Mat Lineaarinen ohjelmointi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Mat Lineaarinen ohjelmointi"

Transkriptio

1 Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., ) Lineaarinen ohjelmointi - Syksy 7 /

2 Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi Yhteenveto Lineaarinen ohjelmointi - Syksy 7 /

3 Duaalisimple: Motivointi (/) Standardimuotoinen tehtävä ja sen duaali: minc' b ma p' b p' c' Primaalin optimaalisuusehdot duaalin käypyysehdot c' c' c ' c' p' ' Lineaarinen ohjelmointi - Syksy 7 /

4 Duaalisimple: Motivointi (/) Primaalisimple: lähdetään primaalikäyvästä ratkaisusta ja edetään kohti duaalikäypyyttä Duaalisimple: lähdetään duaalikäyvästä ratkaisusta ja edetään kohti primaalikäypyyttä Ratkaisu primaali- ja duaalikäypä > optimi! Lineaarinen ohjelmointi - Syksy 7 / 4

5 Duaalisimple: Menetelmä (/7) loitetaan primaalisimplein tapaan taulukolla - c ' - b - b c' c Lähtöratkaisun tulee olla duaalikäypä, eli red. - kustannukset c' c' c' Primaalikäypyyttä ei vaadita kantamuuttujavektorin - b alkiot voivat olla negatiivisia - Jos kuitenkin b, ollaan optimissa ' - - Lineaarinen ohjelmointi - Syksy 7 / 5

6 Duaalisimple: Menetelmä (/7) Jokin kantamuuttuja negatiivinen? Haetaan duaalitehtävälle uusi ratkaisu, joka ) on duaalikäypä (l) ) kasvattaa duaalin kohdefunktion arvoa Olkoon tämä uusi ratkaisu ~ p ' p' ϕ b l ' b l ' missä on : n l. rivi. Lineaarinen ohjelmointi - Syksy 7 / 6

7 Lineaarinen ohjelmointi - Syksy 7 / 7 Duaalisimple: Duaalisimple: Menetelmä (/7) Menetelmä (/7) Tällöin kantamuuttujille: Ja ei-kantamuuttujille:, missä on Simple-taulukon (l,j):s alkio Kohdefunktiolle: muuten, kun, ' ' ~ ' ) ( ) ( ) ( ) ( ) ( i l i l i i c l i c b p p ϕ ϕ lj j l j j j l j j v p p b p p ϕ ϕ ϕ ' ) ( ' ' ' ' ~ ) ( ' ' ' ~ ' l l b p b b b p b p ϕ ϕ v lj

8 Duaalisimple: Menetelmä (4/7) Edellisistä:. Koska ( ) <, kohdefunktio kasvaa ϕ : n l kasvaessa ϕ >. Tällöin (l). duaalirajoitus löystyy (rajoitus tulee eiaktiiviseksi). Lisäksi j. duaalirajoitus tiukkenee, mikäli < Siis kasvatetaan ϕ : tä kunnes jokin duaalirajoitus j muuttuu aktiiviseksi Jos v lj j, voidaan ϕ : tä kasvattaa äärettömästi > duaalitehtävä rajoittamaton v lj Lineaarinen ohjelmointi - Syksy 7 / 8

9 Rajalla: Duaalisimple: Menetelmä (5/7) ~ p ' p' ϕv j j lj c j ja koska p' c ' ja c c c ' j j j, seuraa tästä: Ensimmäinen vastaantulija: ϕ c v c j ϕ* min { } j v < lj vlj j lj Lineaarinen ohjelmointi - Syksy 7 / 9

10 Duaalisimple: Mentelmä (6/7) Edellisen minimoivaa indeksiä j* vastaava duaalirajoite aktiiviseksi ~ c j* p ' j* p' j* ϕvlj* p' j* + vlj* c j* v Täydentyvyysehdoista: vastaava muuttuja kantaan Kannan muutos kuten tavallisessa full Simpleissä lj* j* eli tableau- Lineaarinen ohjelmointi - Syksy 7 /

11 Duaalisimple: Menetelmä (7/7). Lähtötilanne: kantamatriisi, kaikki red. kustannukset ei-negatiivisia. Jos kantamuuttujat b ei-negatiivisia > optimi. Muuten: valitse jokin ( l) < poistumaan kannasta. Jos taulukon l. rivin alkiot v lj kaikki ei-negatiivisia, optimaalinen duaalikustannus terminoi 4. Laske j* arg min{ c j / vlj }, vlj <. Muuttuja j* kantaan 5. Muokkaa taulukon j*. sarake yksikkövektoriksi e l ; palaa askeleeseen. Lineaarinen ohjelmointi - Syksy 7 /

