

Lisätiedot

on rekursiivisesti numeroituva, mutta ei rekursiivinen.

on rekursiivisesti numeroituva, mutta ei rekursiivinen. 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

Kognitiivinen mallintaminen I

Kognitiivinen mallintaminen I Kognitiivinen mallintaminen I Symbolinen mallintaminen: 2. luento Ongelmanratkaisu Ongelmanratkaisu Rationaalinen agentti Ongelma-avaruus Hakustrategiat ongelma-avaruudessa sokea haku tietoinen haku heuristiikat

Lisätiedot

M = (Q, Σ, Γ, δ, q 0, q acc, q rej )

M = (Q, Σ, Γ, δ, q 0, q acc, q rej ) 6. LASKETTAVUUSTEORIAA Churchin Turingin teesi: Mielivaltainen (riittävän vahva) laskulaite Turingin kone. Laskettavuusteoria: Tarkastellaan mitä Turingin koneilla voi ja erityisesti mitä ei voi laskea.

Lisätiedot

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,

Lisätiedot

Muita vaativuusluokkia

Muita vaativuusluokkia Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

5.3 Ratkeavia ongelmia

5.3 Ratkeavia ongelmia 153 5.3 Ratkeavia ongelmia Deterministisen äärellisten automaattien (DFA) hyväksymisongelma: hyväksyykö annettu automaatti B merkkijonon w? Ongelmaa vastaava formaali kieli on A DFA = { B, w B on DFA,

Lisätiedot

6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w}

6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli. H = {c M w M pysähtyy syötteellä w} 6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = {c w pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti

Lisätiedot

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin?

Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? Ongelma(t): Mikä on Turingin kone? Miten Turingin kone liittyy funktioihin ja algoritmeihin? Miten Turingin kone liittyy tietokoneisiin? 2013-2014 Lasse Lensu 2 Algoritmit ovat deterministisiä toimintaohjeita

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Täydentäviä muistiinpanoja laskennan rajoista

Täydentäviä muistiinpanoja laskennan rajoista Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen

Lisätiedot

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri }

Kielenä ilmaisten Hilbertin kymmenes ongelma on D = { p p on polynomi, jolla on kokonaislukujuuri } 135 4.3 Algoritmeista Churchin ja Turingin formuloinnit laskennalle syntyivät Hilbertin vuonna 1900 esittämän kymmenennen ongelman seurauksena Oleellisesti Hilbert pyysi algoritmia polynomin kokonaislukujuuren

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Laskenta datan käsittely annettuja sääntöjä täsmällisesti seuraamalla kahden kokonaisluvun kertolasku tietokoneella, tai kynällä ja paperilla: selvästi laskentaa entä

Lisätiedot

Rajoittamattomat kieliopit (Unrestricted Grammars)

Rajoittamattomat kieliopit (Unrestricted Grammars) Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 10. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. joulukuuta 2015 Sisällys TM vs yleiset kieliopit Lause Jokaiselle kielelle A seuraavat ovat yhtäpitävät: 1.

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Käymme läpi ratkeamattomuuteen liittyviä ja perustuloksia ja -tekniikoita [HMU luku 9]. Tämän luvun jälkeen opiskelija tuntee joukon keskeisiä ratkeamattomuustuloksia osaa esittää

Lisätiedot

Säännöllisen kielen tunnistavat Turingin koneet

Säännöllisen kielen tunnistavat Turingin koneet 186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Ratkeavuus ja efektiivinen numeroituvuus

Ratkeavuus ja efektiivinen numeroituvuus Luku 6 Ratkeavuus ja efektiivinen numeroituvuus Proseduurit Olkoon A aakkosto. Proseduuri aakkoston A sanoille on mikä hyvänsä prosessi (algoritmi) P, jolle annetaan syötteeksi sana w A, ja joka etenee

Lisätiedot

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus.

Laskennan rajoja. Sisällys. Meta. Palataan torstaihin. Ratkeavuus. Meta. Universaalikoneet. Palataan torstaihin. Ratkeavuus. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 17.10.2016 klo 15:07 passed waiting redo submitters

Lisätiedot

2. Laskettavuusteoriaa

2. Laskettavuusteoriaa 2. Laskettavuusteoriaa Kaymme lapi ratkeamattomuuteen liittyvia ja perustuloksia ja -tekniikoita [HMU luku 9]. Taman luvun jalkeen opiskelija tuntee joukon keskeisia ratkeamattomuustuloksia osaa esittaa

Lisätiedot

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja

Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 582206 Laskennan mallit (syksy 2009) Harjoitus 11, ratkaisuja 1. Seuraavissa laskennoissa tilat on numeroitu sarakkeittain ylhäältä alas jättäen kuitenkin hyväksyvä tila välistä. Turingin koneen laskenta