12 Esimerkki: Duaalisimple: Esimerkki (/4) P: min + D: s.e + 4,,,4 ma s.e p + p p + p p p, Primaali voidaan esittää kahdessa dimensiossa, kun ja kohdellaan surplus-muuttujina 4 Lineaarinen ohjelmointi - Syksy 7 /

13 Duaalisimple: Esimerkki (/4) loitetaan duaalikäyvästä ratkaisusta (,,-,-), jolla c' (,,,) Tällöin p' c ' (,) c 4 -* / /(-) p / b p Lineaarinen ohjelmointi - Syksy 7 /

14 Duaalisimple: Esimerkki (/4) (,,,-), p (/,) c * / / - / -/ * *(-) p b / p Lineaarinen ohjelmointi - Syksy 7 / 4

15 (,/,,), p(/,/) Duaalisimple: Esimerkki (4/4) optimi! c -/ / 4 / -/ / / - p b / p Lineaarinen ohjelmointi - Syksy 7 / 5

16 Duaalisimple: Leksikograafinen sääntö (/) Duaaliratkaisu on degeneroitunut jos c j jollekin ei-kantamuuttujalle algoritmi voi jäädä pyörimään Estetään valitsemalla kantaan astuva muuttuja leksikograafisen säännön mukaan v Jaa sarake j vastaavalla pivot-alkiokandidaatilla jl Valitse kantaan astuvaksi leksikograafisesti pienintä jaettua saraketta vastaava muuttuja Jos sarakkeet ovat samat, valitse indeksiltään pienempi Lineaarinen ohjelmointi - Syksy 7 / 6

17 Duaalisimple: Leksikograafinen sääntö (/) Esimerkki Valitaan lähtemään kannasta Jaetuista sarakkeista muuttujaa vastaava leksikograafisesti pienempi (,, ) < (,, ) L > kantaan 4 -* / - / - Lineaarinen ohjelmointi - Syksy 7 / 7

18 Milloin käytetään? Duaalisimple Olk. tehtävä, jolle on löydetty optimiratkaisu * ~ Muutos vektorissa b b ~ Vaikuttaa kantaratkaisuun b b, primaalikäypyys saatetaan menettää! c' c' c ' Ei vaikuta red. kustannuksiin, duaalikäypä ratkaisu valmiina! Lineaarinen ohjelmointi - Syksy 7 / 8

19 Herkkyysanalyysia Varmuus datasta (,b,c) usein kyseenalaista Kausaliteetti kiinnostaa alussa saatetaan jättää mallista pois joitakin muuttujia ja/tai rajoitteita Herkkyysanalyysi: Millä väleillä :n, b:n ja c:n elementit voivat vaihdella, jotta ratkaisu pysyy optimaalisena? Miten uuden muuttujan/rajoitteen lisäys vaikuttaa ratkaisuun? Lineaarinen ohjelmointi - Syksy 7 / 9

20 min c', + n+ b min c' + c n+ n+ n+ n+ b Herkkyysanalyysia: Uusi muuttuja lkuperäisen tehtävän optimi * kannalla Käypä ratkaisu uudelle tehtävälle (*,) samalla kannalla Jos red. kustannukset ei-neg., (*,) on optimaalinen c n+ cn+ c ' n+ Muuten uusi sarake Simpletaulukkoon, lähtöratkaisu (*,) Lineaarinen ohjelmointi - Syksy 7 /

21 Herkkyysanalyysia: Uusi epäyhtälörajoite (/6) Lisätään tehtävään ey-rajoite Jos alkup. tehtävän optimi * toteuttaa uuden rajoitteen, on se edelleen optimi Jos ei, rajoite standardimuotoon a b Uusi tehtävä: a ' m + b m + ' m+ n+ m+ min s.e c' a' m + n, + n+ b bm + Lineaarinen ohjelmointi - Syksy 7 /

22 Herkkyysanalyysia: Uusi epäyhtälörajoite (/6) Olk. alkup. tehtävän optimikanta Tällöin uuden tehtävän kantamuuttujia (, n+ ) vastaava kanta a' missä a a' : m+ n alkup. kantamuuttujia vastaavat alkiot Vastaava kantaratkaisu *, a' m * b käypä, sillä * ei toteuta uutta rajoitetta ( + m + ) ei ole Lineaarinen ohjelmointi - Syksy 7 /