Lisätiedot

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3

(0 1) 010(0 1) Koska kieli on yksinkertainen, muodostetaan sen tunnistava epädeterministinen q 0 q 1 q 2 q3 T-79.48 Tietojenkäsittelyteorian perusteet Tentti 25..23 mallivastaukset. Tehtävä: Kuvaa seuraavat kielet sekä säännölisten lausekkeiden että determinististen äärellisten automaattien avulla: (a) L = {w

Lisätiedot

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS

vaihtoehtoja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 13. lokakuuta 2016 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 13. lokakuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 13.10.2016 klo 9:42 passed waiting redo submitters

Lisätiedot

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja 582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 20. kesäkuuta 2013 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. kesäkuuta 2013 Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on muotoa Onko

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 10: Lisää ratkeamattomuudesta Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Aiheet: Pysähtymisongelma Epätyhjyysongelma Rekursiiviset

Lisätiedot

Turingin koneen laajennuksia

Turingin koneen laajennuksia Turingin koneen laajennuksia Turingin koneen määritelmään voidaan tehdä erilaisia muutoksia siten että edelleen voidaan tunnistaa tasan sama luokka kieliä. Moniuraiset Turingin koneet: nauha jakautuu k

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS.

Laskennan rajoja. TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 6. maaliskuuta 2012 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 6. maaliskuuta 2012 Sisällys Sisällys Päätösongelmat Ongelma on päätösongelma (engl. decision problem), jos se on

Lisätiedot

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}. 42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen

Lisätiedot

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut

TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut TKT20005 Laskennan mallit (syksy 2018) Kurssikoe, malliratkaisut Pisteytys on ilmoitettu välikoevaihtoehdon mukaan (joko tehtävät 1, 2 ja 3 välikokeen 1 uusintana tai tehtävät 4, 5 ja 6 välikokeen 2 uusintana).

Lisätiedot

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko

9.5. Turingin kone. Turingin koneen ohjeet. Turingin kone on järjestetty seitsikko 9.5. Turingin kone Turingin kone on järjestetty seitsikko TM = (S, I, Γ, O, B, s 0, H), missä S on tilojen joukko, I on syöttöaakkosto, Γ on nauha-aakkosto, I Γ, O on äärellinen ohjeiden joukko, O S Γ

Lisätiedot

Output. Input Automaton

Output. Input Automaton 16 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Algoritmin määritelmä [Sipser luku 3.3]

Algoritmin määritelmä [Sipser luku 3.3] Algoritmin määritelmä [Sipser luku 3.3] Mitä algoritmilla yleensä tarkoitetaan periaatteessa: yksiselitteisesti kuvattu jono (tietojenkäsittely)operaatioita, jotka voidaan toteuttaa mekaanisesti käytännössä:

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 12. lokakuuta 2016 ja ja TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. lokakuuta 2016 Sisällys ja ja Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi

Turingin koneet. Sisällys. Aluksi. Turingin koneet. Turingin teesi. Aluksi. Turingin koneet. Turingin teesi TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 17. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton kontekstinen

Lisätiedot

Turingin koneet. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 7. joulukuuta 2015 TIETOTEKNIIKAN LAITOS.

Turingin koneet. TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 7. joulukuuta 2015 TIETOTEKNIIKAN LAITOS. TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 7. joulukuuta 2015 Sisällys Vuosi on 1936, eikä tietokoneita ollut. Computer oli ammattinimike. http://www.nasa.gov/centers/dryden/

Lisätiedot

Rekursiiviset palautukset [HMU 9.3.1]

Rekursiiviset palautukset [HMU 9.3.1] Rekursiiviset palautukset [HMU 9.3.1] Yleisesti sanomme, että ongelma P voidaan palauttaa ongelmaan Q, jos mistä tahansa ongelmalle Q annetusta ratkaisualgoritmista voidaan jotenkin muodostaa ongelmalle

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

Kognitiivinen mallintaminen 1

Kognitiivinen mallintaminen 1 Kognitiivinen mallintaminen 1 syksy 2009, 1 ja 2 periodi luennot ti:13-15 Tero Hakala ( tero@haka.la) Lisäksi vierailijoita (Otto Lappi, Esko Lehtonen, ehkä muitakin) laskarit ti:15-17 Henri Kauhanen (henri.kauhanen@helsinki.fi)