23 [ c' Herkkyysanalyysia: Uusi epäyhtälörajoite (/6) Uutta kantaa vastaavat redusoidut kustannukset: ] [ c ' ] a' a' m [ c' c Kanta on siis duaalikäypä > sovelletaan duaalisimpleiä! + ' ], sillä optimaalinen alkup. tehtävälle Lineaarinen ohjelmointi - Syksy 7 /

24 Esimerkki: Herkkyysanalyysia: Uusi epäyhtälörajoite (4/6) min s.e ,,,4 Optimaalinen Simple-taulukko: Lineaarinen ohjelmointi - Syksy 7 / 4

25 Herkkyysanalyysia: Uusi epäyhtälörajoite (5/6) Lisätään tehtävään ey-rajoite + 5, jota optimiratkaisu *(,,,) ei toteuta Uusi tehtävä standardimuodossa: min s.e ,,,4 6 5 loituskanta uudelle tehtävälle a' m+ (,,,) a' (,) * (, 5) Lineaarinen ohjelmointi - Syksy 7 / 5

26 Herkkyysanalyysia: Uusi epäyhtälörajoite (6/6) Uusi Simple-taulukko: Vanha Simpletaulukko a' a' a' m+ a m + ' 5 -* (,,,-) Duaalisimpleillä kohti primaalikäypyyttä! Lineaarinen ohjelmointi - Syksy 7 / 6

27 Lisätään rajoite Herkkyysanalyysia: Uusi yhtälörajoite (/) ' m + b m + Ol. * ei toteuta uutta rajoitetta, vaan esim. Muodostetaan aputehtävä: a a ' m + * > b m + min s.e c' + M a' m+ n+, missä M jokin suuri positiivinen luku (Iso-M menetelmä!) n+ n+ b b m+ Lineaarinen ohjelmointi - Syksy 7 / 7

28 Herkkyysanalyysia: Uusi yhtälörajoite (/) * Valitaan kantamuuttujiksi (, ) n+, missä alkup. tehtävän optimaaliset kantamuuttujat Vastaava kantamatriisi sama kuin edellisessä * Nyt [ b b m + ]' eli primaalikäypä > primaalisimple! Kyseessä Iso-M menetelmä: a' n+ putehtävän uusi muuttuja optimissa nollaan Saatu ratkaisu toteuttaa lisätyn rajoitteen ja minimoi c :n Lineaarinen ohjelmointi - Syksy 7 / 8

29 Herkkyysanalyysia: Muutokset b:ssä (/) Muutos b b+ δe i Red. kustannukset (optimaalisuus) eivät riipu b:stä riittää tarkastella käypyyttä Siis: millä δ : n arvoilla pätee yhä ( b+ δe i )? Olk. g ( β, β,..., β ) : n i.s sarake, eli ehto: i i mi ( j) +δβ ji, j,..., m Lineaarinen ohjelmointi - Syksy 7 / 9

30 Ts. δ Herkkyysanalyysia: Muutokset b:ssä (/) { } { } ( j) ( j) ma δ min j β > j ji< ji β β ji β ji Jos on tällä välillä, kanta pysyy optimaalisena ja kustannukseksi tulee c ' ( b+ δ e ) p' b+ δp Jos δ välin ulkopuolella, ratkotaan duaalisimpleillä lähtien alkup. optimikannasta Red. kustannukset ei-negatiivisia kanta duaalikäypä i i Lineaarinen ohjelmointi - Syksy 7 /

31 Herkkyysanalyysia: c j c Muutokset c:ssä j +δ Muutos Käypyysehdot eivät riipu c:stä riittää tarkastella optimaalisuusehtoa c ' c' Jos j ei-kantamuuttujan indeksi: c ' j c j + δ δ c j Jos j (l) eli kantamuuttujan indeksi, c c+ δel Tällöin muutos vaikuttaa kaikkiin red. kustannuksiin: ( c + δe )' l i c i δv li c i i v li missä Simple-taulukon (l,i):s alkio Lineaarinen ohjelmointi - Syksy 7 /

32 Herkkyysanalyysia: Muutokset :ssa Muutos ei-kantamuuttujaa vastaavan sarakkeen alkiossa a ij a +δ ij Kanta ei muutu > käypyysehdot ennallaan Optimaalisuus? Muutos vain j. redusoidussa kustannuksessa: c j p' ( j + δe i ) c j δp i j Jos ehto ei toteudu, lasketaan j taulukkoon uusiksi ja tuodaan kantaan normaalin Simplein merkeissä Muutos kantasarakkessa: kotitehtävä j Lineaarinen ohjelmointi - Syksy 7 /

33 Herkkyysanalyysia Uusi muuttuja Uusi rajoite δ -muutos b:ssä tai c:ssä δ -muutos :ssa c n+ Lasketaan - jos ei-neg., alkup. optimi edelleen optimi. Muuten uusi sarake Simpletaulukkoon Jos alkup. optimi toteuttaa rajoitteen, edelleen optimi. Jos ei, ratkaise muunnettu tehtävä Käypyys-/optimaalisuusehdoista sallittu vaihteluväli δ :lle. Jos ei välillä: duaali- /primaalisimpleillä uusi kanta Ei-kantasarake: vaihteluväli :lle vastaavan muuttujan optimaalisuusehdosta. Ei välillä: primaalisimple δ Kantasarake: monimutkaisempaa Lineaarinen ohjelmointi - Syksy 7 /

34 Parametrinen ohjelmointi (/5) Olkoon tehtävänä min s.e ( c+ θd)' b θ Niille, joilla optimikustannus g(θ ) äärellinen:,..., g ( θ ) min ( c+θd)' N i,..., N missä käyvän alueen ekstreemipisteet i Lineaarinen ohjelmointi - Syksy 7 / 4

35 Lineaarinen ohjelmointi - Syksy 7 / 5 Parametrinen Parametrinen ohjelmointi (/5) ohjelmointi (/5) Esimerkki: s.e ) ( ) (- min,, θ θ θ θ Ratkaisu (,,,5,7) on optimaalinen, jos Tällöin / + θ θ θ ) ( θ g

36 Parametrinen ohjelmointi (/5) θ θ θ θ θ Jos kasvatetaan hieman yli kolmen, c < kantaan! Ratkaisu (,.5,,,4.5) on optimaalinen, jos: θ / g( θ ) 7.5.5θ Jos θ > / c < kantaan! Vastaavassa sarakkeessa ei kuitenkaan positiivisia alkioita > optimikustannus g(θ ) Lineaarinen ohjelmointi - Syksy 7 / 6

37 Parametrinen ohjelmointi (4/5) 4.5 7θ θ θ 4 5.5θ.5.5 Jos alkuperäisestä taulukosta lähtien θ pienennetään alle.5:n, c < kantaan! Ratkaisu (.5,,,.5,) on optimaalinen, jos: 5 / 4 θ / g( θ ).5+ 7θ Jos θ < 5 / 4 c < kantaan! Vastaavassa sarakkeessa ei kuitenkaan pos. alkioita > g(θ ) Lineaarinen ohjelmointi - Syksy 7 / 7

38 g(θ ) Parametrinen ohjelmointi (5/5) 5/4 / / c (-,,), d (,-,) θ ( c+ θd)'( ) (.5,,,.5,) ( c+ θd)'( ).5+ 7θ ( c+ θd)'( ) ( c+ θd)'( ) (,,,5,7) ( c+ θd)'( ) Vastaavasti b:n parametrisille muutoksille käypyyden kärsiessä sovelletaan duaalisimpleiä (,.5,,,4.5) ( c+ θd)'( ) θ Lineaarinen ohjelmointi - Syksy 7 / 8

39 Yhteenveto Duaalisimple: liikutaan duaalikäypyydestä (primaalin optimaalisuudesta) kohti primaalikäypyyttä Hyöty: ratkaistun tehtävän parametri b muuttuu > duaalikäypyys säilyy > duaalisimple Datan muutosten seurauksia voidaan tutkia herkkyysanalyysilla Mitä suuremmalla datan vaihtelulla kanta pysyy optimaalisena, sitä robustimpi tehtävä Lineaarinen ohjelmointi - Syksy 7 / 9

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.3140 Lineaarinen ohjelmointi 4.10.2007 Luento 4 Ekstreemipisteiden optimaalisuus ja Simplex (kirja 2.4-2.6, 3.1-3.2) Lineaarinen ohjelmointi - Syksy 2007 / 1 Luentorunko Degeneroituvuus Ekstreemipisteiden

Lisätiedot

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min!