Lisätiedot

Eero Hyvönen Helsingin yliopisto

Eero Hyvönen Helsingin yliopisto 2. Älykkäät t agentit Eero Hyvönen Helsingin yliopisto Agentin äly = funktio Tekoäly, Eero Hyvönen, 2004 2 Esimerkki agentista Tekoäly, Eero Hyvönen, 2004 3 Pölynimurin agenttifunktio Taulukkona Ohjelmana

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria)

Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1.6 Aakkostot, merkkijonot ja kielet Automaattiteoria diskreetin signaalinkäsittelyn perusmallit ja -menetelmät ( diskreettien I/O-kuvausten yleinen teoria) 1011 Input Automaton Output Automaatin käsite

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 2: KOMPUTAATIO. Otto Lappi

Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 2: KOMPUTAATIO. Otto Lappi Cog101 Johdatus Kognitiotieteeseen KOTITEHTÄVÄ 2: KOMPUTAATIO Otto Lappi Laskennan teorian perusteet, komputationaalinen kompleksisuus ja algoritmit saattavat vaikuttaa hyvin abstrakteilta käsitteiltä,

Lisätiedot

Chomskyn hierarkia ja yhteysherkät kieliopit

Chomskyn hierarkia ja yhteysherkät kieliopit Chomskyn hierarkia ja yhteysherkät kieliopit Laskennan teorian opintopiiri Tuomas Hakoniemi 21. helmikuuta 2014 Käsittelen tässä laskennan teorian opintopiirin harjoitustyössäni muodollisten kielioppien

Lisätiedot

Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja

Muunnelmia Turingin koneista sekä muita vaihtoehtoisia malleja sekä muita TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. kesäkuuta 2013 Sisällys Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2004 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa, opettajan suuntautumisvaihtoehdossa

Lisätiedot

kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM

kaikki kielet tunnistettavat A TM HALT TM { a n } { a n b n } { a n b n c n } TOTAL TM EQ TM Kurssi tähän asti: säännölliset yhteydettömät ratkeavat { a n } { a n b n } { a n b n c n } tunnistettavat A TM HALT TM kaikki kielet A TM HALT TM TOTAL TM TOTAL TM EQ TM EQ TM 277 5. Laskennan vaativuus

Lisätiedot

3SAT-ongelman NP-täydellisyys [HMU ]

3SAT-ongelman NP-täydellisyys [HMU ] 3SAT-ongelman NP-täydellisyys [HMU 10.3.4] erotukseksi yleisestä CNF-esityksestä, kaikilla kaavoilla ei ole 3-CNF-esitystä; esim. x 1 x 2 x 3 x 4 esitämme muunnoksen, jolla polynomisessa ajassa mielivaltaisesta

Lisätiedot

Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat

Kieli merkitys ja logiikka. 2: Helpot ja monimutkaiset. Luento 2. Monimutkaiset ongelmat. Monimutkaiset ongelmat Luento 2. Kieli merkitys ja logiikka 2: Helpot ja monimutkaiset Helpot ja monimutkaiset ongelmat Tehtävä: etsi säkillinen rahaa talosta, jossa on monta huonetta. Ratkaisu: täydellinen haku käy huoneet

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 8. maaliskuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. maaliskuuta 2012 Sisällys Ongelma-analyysiä Sisällys Ongelma-analyysiä Hypoteettinen ongelma The Elite Bugbusters

Lisätiedot

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna

Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna Epädeterministisen Turingin koneen N laskentaa syötteellä x on usein hyödyllistä ajatella laskentapuuna. q 0 x solmuina laskennan mahdolliset tilanteet juurena alkutilanne lehtinä tilanteet joista ei siirtymää,

Lisätiedot

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

The CCR Model and Production Correspondence

The CCR Model and Production Correspondence The CCR Model and Production Correspondence Tim Schöneberg The 19th of September Agenda Introduction Definitions Production Possiblity Set CCR Model and the Dual Problem Input excesses and output shortfalls

Lisätiedot

1. Universaaleja laskennan malleja

1. Universaaleja laskennan malleja 1. Universaaleja laskennan malleja Esimerkkinä universaalista laskennan mallista tarkastellaan Turingin konetta muunnelmineen. Lyhyesti esitellään myös muita malleja. Tämän luvun jälkeen opiskelija tuntee

Lisätiedot

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy 212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen

TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op. FT Ari Viinikainen TIEP114 Tietokoneen rakenne ja arkkitehtuuri, 3 op FT Ari Viinikainen Tietokoneen rakenne Keskusyksikkö, CPU Keskusmuisti Aritmeettislooginen yksikkö I/O-laitteet Kontrolliyksikkö Tyypillinen Von Neumann

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Hahmon etsiminen syotteesta (johdatteleva esimerkki)

Hahmon etsiminen syotteesta (johdatteleva esimerkki) Hahmon etsiminen syotteesta (johdatteleva esimerkki) Unix-komennolla grep hahmo [ tiedosto ] voidaan etsia hahmon esiintymia tiedostosta (tai syotevirrasta): $ grep Kisaveikot SM-tulokset.txt $ ps aux

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet 9.1 9.5) 30.11. 3.12.2004 1. Osoita lauselogiikan avulla oheisten ehtolausekkeiden ekvivalenssi. (a)!(a

Lisätiedot

!""# $%&'( ' )' (*' " '' '( "! ' *'&' "! ' '( "!! )& "! # "! & "! ' "! $''!! &'&' $' '! $ & "!!" #!$ %! & '()%%'!! '!! # '&' &'!! &'&' *('(' &'!*! +& &*%!! $ & #" !!" "!!!" $ " # ' '&& % & #! # ' '&&

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät

Lisätiedot

Datatähti 2019 loppu

Datatähti 2019 loppu Datatähti 2019 loppu task type time limit memory limit A Summa standard 1.00 s 512 MB B Bittijono standard 1.00 s 512 MB C Auringonlasku standard 1.00 s 512 MB D Binääripuu standard 1.00 s 512 MB E Funktio

Lisätiedot

Chomskyn hierarkia. tyyppi 0 on juuri esitelty (ja esitellään kohta lisää) tyypit 2 ja 3 kurssilla Ohjelmoinnin ja laskennan perusmallit

Chomskyn hierarkia. tyyppi 0 on juuri esitelty (ja esitellään kohta lisää) tyypit 2 ja 3 kurssilla Ohjelmoinnin ja laskennan perusmallit Chomskyn hierarkia Noam Chomskyn vuonna 1956 esittämä luokittelu kieliopeille niiden ilmaisuvoiman mukaan tyyppi kieli kielioppi tunnistaminen 0 rekurs. lueteltava rajoittamaton Turingin kone 1 kontekstinen

Lisätiedot

1 Ratkaisuja 2. laskuharjoituksiin

1 Ratkaisuja 2. laskuharjoituksiin 1 1 Ratkaisuja 2. laskuharjoituksiin Tehtävä 1. (a) Yksinkertainen reeksiagentti ei voi toimia rationaalisesti tässä tilanteessa, eli maksimoida suoriutumismittaansa (performance measure). Yksinkertainen

Lisätiedot

Kertausta 1. kurssikokeeseen

Kertausta 1. kurssikokeeseen Kertausta. kurssikokeeseen. kurssikoe on to 22.0. klo 9 2 salissa A (tai CK2). Koealueena johdanto ja säännölliset kielet luentokalvot 3 ja nämä kertauskalvot harjoitukset 6 Sipser, luvut 0 ja Edellisvuosien.

Lisätiedot

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,

Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2017-2018 Yhteenveto Yleistä kurssista Kurssin laajuus 5 op Luentoja 30h Harjoituksia 21h Itsenäistä työskentelyä n. 80h 811120P Diskreetit rakenteet, Yhteenveto 2 Kurssin

Lisätiedot

Kieli merkitys ja logiikka

Kieli merkitys ja logiikka Assosiaatiot, konstituentit Kieli merkitys ja logiikka Luento 5: Assosiaatiot, konstituentit Luento 5 125-134,, Konstituentit 104-107, Turingin kone Huom! Lukua 5.2, Assosiationismin teoriaa, ja siihen

Lisätiedot

Esitietoja? Kognitiivinen mallintaminen I. "Mallit" tieteessä. Kognitiivinen mallintaminen. Kognitiivinen mallintaminen I, kevät 2008 1/18/08

Esitietoja? Kognitiivinen mallintaminen I. Mallit tieteessä. Kognitiivinen mallintaminen. Kognitiivinen mallintaminen I, kevät 2008 1/18/08 Esitietoja? Kognitiivinen mallintaminen I http://koete.identigo.com/ Logiikka filosofia, matematiikka, muu Matematiikka lineaarialgebra, diskreetti matematiikka Tietojenkäsittelytiede laskennan teoria,

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Algoritmit 2. Luento 14 To Timo Männikkö

Algoritmit 2. Luento 14 To Timo Männikkö Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi

Kieli merkitys ja logiikka. 4: Luovuus, assosiationismi. Luovuus ja assosiationismi. Kielen luovuus. Descartes ja dualismi Luovuus ja assosiationismi Kieli merkitys ja logiikka 4: Luovuus, assosiationismi Käsittelemme ensin assosiationismin kokonaan, sen jälkeen siirrymme kombinatoriseen luovuuteen ja konstituenttimalleihin

Lisätiedot