Lineaarinen optimointi. Harjoitus 6-7, Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän. c T x = min! Lineaarinen optimointi Harjoitus 6-7, 016. 1. Olkoon A R m n, x, c R ja b R m. Osoita, että LP-tehtävän c T x = min! (T) Ax b x 0 duaalitehtävän duaali on tehtävä (T). Ratkaisu. (P) c T x = min! Ax b x

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että

3 Simplex-menetelmä. c T x = min! Ax = b (x R n ) (3.1) x 0. Tarvittaessa sarakkeiden järjestystä voidaan vaihtaa, joten voidaan oletetaan, että 3 Simplex-menetelmä Lähdetään jostakin annettuun LP-tehtävään liittyvästä käyvästä perusratkaisusta x (0) ja pyritään muodostamaan jono x (1), x (2),... käypiä perusratkaisuja siten, että eräässä vaiheessa

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n.

KKT: log p i v 1 + v 2 x i = 0, i = 1,...,n. TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-2.139 Optimointioppi Kimmo Berg 7. harjoitus - ratkaisut 1. Oletetaan aluksi, että epäyhtälöt eivät ole aktiivisia p i > 0. Tässä tapauksess KKTehdot

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Kokonaislukuoptiomointi Leikkaustasomenetelmät

Kokonaislukuoptiomointi Leikkaustasomenetelmät Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi 8..7 Luento 8 Verkkotehtävät, simlex ja duaalisuus (kirja 7.-7., 7.6) Lineaarinen ohjelmointi - Syksy 7 / Motivointi Käsitteitä Verkkotehtävä Verkkosimlex Duaalitehtävä Yhteenveto

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Este- ja sakkofunktiomenetelmät

Este- ja sakkofunktiomenetelmät Este- ja sakkofunktiomenetelmät Keijo Ruotsalainen Mathematics Division Luennon kulku Este- ja sisäpistemenetelmät LP-ongelmat ja logaritminen estefunktio Polun seuranta Newtonin menetelmällä Sakkofunktiomenetelmistä

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio

Ellipsoidimenetelmä. Samuli Leppänen Kokonaislukuoptimointi. S ysteemianalyysin Laboratorio Ellipsoidimenetelmä Kokonaislukuoptimointi Sovelletun matematiikan lisensiaattiseminaari Kevät 2008 / 1 Sisällys Ellipsoidimenetelmän geometrinen perusta ja menetelmän idea Formaali ellipsoidimenetelmä

Lisätiedot

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Duaalisuus kokonaislukuoptimoinnissa. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Duaalisuus kokonaislukuoptimoinnissa Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Duaalisuus binäärisissä optimointitehtävissä Lagrangen duaalisuus Lagrangen

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

2 Konveksisuus ja ratkaisun olemassaolo

2 Konveksisuus ja ratkaisun olemassaolo 2 Konveksisuus ja ratkaisun olemassaolo Ratkaisun olemassaolon tutkimiseen tarvitaan perustietoja konvekseista joukoista ja lineaarialgebrasta. Niitä tarvitaan myös ratkaisualgoritmin ymmärtämiseen. Tutkitaan

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely)

Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Kirjallisuuskatsaus sisäpistemenetelmiin ja niiden soveltamiseen eri optimointiluokille (valmiin työn esittely) Ilari Vähä-Pietilä 28.04.2014 Ohjaaja: TkT Kimmo Berg Valvoja: Prof. Harri Ehtamo Työn saa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Yleistä https://korppi.jyu.fi/kotka/r.jsp?course=96762 Sisältö Johdanto yksitavoitteiseen

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla

Talousmatematiikan perusteet: Luento 11. Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Talousmatematiikan perusteet: Luento 11 Lineaarinen optimointitehtävä Graafinen ratkaisu Ratkaisu Excel Solverilla Esimerkki Esim. Yritys tekee kahta elintarviketeollisuuden käyttämää puolivalmistetta,

Lisätiedot

Referenssipiste- ja referenssisuuntamenetelmät

Referenssipiste- ja referenssisuuntamenetelmät Referenssipiste- ja referenssisuuntamenetelmät Optimointiopin seminaari - Kevät 2000 / 1 Esitelmän sisältö Menetelmien ideat Menetelmien soveltaminen Menetelmien ominaisuuksia Optimointiopin seminaari

Lisätiedot

v 8 v 9 v 5 C v 3 v 4

v 8 v 9 v 5 C v 3 v 4 Verkot Verkko on (äärellinen) matemaattinen malli, joka koostuu pisteistä ja pisteitä toisiinsa yhdistävistä viivoista. Jokainen viiva yhdistää kaksi pistettä, jotka ovat viivan päätepisteitä. Esimerkiksi

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2. a m1 x 1 + a m2 x 2 + + a mn x n b m x 1, x 2,..., x n 0 1

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Dynaamiset regressiomallit

Dynaamiset regressiomallit MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Tilastolliset aikasarjat voidaan jakaa kahteen

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Kimppu-suodatus-menetelmä

Kimppu-suodatus-menetelmä Kimppu-suodatus-menetelmä 2. toukokuuta 2016 Kimppu-suodatus-menetelmä on kehitetty epäsileiden optimointitehtävien ratkaisemista varten. Menetelmässä approksimoidaan epäsileitä funktioita aligradienttikimpulla.

Lisätiedot

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja

Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja 58053-7 Algoritmien suunnittelu ja analyysi (kevät 2004) 1. välikoe, ratkaisuja Malliratkaisut ja pisteytysohje: Jyrki Kivinen Tentin arvostelu: Jouni Siren (tehtävät 1 ja 2) ja Jyrki Kivinen (tehtävät

Lisätiedot

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa

1 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa Taloustieteen mat.menetelmät syksy27 materiaali II-3 Rajoitettu optimointi III - epäyhtälörajoitteet, teoriaa. Perustehtävä Maksimoi f(x) ehdoilla g i (x), i = ; : : : ; k tässä f; g i : R n 7! R, i =

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

2.8. Kannanvaihto R n :ssä

2.8. Kannanvaihto R n :ssä 28 Kannanvaihto R n :ssä Seuraavassa kantavektoreiden { x, x 2,, x n } järjestystä ei saa vaihtaa Vektorit ovat pystyvektoreita ( x x 2 x n ) on vektoreiden x, x 2,, x n muodostama matriisi, missä vektorit

Lisätiedot

1 Rajoitettu optimointi I

1 Rajoitettu optimointi I Taloustieteen mat.menetelmät 2017 materiaali II-1 1 Rajoitettu optimointi I 1.1 Tarvittavaa osaamista Matriisit ja vektorit, matriisien de niittisyys Derivointi (mm. ketjusääntö, Taylorin kehitelmä) Implisiittifunktiolause

Lisätiedot

802118P Lineaarialgebra I (4 op)

802118P Lineaarialgebra I (4 op) 802118P Lineaarialgebra I (4 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Lineaarialgebra I Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M206 Kurssin kotisivu

Lisätiedot

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki

Luetteloivat ja heuristiset menetelmät. Mat , Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Luetteloivat ja heuristiset menetelmät Mat-2.4191, Sovelletun matematiikan tutkijaseminaari, kevät 2008, Janne Karimäki Sisältö Branch and Bound sekä sen variaatiot (Branch and Cut, Lemken menetelmä) Optimointiin

Lisätiedot

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua. A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Kombinatorinen optimointi

Kombinatorinen optimointi Kombinatorinen optimointi Sallittujen pisteiden lukumäärä on äärellinen Periaatteessa ratkaisu löydetään käymällä läpi kaikki pisteet Käytännössä lukumäärä on niin suuri, että tämä on mahdotonta Usein

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Luento 11: Rajoitusehdot. Ulkopistemenetelmät

Luento 11: Rajoitusehdot. Ulkopistemenetelmät Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Luento 7: Kokonaislukuoptimointi

Luento 7: Kokonaislukuoptimointi Luento 7: Kokonaislukuoptimointi Lineaarisessa optimointitehtävässä (LP) kaikki muuttujat ovat jatkuvia. Kokonaislukuoptimoinnin (ILP = Integer LP) tehtävässä kaikilla muuttujilla on kokonaislukurajoitus

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin

Lisätiedot

4. Kokonaislukutehtävän ja LP:n yhteyksiä

4. Kokonaislukutehtävän ja LP:n yhteyksiä 8 4. Kokonaislukutehtävän ja LP:n yhteyksiä Minkowskin esityslauseen avulla voidaan osoittaa, että jos P on rationaalinen monitahokas ja S sen sisällä olevien kokonaislukupisteiden joukko, niin co(s) on

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lieaarie ohjelmoiti 20.9.2007 Lueto 2 Lieaarialgebraa ja geometriaa (kirja.5, 2.) S ysteemiaalyysi Tekillie korkeakoulu Lieaarie ohjelmoiti - Syksy 2007 / Lieaarialgebraa Notaatiota Kääteismatriisi

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.40 Lineaarinen ohjelmointi 5..007 Luento 9 Verkkotehtävän erikoistapauksia (kirja 7., 7.5, 7.9, 7.0) Lineaarinen ohjelmointi - Syksy 007 / Luentorunko (/) Verkkotehtävän ominaisuuksia Kuljetustehtävä

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot