MAT OPERAATIOTUTKIMUS Kevät 2013, periodi 4. Martti Lehto TTY/ Matematiikan laitos

Koko: px
Aloita esitys sivulta:

Download "MAT-21241 OPERAATIOTUTKIMUS Kevät 2013, periodi 4. Martti Lehto TTY/ Matematiikan laitos"

Transkriptio

1 MAT-4 OPERAATIOTUTKIMUS Kevät 03, periodi 4 Martti Lehto TTY/ Matematiikan laitos

2 SISÄLLYSLUETTELO. Johdantoa ja terminologiaa 3. Lineaarinen optimointi ja graafinen ratkaisu 0 3. Simplex-algoritmi Duaalisuus ja herkksanalsi 6 5. Kuljetusmalli ja sen muunnelmat Varastomalleja 7. Kokonaislukuoptimointi Monitavoiteoptimointi 57

3 . Operaatiotutkimus (OT) taito vai tiede? Operaatiotutkimus prkii etsimään päätöksentekotilanteessa parhaan eli optimaalisen vaihtoehdon huomioiden rajallisten resurssien aiheuttamat rajoitteet. Taitolajina operaatiotutkimus on tökalu, jota päätöksentekijä kättää mallintaessaan käsillä olevaa ongelmaa matemaattiseen muotoon, valitessaan malliin sopivan optimointimenetelmän tai algoritmin, ratkaistessaan mallinsa joko tietokoneella tai knällä ja paperilla sekä analsoidessaan ratkaisuna saamaansa optimitulosta selvittääkseen ratkaisun herkkden esim. mallin parametrien muutoksille. Tieteenä operaatiotutkimuksessa etsitään hä tehokkaampia ja nopeampia menetelmiä optimin saavuttamiseksi, tutkitaan uusien tekniikoiden (esim. neuroverkot, sumea laskenta jne) kättöönottoa m. OT:n snt sijoitetaan lähinnä Englantiin toisen maailmansodan aikoihin. Siellä nimittäin koottiin rhmä asiantuntijoita (matemaatikkoja, pskologeja, sosiologeja jne) tutkimaan miten rajalliset sotamateriaalit tulisi osoittaa eri sotilasoperaatioihin, jotta saatava höt olisi mahdollisimman suuri.. Yksinkertainen päätöksentekomalli Päätöksentekoprobleeman hteenveto tavalla, joka sallii probleeman kaikkien päätösvaihtoehtojen sstemaattisen identifioinnin ja arvonmääritksen. Päätöksentekoon tullaan valitsemalla kaikkien mahdollisten joukosta paras vaihtoehto. Esimerkki Eräällä Tamperelaisella asiantuntijalla on viiden viikon konsultointisopimus erään EUvaltion pääkaupungissa (E). Hän lentää sinne maanantaisin ja palaa Tampereelle keskiviikkoisin. 3

4 T Ke Ma E Meno-paluulipun perushinta, eli jos paluu samalla viikolla kuin meno, on 400. Jos paluu on eri viikolla, hinta on 80% perushinnasta. Yksisuuntainen lippu maksaa 75% perusmeno-paluun hinnasta. Miten asiantuntijan kannattaisi liput ostaa ko. viiden viikon aikana? Päätösvaihtoehdot: (Oleellisimmat). Asiantuntija ostaa joka maanantai menopaluulipun (perushintaisen).. Hän ostaa menolipun E:hen ja sieltä neljä kertaa menopaluulipun sekä lopuksi menolipun Tampereelle. 3. Hän ostaa ensin menopaluulipun, jossa paluu viidennellä viikolla ja välillä E:stä neljä menopaluuta, jotka sisältävät viikonlopun. Asiantuntijan tavoitteena on kustannusten minimointi. Tapauksessa, jossa päätösvaihtoehtoja on rajallinen (pieni) määrä, voidaan laskea erikseen kunkin vaihtoehdon arvo: vaihtoehto : 5 x 400 = 000 vaihtoehto : 0.75 x x (0.8 x 400) x 400 = 880 vaihtoehto 3: 5 x (0.8 x 400) = 600 Näin ollen vaihtoehto 3 antaa optimiratkaisun. Esimerkki Tuotantopäällikön on uutta konetta hankittaessa suoritettava valinta automaattisen ja puoliautomaattisen kesken. Koneet tuottavat tiettä osaa eräajoina eräkoon voidessa vaihdella. Kone valmistellaan aina kutakin erää varten. Erän aloituskustannukset 4

5 (kiinteä) ja muuttuvat ksikkötuotantokustannukset ovat: Kustannukset ( ) Puoliautomaattinen Automaattinen Erän aloituskustannus Muuttuva ksikkökustannus Tilanteen muotoilu päätöksentekomalliksi:. Yksilöi päätösvaihtoehdot. Suunnittele kriteeri kunkin vaihtoehdon arvon määrittämiseksi 3. Kätä kehitettä kriteeriä perustana parhaan kätettävissä olevan vaihtoehdon valitsemiseksi. Probleeman asettelusta nähdään, että vaihtoehtoja on kaksi:. Osta automaattikone.. Osta puoliautomaattikone. Vaihtoehtojen arviointi voidaan tehdä koneen kättökustannusten perusteella (vrt. o. taulukko). Päämääränä on valita pienemmät kustannukset aiheuttava vaihtoehto. Kustannuskriteerin formalisointi: Olkoon x hdessä eräajossa tuotettujen ksiköiden lukumäärä. Kustannusfunktioksi saadaan tuotantokustannus/erä = aloituskustannus + (muuttuva ksikkökustannus) x x ( automaatti) = 0 0.6x ( puoliautom.) Lopullinen päätöksentekomalli: VALITSE YKSI SEURAAVISTA VAIHTOEHDOISTA:. Osta automaattinen kone. Osta puoliautomaattinen kone Valitun vaihtoehdon on aiheutettava pienimmät tuotantokustannukset erää kohden. 5

6 6

7 Mallin graafinen ratkaisu tasakustannuskaaviolla ( break-even -kaavio): automaattikone = ehjä viiva puoliautomaatti = katkoviiva Tasakustannuspiste x = 50 ksikköä Saadaan ratkaisu:. Osta puoliautomaattikone, jos eräkoko < 50 ksikköä. Osta automaattikone, jos eräkoko > 50 ksikköä 3. Osta kumpi tahansa, jos eräkoko = 50 ksikköä Em. ratkaisu olettaa implisiittisesti, että kumpikin kone tuottaa osia samalla nopeudella. Oletetaan, että tuotantonopeudet ovat erisuuret, esim. automaatti 5 ks./tunti puoliautomaatti 5 ks./tunti Oletetaan lisäksi, että tehdas toimii ksivuoroperiaatteella päivittäin 8 tuntia. 7

8 UUSI INFORMAATIO LISÄÄ MALLIIN RAJOITTEITA. 8-tuntinen töaika rajaa maksimieräkoon seuraavasti: automaatti puoliautomaatti 5 8 = 00 ks. 5 8 = 0 ks. Ratkaisu muuttu seuraavaksi: 8-tunnin rajoituksen vaikutukset: automaattikone = ehjä viiva puoliautomaatti = pisteviiva eräkoko 0 => päätöksenteko-ongelmassa vaihtoehtoa, joista puoliautomaatti on parempi 0 < eräkoko 00 => vain ksi vaihtoehto eli automaattikone on käpä vaihtoehto puoliautomaatti on ei-käpä vaihtoehto eräkoko > 00 => kumpikin vaihtoehto ei-käpä 8

9 Siis PÄÄTÖKSENTEKO-ONGELMAN RAJOITTEET PYRKIVÄT VÄHENTÄMÄÄN VALINTOJA ELIMINOIMALLA EI-KÄYVÄT VAIHTOEHDOT. Mitä enemmän rajoitteita, sitä huonompi ratkaisu (arvostelukriteerin kannalta) eli Rajoitettu ratkaisu ei ole koskaan parempi kuin rajoittamaton ratkaisu. PÄÄTÖKSENTEKOMALLIN OLEELLISET OSAT:. Päätöksenteon vaihtoehdot, joista valinta tehdään. Rajoitteet ei-käpien vaihtoehtojen poissulkemiseksi 3. Kriteeri käpien vaihtoehtojen arvostelemiseksi Hieman terminologiaa: Päätöksentekomuuttujat, päätösmuuttujat tai muuttujat ( = päätöksentekovaihtoehdot) Tavoitefunktion eli objektifunktion optimointi ( = vaihtoehtojen arvosteluproseduuri) Optimointi esim. kustannusten minimointi tai tuoton maksimointi 9

10 . LINEAARINEN OPTIMOINTI (eli lineaarinen ohjelmointi) Formuloinnit ja graafinen ratkaisu - Matemaattinen mallinnustekniikka, jonka tarkoituksena on optimoida rajallisten resurssien kättö. ESIMERKKI Maalitehtaan tuotevalintaongelma Pieni maalitehdas tuottaa sekä sisä- että ulkomaalia. Maalien valmistamiseen kätetään kahta raaka-ainetta: M ja M. Seuraava taulukko antaa ongelman lähtötiedot: Tonnia raaka-ainetta maalitonnia kohden Ulkomaali Sisämaali Päivittäinen maksimisaatavuus (tonnia) Raaka-aine M Raaka-aine M 6 Tuotto per maalitonni( 000 ) 5 4 Markkinatutkimus osoittaa, että sisämaalin päivittäinen ksntä on korkeintaan tonnia. Markkinatutkimus osoittaa mös, että sisämaalin päivittäinen ksntä ei voi littää ulkomaalin vastaavaa ksntää enempää kuin tonnilla. Paljonko htiön tulisi päivittäin tuottaa sisä- ja ulkomaalia maksimoidakseen päivittäisen tuottonsa? Matemattisen mallin konstruointi:. Mitä malli prkii määrittämään? Toisin sanoen, mitkä ovat ongelman muuttujat (tuntemattomat)?. Mitä ehtoja muuttujille on asetettava tdttämään mallinnettavan järjestelmän rajoituksia? 3. Mihin tavoitteeseen (päämäärään) pritään määritettäessä optimiratkaisua muuttujien käpien arvojen joukosta? 0

11 Vastaus: Yhtiö haluaa määrätä tuotettavan sisä- ja ulkomaalin määrän (tonneina), joka maksimoi kokonaistuoton (tuhansina euroina) tdttäen raaka-aineiden saatavuuden ja tarpeen asettamat rajoitteet. - Muuttujat: Olkoot x = päivittäin tuotettavan ulkomaalin määrä tonneina x = päivittäin tuotettavan sisämaalin määrä tonneina - Tavoitefunktio Merkitään kokonaistuloja (tuhansina euroina) z:lla ja oletetaan sisä- ja ulkomaalin mnti toisistaan riippumattomaksi z 5x x 4 - Rajoitteet Raaka-aineiden saatavuuden ja tarpeen asettamat rajoitukset: molempien maalien kättämän raaka aineen määrä aineen maksimi saatavuus raaka => Tehtävämääritteltaulukosta: 6x 4x 4 (raaka-aine M) x x 6 (raaka-aine M) Ksntärajoitteet: sisämaalin limäärä ulkomaalin suhteen sisämaalin ksntä tonni päivä tonni päivä => x x x Etumerkkirajoitteet (eli ei-negatiivisuus): Maaleja ei voi valmistaa negatiivista määrää => x ja x 0 0

12 Huom! Lukuparien ( x, x ) arvot muodostavat kävän ratkaisun, mikäli ne tdttävät mallin kaikki rajoitteet. Matemaattinen malli on siis Maksimoi z 5x 4x ehdoin 6x 4x 4 x x 6 x x x x x 0, Huom! Kaikki mallin funktiot (tavoite- ja rajoite-) ovat lineaarisia. Tästä seuraavat ominaisuudet:. SUHTEELLISUUS Jokaisen muuttujan (tässä x ja x ) vaikutus tavoitefunktioon tai sen kättö resurssirajoitteessa on suoraan verrannollinen sen arvoon. Esim. paljousalennukset poistavat suhteellisuusominaisuuden..additiivisuus Tavoitefunktiossa ja rajoitteissa muuttujat ovat vapaita eli eivät vaikuta toistensa arvoihin, joten ne ovat sellaisinaan laskettavissa hteen. Esim. kilpailutilanteessa toisen tuotteen mnnin nousu saattaa laskea kilpailevan tuotteen mntiä, jolloin additiivisuusominaisuus ei ole voimassa.

13 . LP-MALLIN GRAAFINEN RATKAISU ( LP = linear programming eli lineaarinen optimointi) Soveltuu kahden muuttujan tapauksiin. - Muodostetaan ensin tehtävän käpä alue eli alue, jossa tehtävän kaikki rajoitteet ovat htä aikaa voimassa, piirtämällä x,x -koordinaatistoon rajoite-ehtojen htäsuuruusmerkkiä vastaavat suorat ja määräämällä kummalla puolella suoraa rajoitteen epäsuuruusehto on voimassa. Käpä ratkaisualue merkitt pisteillä. 3

14 Missä kävän alueen pisteessä tavoitefunktion arvo z 5x 4x saa suurimman mahdollisen arvon z max? Jos kirjoitetaan z-suoran htälö ratkaistuna pstakselin muuttujan suhteen 5 z x x 4 4 nähdään, että z:n arvon muuttuminen ei muuta suoran kulmakerrointa vaan ainoastaan suoran paikkaa ( pstakseli leikkautuu kohdassa z/4 ja vaaka-akseli kohdassa z/5). Piirretään siis tavoitefunktion kuvaaja jollakin z:n arvolla, katsotaan mihin suuntaan suora siirt z:n kasvaessa ja siirretään sitten suoraa suuntansa säilttäen kasvavaan suuntaan niin kauas, että suora leikkaa käpää aluetta enää hdessä pisteessä (tai pitkin kävän alueen jotakin reunajanaa). Tämä piste on optimipiste. (Kuva seuraavalla sivulla.) Rajoitesuorien () ja () leikkauspisteenä optimipisteeksi saadaan htälörhmänä ratkaistuna ( x, x ) (3,.5). Sijoittamalla koordinaatit tavoitefunktioon saadaan z max (tuhansina euroina). Maalitehtaan optimistrategia on siis valmistaa päivittäin 3 tonnia ulkomaalia ja.5 tonnia sisämaalia, jolloin päivittäinen optimaalinen tuotto on

15 Näin ollen lienee selvää, että optimipiste on aina kävän alueen jokin nurkkapiste, joten ratkaisu voidaan etsiä mös ratkaisemalla nurkkapisteiden koordinaatit, sijoittamalla tavoitefunktioon ja katsomalla missä z maksimoituu. Joskus tavoitefunktion kuvaaja on hvin samansuuntainen reunasuoran kanssa ja tällöin on tarkasteltava kulmakertoimia oikean optimipisteen valitsemiseksi. 5

16 MINIMOINTIPROBLEEMAN RATKAISU Edellinen esimerkki oli maksimointiprobleema. Minimointiprobleema sujuu samojen periaatteiden mukaisesti, paitsi että tavoitefunktion kuvaajaa siirretään z:n pienenevään suuntaan. ESIMERKKI Karjatilan ruokintaprobleema Amerikkalainen karjatila kättää karjan ruokintaan päivittäin vähintään 800 kg tiettä ravintoseosta. Seos koostuu maissista ja soijapavusta, joilla on seuraavan taulukon mukaiset ominaisuudet: kiloa / kilo ainetta proteiinia kuitua hinta ($ / kg) maissi soijapapu Seoksen dieettivaatimukset edellttävät vähintään 30% proteiinia ja enintään 5% kuitua. Miten karjatilan tulisi seos muodostaa, jotta päivittäiset kustannukset minimoituisivat? Muodostetaan matemaattinen malli: Valitaan muuttujat: x = maissin määrä (kg) päivittäisessä seoksessa x = soijapavun määrä (kg) päivittäisessä seoksessa Tavoitteena on päivittäisten kustannusten minimointi Minimoi z 0.3x 0. 9x Rajoitteet: määrärajoite x x 800 proteiinirajoite 0.09x 0.6x 0.3( x x ) 0.x 0.3x 0 kuiturajoite.0x 0.06x 0.05( x x ) 0.03x 0.0x 0 0 maissia ja soijapapua ei voida kättää negatiivista määrää x x 0, 6

17 Siis Mallin graafinen ratkaisu: Minimoi z 0.3x 0. 9x ehdoin x x 800 (.) 0.x 0.3x 0 (.) 0.03x 0.0x 0 (3.) x x 0 (4.)(5.), Käpä ratkaisualue merkitt pisteillä. 7

18 Optimipiste suorien () ja () leikkauspiste ( x, x ) (470.6, 39.4) ja sijoittamalla koordinaatit tavoitefuktioon saadaan z min Siis päivittäiseen ravintoseokseen tulee kg maissia ja 39.4 kg soijapapua ja päivittäiset minimikustannukset ruokinnan osalta ovat $ LIIKKUMAVARA (slack), YLIMÄÄRÄ (surplus) ja RAJOITTAMATTOMAT MUUTTUJAT (unrestricted variables). Liikkumavara - tppisessä rajoitteessa oikean puolen arvo leensä ilmaisee jonkin resurssin maksimisaatavuuden ja vasemman puolen lauseke ilmaisee paljonko eri aktiviteetit ovat resurssia kättäneet. Esim. raaka-ainerajoitteet maalitehdasesimerkissä: M: 6x 4x 4 M: x x 6 Tarkastellaan käpää ratkaisua x, x ) (, ). ( M: = 0 < 4 (resurssia kättämättä 4 tonnia) M: + = 6 (koko resurssi kätett) Ensinmainitussa rajoitteessa on vielä liikkumavaraa. Jatkossa, varsinkin simplex-algoritmin htedessä, tämän tppiset epähtälörajoitteet kirjoitetaan htälörajoitteiksi ottamalla kättöön ei-negatiivinen liikkumavaramuuttuja (slack variable): M: 6x 4x s 4 M: x x s 6 missä s s 0, Ylimäärä - tppisessä rajoitteessa oikean puolen arvo kertoo jonkin asian minimivaatimuksen ja vasemman puolen lauseke todellisen määrän. Esim. karjatilaesimerkissä ravintoseosta tarvittiin vähintään 800 kg päivässä. x x 800 8

19 Helläsdäminen karjatilallinen saattaa antaa eläimille enemmän kuin minimivaatimuksen toteuttamalla esimerkiksi jonkin kävän alueen sisäpisteratkaisun. Tällöin siis vasemman puolen lausekkeessa on jonkin verran limääräistä ravinnetta. Kun halutaan kirjoittaa tämän tppinen rajoite-ehto htälörajoitteena, on vasemman puolen lausekkeesta siis mahdollisesti vähennettävä jotakin, jotta lausekkeen arvo olisi htäsuuri kuin oikean puolen minimivaatimus eli kätetään ei-negatiivista limäärämuuttujaa ( surplus variable ) S : x x S 800, missä S 0. Rajoittamattomat muuttujat Tähänastisissa esimerkeissä päätöksentekomuuttujat ovat olleet etumerkkirajoitettuja eli x 0. Näin ei kaikissa tapauksissa tarvitse olla: i ESIM. Sunset Boulevardilla sijaitseva McBurger m neljännesnaulaisia ja juustopurilaisia. ( naula = lb = kg) Neljännesnaulainen kättää 0.5 lb lihaa ja juustopurilainen 0. lb. Yrits aloittaa päivän 00 lb:n lihamäärällä, mutta sitä voidaan tarvittaessa tilata lisää, jolloin limääräisiä toimituskustannuksia tulee 5 centtiä / naula. Päivän päätttä jäljelle jäänt liha lahjoitetaan hväntekeväisteen. Neljännesnaulaiset tuottavat 0 c/kpl ja juustopurilaiset 5 c/kpl. McBurger ei odota mvänsä li 900 annosta päivässä. Kuinka monta kumpaakin lajia kannattaisi valmistaa? x = neljännesnaulaisten määrä päivässä x = juustopurilaisten määrä päivässä Rajoitteet: Jos aamulla saatu lihamäärä riittää, niin 0.5x 0.x 00, muussa tapauksessa 0.5x 0.x 00. Nt ei siis tiedetä, toimitaanko liikkumavaralla vai limäärällä. 9

20 Kätetään (etumerkki)rajoittamatonta muuttujaa x 3 seuraavasti: 0 3.5x 0.x x 00, jolloin x 3 on liikkumavaramuuttuja, jos x 3 > 0 ja limäärämuuttuja, jos x 3 < 0. Tavoitefunktio: McBurger haluaa maksimoida tuoton ja limääräisten toimituskustannusten välisen erotuksen. Näitä kustannuksia snt vain, jos x 3 < 0. Rajoittamattoman muuttujan kättö on vaivalloista ja koska möhemmin opittava simplex-algoritmi hväks sisäisesti vain ei-negatiiviset muuttujat, korvataan x 3 kahdella toisistaan riippuvalla ei-negatiivisella muuttujalla x 3 x3 x3, missä x 3, x 3 0 siten,että jos x 0, niin x 0 ja x on liikkumavaraa jos x 0, niin x 0 ja x on limäärää. Nämä uudet muuttujat eivät siis voi olla htä aikaa >0, mutta voivat kumpikin = 0. Saadaan malli maksimoi z 0.0x 0.5x 0. 5x3 0.5x 0.x x3 x3 ehdoin

21 .3 HERKKYYSANALYYSI on mallin optiminjälkeistä tarkastelua, jossa tutkitaan, miten herkästi optimi muuttuu, kun mallin parametreja muutetaan. Esim. maalitehdasesimerkissä voi maalien ksntä muuttua tai raaka-aineiden saatavuus vaihdella. Mös hinnat voivat muuttua ja näin ollen mös tuotot. Herkksanalsin suorittaminen antaa joustoa mallin kättäjälle. Tutustutaan maalitehdasesimerkin avulla muutamaan tpilliseen herkksanalsin ksmksenasetteluun LP-tehtävän rajoitteet luokitellaan sitoviksi tai ei-sitoviksi. Rajoite on sitova, jos sitä vastaava suora kulkee optimipisteen kautta. Muut rajoitteet ovat ei-sitovia. Maalitehdasesimerkissä optimipiste sijaitsee raaka-aine rajoitteita () ja () vastaavien suorien leikkauspisteessä. Tämä tarkoittaa mös sitä, että optimipisteessä nämä rajoiteehdot ovat voimassa htälöinä, jolloin vastaavat resurssit on kokonaisuudessaan kätett. Sitova rajoite on tiukka (efektiivisesti rajoittava), koska sitä vastaava resurssi tulee kokonaan kätetksi. Ei-sitova rajoite on väljä, koska sitä vastaavaa resurssia jää osa kättämättä. Ongelma : Kuinka paljon tavoitefunktion kertoimet (eli maalien tuotot) voivat muuttua? Tavoitefunktion kertoimien muutokset vaikuttavat vastaavan suoran kulmakertoimeen. => Kaksi tpillistä tilannetta tutkittavana. Kuinka paljon kerroin voi muuttua, jotta optimipiste ei siirr siitä nurkkapisteestä, jossa se sijaitsee?. Kuinka paljon kerroin voi muuttua, ennenkuin tiett rajoite muuttuu tiukasta väljäksi tai päinvastoin? Tarkastellaan tavoitefunktiota z cx cx eli x c z x. c c

22 Ajatellaan optimipiste C tukipisteeksi, jonka varassa tavoitesuora keikkuu. On helppo havaita, että optimipiste säil pisteessä C niin kauan kuin z-suoran kulmakerroin on rajoitesuorien () ja () kulmakertoimien välissä: 6 4 c c => c c 6 4 ( c 0) Jos z-suoran kulmakerroin = ()-suoran kulmakerroin, niin optimi saavutetaan janan CB jokaisessa pisteessä. Vastaavasti, jos z:n kk. = ():n kk., niin optimi saavutetaan janan CD jokaisessa pisteessä. Kun tuottosuhde siirt m. suljetun välin ulkopuolelle, niin optimipiste siirt joko pisteeseen B (tuottosuhde >.5) tai pisteeseen D (tuottosuhde < 0.5) ja maalien optimaaliset valmistusmäärät muuttuvat.

23 c :n ja c :n vaihtelurajat, kun kertoimissa ksittäinen muutos: z cx 4x (eli sisämaalin tuotto ps entisenä, ulkomaalin muuttuu) => x c z x 4 => 4 6 c => c z 5x c x (eli ulkomaalin tuotto ps entisenä, sisämaalin muuttuu) Nt c c 6 4 eli 4 6 c c eli 4 c 0 => c Yllälasketut kertoimen ksittäisen muutoksen vaihtelurajat siis säilttävät optimipisteen nkisenä. Tavoitefunktion kertoimien samanaikaiset muutokset: Maalitehdas: z 5x 4x cx cx (leisesti) Optimipiste säili pisteenä C, kun c c 6. 4 Ilmaistaan samanaikaiset kerroinmuutokset muutoksina nkisiin arvoihin: z ( 5 d x, missä d i ( i,) voi olla > 0 tai < 0 tai = 0. ) x (4 d ) Tällöin epähtälöketjun oikeasta puolesta saadaan: 5 d 4 d 6 4 => 0 4d 4 6d (olettaen, että 4 d 0 ) => 4d 6d 0 4 Vasemmasta puolesta: 5 d 4 d => d d 0 6 3

24 Kun siis tavoitefunktion z 5x 4x kertoimissa tapahtuu samanaikaiset muutokset d ja d, niin optimipiste säil entisenä, mikäli 4 4d 6d 0 ja d d 0 6 Ongelma : Miten optimi muuttuu, jos resurssirajoitteet muuttuvat? Eritisesti a) miten paljon resurssia voidaan lisätä, kun tarkoituksena on kasvattaa tavoitefunktion arvoa? tai b) miten paljon resurssia voidaan vähentää siten, että optimiarvo ei muuttuisi? Nt ollaan siis kiinnostuneita siitä, mitä tiukkojen rajoitteiden resursseja voidaan lisätä tuloksen parantamiseksi ja mitä väljien rajoitteiden resursseja voidaan vähentää tulosta heikentämättä. Tuntunee selvältä, että väljän rajoitteen lisäämiseen ei ole tarvetta, koska resurssia nktilanteessakin jää kättämättä. Toisaalta voidaan osoittaa, että tiukan rajoitteen vähentäminen ei voi parantaa tavoitefunktion arvoa. Tarkastellaan maalitehdasesimerkin raaka-aine rajoitetta (): x x 6 (raaka-aine M) Tämän rajoitteen suora kulkee optimipisteen C = (3,.5) kautta, joten rajoite on tiukka ja resurssi siis kokonaan kätett. Jos raaka-aineen M päivittäistä saatavuutta voitaisiin kasvattaa arvosta 6, niin lisäs ei vaikuta kulmakertoimeen vaan ko. suora siirtisi suuntansa säilttäen lämäkeen (kts. seuraava kuva). Optimipiste on kuitenkin edelleen suorien () ja () leikkauspiste, joka nt kulkeutuu kohti pistettä K. Kun piste K saavutetaan, niin rajoite (4) muuttuu väljästä tiukaksi ja alkaa rajoittamaan efektiivisesti. Pisteessä K M-rajoite tulee redundantiksi, koska jos resurssia M kasvatetaan tästä, niin käpä ratkaisualue ei enää laajene. M:n saatavuutta lisäämällä voidaan käpää aluetta laajentaa vain kolmion CKD verran. 4

25 Piste C = (3,.5), jossa z = (tuhansia euroja) Piste K = (, ), jossa z = 3 3 Piste K määrää materiaalin M maksimimäärän, joten saadaan x x 4 6 tonnia 3 3 => Tätä suuremmat määrät eivät vaikuta enää optimia nostavasti. Vastaavasti kasvattamalla raaka-aineen M maksimisaatavuutta, rajoitesuora () siirt suuntansa säilttäen oikealle ja samalla optimipiste kulkee ()-suoraa pitkin kohti vaaka-akselilla sijaitsevaa pistettä J. 5

26 Piste C = (3,.5), jossa z = (tuhansia euroja) Piste J = (6, 0), jossa z = 30 6 x 4x 4 (raaka-aine M kokonaan kätett pisteessä C) Pisteessä J = 36 eli raaka-aineen M maksisaatavuutta voidaan nostaa 4 tonnista 36 tonniin optimiarvoa parantaen. Pisteessä J rajoite () tulee redundantiksi, eikä resurssin kasvattaminen enää paranna kokonaistuottoa. Väljien rajoitteiden resursseja voidaan vähentää optimiarvoa muuttamatta, kunnes resurssia vastaava suora kulkee optimipisteen kautta: - rajoite (4) voidaan vähentää arvosta arvoon.5 - rajoite (3) voidaan vähentää arvosta arvoon -.5 6

27 Ongelma 3: Tiukkojen resurssien optimaalisessa kätössä tät tutkia mihin resurssitppiin kannattaa sijoittaa, jotta höt kasvaisi eniten. LP-analsissä saadaan resurssin ksikköarvo i kullekin resurssitpille i laskettua jakamalla z:n muutos sen aiheuttaneella resurssin i muutoksella eli i z res i Esim. M: M: z : n muutos C J M: n muutos C J 9 z : n muutos C K M : n muutos C K Kummankin ksikkönä on tässä esimerkissä tuhatta euroa. lisätonni ainetta Väljän rajoitteen resurssimuutos ei muuta z:aa, joten 3 = 0 ja 4 = 0. Nähdään, että resurssin () eli raaka-aineen M tulisi saada etusija mahdollista lisärahoitusta jaettaessa. Resurssin ksikköarvolle kätetään mös nimitksiä duaalihinta (leisin termi) ja varjohinta (historiallinen). Nimen duaalihinta merkits selkenee möhemmin. 7

28 .4 ESIMERKKI USEAN MUUTTUJAN LP-PROBLEEMASTA (Oppikirjassa lisää esimerkkejä pkälässä.4) Pankin lainaohjelma: Eräs pankki on muotoilemassa seuraavan vuosineljänneksen lainaohjelmaansa. Tarkoitukseen on osoitettu miljoonaa euroa. Seuraava taulukko esittää eri lainatpit, niiden korkoprosentit sekä kokemuksen perusteella arvioidun hoitamattomien velkojen osuuden. Lainatppi henkilökohtainen auto asunto maatila teollisuus Lainakorko (%) Hoitamattoman velan todennäköiss Hoitamattomat velat oletetaan täsin menetetiksi sekä pääoman että korkojen osalta. Kilpailu alueen muiden pankkien kanssa vaatii, että pankki varaa vähintään 40% kokonaissummasta maatila- ja teollisuuslainoihin. Alueen rakennusteollisuuden auttamiseksi asuntolainojen osuuden on oltava vähintään 50% henkilökohtaisten, auto- ja asuntolainojenhteissummasta. Pankki edellttää ohjelmassa mös, että hoitamattomien velkojen osuus kaikista lainoista hteensä ei saa littää 4%. Laadi matemaattinen malli Mallin muuttujat voidaan valita seuraavasti: x = henkilökohtaiset lainat ( miljoonaa euroa) x = autolainat x 3 = asuntolainat x 4 = maatilalainat x 5 = teollisuuslainat Pankin tavoitteena on maksimoida nettotulonsa, jotka muodostuvat korkotulojen ja hoitamattomien velkojen vuoksi menetettjen varojen erotuksena. 8

29 Tavoitefunktio: maksimoi z = x x x x x 5-0.x x x x 4-0.0x 5 = 0.06x x x x x 5 Rajoitteet:. Kokonaislainapääoma x x x3 x4 x5. Maatalous- ja teollisuuslainat x4 x5 0.4 ( x x x3 x4 x5) => 0.4x 0.4x 0.4x3 0.6x4 0.6x Asuntolainat x 3 0 x3.5( x x ) eli x x x 0 4. Hoitamattomien velkojen osuus 0.x eli 0.07x 0.03x3 0.05x x x x x x x x 0.03x 0.0x3 0.0x4 0.0x5 5. Ei-negatiivisuus x i 0 ( i,...,5)

30 3. SIMPLEX-MENETELMÄ 3. Jos LP-probleemassa on useampia kuin kaksi muuttujaa, graafinen ratkaisu ei sovi. Algebrallisella Simplex-menetelmällä voidaan ratkaista mikä tahansa LP-malli. LP-probleeman optimiratkaisu liitt aina kävän ratkaisualueen johonkin nurkkapisteeseen. Kun ratkaisualue on kahden muuttujan tapauksessa useimmiten monikulmio, on se n:n muuttujan tapauksessa n-ulotteisen avaruuden jokin monisärmiö. Simplexiä varten muunnetaan LP-malli standardimuotoon eli epähtälörajoitteet htälörajoitteiksi kättämällä liikkumavara-, limäärä- ja rajoittamattomia muuttujia. Standardimuotoisen htälörhmän ns. kantaratkaisut määrittelevät täsin ratkaisualueen nurkkapisteet ja simplex-algoritmi lötää helposti kantaratkaisujen joukosta optimiratkaisun. 3.. STANDARDIMUOTO JA SEN KANTARATKAISUT Standardimuotoinen LP-malli:. Kaikki rajoitteet (paitsi muuttujien ei-negatiivisuusehdot) ovat htälöitä, joilla on einegatiivinen oikean puolen vakioarvo.. Kaikki muuttujat ovat ei-negatiivisia. 3. Tavoitefunktion optimointi voi olla maksimointia tai minimointia Epähtälöt htälöiksi Rajoitetppi : Esim. x x 3 3x x s 3 3 Tässä kätett liikkumavaramuuttujalle smbolia s ( slack ), mutta voidaan kättää mös indeksointijärjestksessä seuraavaa x:ää tai jos halutaan korostaa liikkumavaraa kätetään smbolina esim. sx 3 eli x x 3 3x x sx 3, missä x x, sx 0 3 3, 3 30

31 Esim. x x 3 (-) Negatiivinen oikeanpuolen arvo muutettava positiiviseksi kertomalla -:llä, jolloin epäsuuruusmerkin suunta on vaihdettava: x x 3 x x s 3, missä x x, s 0 Rajoitetppi :, Esim.3 x x 3 3x x S 3, missä mös limäärämuuttuja S 0 3. Rajoittamattomat muuttujat ei-negatiivisiksi muuttujiksi Esim. Merkitään x on rajoittamaton j j j x x x, missä x, 0 j j jos x 0, niin x 0 j jos x 0, niin x 0. j j j x j 3. Maksimoinnin muuntaminen minimoinniksi ( tai päinvastoin) max f ( x, x,..., xn ) min f ( x, x,..., x n siinä mielessä, että molemmilla on sama optimipiste. Toisin sanoen max f ( x, x,..., xn ) min ( f ( x, x,..., x n ) )) 3

32 Esimerkki Muunna standardimuotoon LP-malli max z x 3x 5x3 ehdoin x x x3 5 (.) 6x 7x 9x3 4 (.) x x 4x 3 0 (3.) x, x 0 x rajoittamaton Rajoitteet: (.) x x x3 5 x x x3 s 5 (.) 6x 7x 9x3 4 6x 7x 9x3 s 4 (3.) sellaisenaan Muuttujat ei-negatiivisiksi: x 3 rajoittamaton x 3 x3 x3 Standardimuodossa siis: max z x 3x 5x3 5x3 x x x3 x3 s 5 6 x 7 x 9 x 3 9 x 3 s x x 4x3 4x3 x, x, x3, x3, s, s 0 ehdoin (.) 4 0 (.) (3.) 3

33 3.. KANTARATKAISUJEN MÄÄRÄÄMINEN Standardimuotoisessa LP-mallissa olkoon htälörhmä, jossa on m htälöä ja n muuttujaa (m < n). Jaetaan n muuttujaa kahteen joukkoon: () n-m muuttujaa, jotka asetetaan nolliksi () loput m muuttujaa, joiden arvo saadaan ratkaisemalla m:n htälön rhmä. Jos nämä m htälöä tuottavat -käsitteisen ratkaisun, on kseessä kantaratkaisu ja kätett m muuttujaa ovat kantamuuttujat ja loput n-m muuttujaa ovat eikantamuuttujat. Jos kaikilla kantamuuttujilla on ei-negatiivinen arvo, kseessä on käpä ratkaisu, muutoin ei-käpä ratkaisu. Mahdollisia kantaratkaisuja on n m n! m!( n m)! kappaletta. Esimerkki Yhtälörhmä, jossa m = ja n = 5. x 4x x x 4x 3 x x 3 x 4 4 3x 6x ! Kantaratkaisuja on korkeintaan 0!3! Tarkastellaan muutamaa mahdollista tapausta: kpl. a) Valitaan ei-kantamuuttujat x x4 x5 0. Jäljelle jää kantamuuttujien htälörhmä x 4x 4x x jolla on -käsitteinen ratkaisu x 0, x3. Koska molemmat ovat 0, niin x, x, x, x, x ) (0, 0,, 0, 0) on käpä ratkaisu. (

34 b) Ei-kantamuuttujat: x x x 0 => x x 4x x käsitteinen kantaratkaisu: x 6, x 4. => ei-käpä kantaratkaisu, koska 0 c) Nollamuuttujat x, x ja x 5 : 4x x 3 3 x x => x4 4 x3 eli ääretön määrä ratkaisuja => ei -käsitteinen eli ei kantaratkaisua d) Nollamuuttujat x, x 3 ja x 4: x x 3x 6x = - => ei ratkaisua 3..3 RAJOITTAMATTOMAT MUUTTUJAT JA KANTARATKAISUT Rajoittamaton muuttuja j j x x x, siten, että x, 0, missä j j x j j x 0 => x 0 j x 0 => x 0 j j Lisäksi x j :n ja x j :n kertoimet toistensa vastalukuja, joten ko. muuttujat eivät ole toisistaan riippumattomia. => Jokaisessa kantaratkaisussa vähintään jommankumman em. muuttujista on oltava ei-kantamuuttuja ( eli = 0). 34

35 3.3 SIMPLEX-ALGORITMI (Taulukkomuotoinen) kännist kävästä kantaratkaisusta ja prkii sitten lötämään toisen kävän kantaratkaisun, joka parantaa tavoitefunktiota. Tämä on mahdollista vain, jos kasvu nkisessä nollamuuttujassa eli eikantamuuttujassa voi johtaa tavoitefunktion paranemiseen. => saapuva muuttuja Koska kantaratkaisussa pitää olla täsmälleen m kpl kantamuuttujia, on jonkun nkisistä kantamuuttujista tultava ei-kantamuuttujaksi. => lähtevä muuttuja Kädään seuraavassa läpi simplex-algoritmin periaatteet kättämällä esimerkkinä tuttua maalitehtaan tuotevalintaongelmaa. Seuraa graafisen ratkaisun kuvasta, miten algoritmi etenee aloitusratkaisusta optimiratkaisuun. Muutetaan malli ensin standardimuotoon ja tavoitefunktiokin muotoon, jossa kaikki muuttujat ovat htäläissmerkin vasemmalla puolella ja oikealla puolella vain vakioarvo: Maksimoi z 5x 4x eli z 5x 4x 0 ehdoin 6x 4x s 4 x x s 6 x x s3 x s4 x x, s, s, s, s 0 Yhtälöitä 4 kpl => m = 4, 3 4 Siis 4 kantamuuttujaa ja ei-kantamuuttujaa ( nollamuuttujaa). Eräs kantaratkaisu nähdään helposti asettamalla ei-kantamuuttujiksi x x 0 => s, s, s, s ) (4, 6,, ) ja graafisessa ratkaisussa ollaan tällöin origossa. (

36 Esitetään malli seuraavana taulukkona: Kanta z x x s s s 3 s 4 Ratkaisu z s s s s Taulukon rivejä kutsutaan kantasarakkeen muuttujan mukaan: z-rivi, s -rivi jne. 36

37 z-rivillä ratkaisusarakkeessa oleva 0 on z:n arvo tällä hetkellä, ollaanhan origossa eli kumpaakaan maalitppiä ei valmisteta htään, joten tuottokin on nolla. Tämän hetkinen ratkaisu ei ole optimaalinen, jos jokin nkisten ei-kantamuuttujien kertoimista z-rivillä on negatiivinen ( maksimointitehtävä). => ei olla vielä optimissa Ratkaisun parantaminen: Valitaan saapuvaksi muuttujaksi se ei-kantamuuttuja, jonka kerroin z-rivillä on negatiivisin. => x on saapuva muuttuja Mikä saapuvalle muuttujalle arvoksi seuraavassa kantaratkaisussa? Tämä lasketaan jakamalla kantamuuttujariveillä ratkaisusarakkeen alkiot vastaavalla saapuvan muuttujan sarakkeen alkiolla. Tässä htedessä ei jaeta negatiivisella alkiolla eikä nollalla. Pienin ei-negatiivinen suhde on saapuvan muuttujan arvo: Kantamuuttuja x Ratkaisu Suhde s s s 3 s /6 = 4 <= pienin ei-negat. 6/ = 6 hlätään hlätään => x = 4 ( Huomaa graafisessa ratkaisussa x -akselin pisteet 4 ja 6. Näistä vain pienin suhde on kävällä ratkaisualueella.) Mikä on lähtevä muuttuja? Koska pienin ei-negatiivinen suhde oli s -rivillä => s on lähtevä muuttuja Uuden kantaratkaisun laskeminen tapahtuu Gauss-Jordanin rivioperaatioilla (vertaa Insinöörimatematiikka ). 37

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Luento 4: Lineaarisen tehtävän duaali

Luento 4: Lineaarisen tehtävän duaali Luento 4: Lineaarisen tehtävän duaali Käsittelemme seuraavaksi lineaarisen optimoinnin duaaliteoriaa. Kuten luennossa 2 esitettiin, kohdefunktion optimiarvon herkkyys z, kun rajoitusyhtälön i, 1 i m, oikea

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento : Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli simerkki: Maalifirma Sateenkaari valmistaa ulko- ja sisämaalia raaka-aineista M ja M. Sisämaalin maksimikysyntä on tonnia/päivä.

Lisätiedot

Luento 3: Simplex-menetelmä

Luento 3: Simplex-menetelmä Luento 3: Simplex-menetelmä Kuten graafinen tarkastelu osoittaa, LP-tehtävän ratkaisu on aina käyvän alueen kulmapisteessä, eli ekstreemipisteessä (extreme point). Simplex-menetelmässä ekstreemipisteitä,

Lisätiedot

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset

30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset 30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään

Lisätiedot

6.1 Lineaarinen optimointi

6.1 Lineaarinen optimointi 6.1 Lineaarinen optimointi Suora a + b + c = 0 jakaa -tason kahteen puolitasoon. Tason jokainen piste, joka on suoralla, toteuttaa suoran htälön ja kääntäen. Jos siis tason mielivaltaisen pisteen koordinaatit

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

Sijoitusmenetelmä. 1.2. Yhtälöpari

Sijoitusmenetelmä. 1.2. Yhtälöpari MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat

Lisätiedot

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun

Jälki- ja herkkyysanalyysi. Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun Jälki- ja herkkyysanalyysi Tutkitaan eri kertoimien ja vakioiden arvoissa tapahtuvien muutosten vaikutusta optimiratkaisuun 1 Hinnat ja varjohinnat Objektifunktio c T x = Kerroin c j ilmoittaa, paljonko

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lineaarinen ohjelmointi..7 Luento 7 Duaalisimple ja herkkyysanalyysi (kirja 4.5, 5., 5.5-5.6) Lineaarinen ohjelmointi - Syksy 7 / Duaalisimple Herkkyysanalyysi Luentorunko Parametrinen ohjelmointi

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

3 Raja-arvo ja jatkuvuus

3 Raja-arvo ja jatkuvuus 3 Raja-arvo ja jatkuvuus 3. Raja-arvon käsite Raja-arvo kuvaa funktion kättätmistä jonkin lähtöarvon läheisdessä. Raja-arvoa tarvitaan toisinaan siksi, että funktion arvoa ei voida laskea kseisellä lähtöarvolla

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2

min x x2 2 x 1 + x 2 1 = 0 (1) 2x1 1, h = f = 4x 2 2x1 + v = 0 4x 2 + v = 0 min x x3 2 x1 = ± v/3 = ±a x 2 = ± v/3 = ±a, a > 0 0 6x 2 TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-39 Optimointioppi Kimmo Berg 6 harjoitus - ratkaisut min x + x x + x = () x f = 4x, h = x 4x + v = { { x + v = 4x + v = x = v/ x = v/4 () v/ v/4

Lisätiedot

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen

4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen 4.5 Kaksivaiheinen menetelmä simplex algoritmin alustukseen Käypä kantaratkaisu löytyy helposti, esimerkiksi tapauksessa Ax b, b 0 x 0 jolloin sen määräävät puutemuuttujat. Tällöin simplex-menetelmän alustus

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo LP-mallit, L19 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset

Lisätiedot

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi

Lisätiedot

OPERAATIOANALYYSI ORMS.1020

OPERAATIOANALYYSI ORMS.1020 VAASAN YLIOPISTO Talousmatematiikka Prof. Ilkka Virtanen OPERAATIOANALYYSI ORMS.1020 Tentti 2.2.2008 1. Yrityksen tavoitteena on minimoida tuotannosta ja varastoinnista aiheutuvat kustannukset 4 viikon

Lisätiedot

8. Ensimmäisen käyvän kantaratkaisun haku

8. Ensimmäisen käyvän kantaratkaisun haku 38 8. Ensimmäisen käyvän kantaratkaisun haku Edellä kuvattu simplex-algoritmi tarvitsee alkuratkaisuksi käyvän kantaratkaisun eli käyvän joukon kärkipisteen. Sellaisen voi konstruoida seuraavilla tavoilla:

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi.

Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. 5..0 Tehtävä Ovatko seuraavat väittämät oikein vai väärin? Perustele vastauksesi. (c) (d) Arvostelu Kanta on degeneroitunut jos ja vain jos sitä vastaava kantamatriisi on singulaarinen. Optimissa muuttujan

Lisätiedot

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala

Simplex-algoritmi. T Informaatiotekniikan seminaari , Susanna Moisala Simplex-algoritmi T-6.5 Informaatiotekniikan seminaari..8, Susanna Moisala Sisältö Simplex-algoritmi Lähtökohdat Miten ongelmasta muodostetaan ns. Simplextaulukko Miten haetaan käypä aloitusratkaisu Mitä

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Malliratkaisut Demot 6,

Malliratkaisut Demot 6, Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 5..7 Luento Kertausta Lineaarinen ohjelmointi - Syksy 7 / LP ja Simplex Kurssin rakenne Duaalisuus ja herkkyysanalyysi Verkkotehtävät Kokonaislukutehtävät Lineaarinen ohjelmointi

Lisätiedot

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu

Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Luento 1: Optimointimallin muodostaminen; optimointitehtävien luokittelu Merkintöjä := vasen puoli määritellään oikean puolen lausekkeella s.e. ehdolla; siten että (engl. subject to, s.t.) on voimassa

Lisätiedot

2.3. Lausekkeen arvo tasoalueessa

2.3. Lausekkeen arvo tasoalueessa Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät

Lisätiedot

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.

102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä. Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja

Lisätiedot

Mat. tukikurssi 27.3.

Mat. tukikurssi 27.3. Mat. tukikurssi 7.. Tänään oli paljon vaikeita aiheita: - suunnattu derivaatta - kokonaisdierentiaali - dierentiaalikehitelmä - implisiittinen derivointi Nämä kaikki liittvät aika läheisesti toisiinsa.

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

Matematiikan pohjatietokurssi

Matematiikan pohjatietokurssi Matematiikan pohjatietokurssi Demonstraatio 3, 15.9.014 1. Mitkä seuraavista voisivat olla funktion kuvaajia ja mitkä eivät? Miksi? (a) (b) (c) (d) Vastaus: Kuvaajat b ja c esittävät funktioita. Huomaa,

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Harjoitus 4: Matlab - Optimization Toolbox

Harjoitus 4: Matlab - Optimization Toolbox Harjoitus 4: Matlab - Optimization Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Optimointimallin muodostaminen

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa

6. Luennon sisältö. Lineaarisen optimoinnin duaaliteoriaa JYVÄSKYLÄN YLIOPISTO 6. Luennon sisältö Lineaarisen optimoinnin duaaliteoriaa työkalu ratkaisun analysointiin Jälki- ja herkkyysanalyysiä mitä tapahtuu optimiratkaisulle, jos tehtävän vakiot hieman muuttuvat

Lisätiedot

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen?

1. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa yhdistetystä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Matematiikan johdantokurssi, sks 06 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

TIEA382 Lineaarinen ja diskreetti optimointi

TIEA382 Lineaarinen ja diskreetti optimointi TIEA382 Lineaarinen ja diskreetti optimointi Jussi Hakanen Tietotekniikan laitos jussi.hakanen@jyu.fi AgC 426.3 Yleiset tiedot Tietotekniikan kandidaattiopintojen valinnainen kurssi http://users.jyu.fi/~jhaka/ldo/

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

5 Lineaariset yhtälöryhmät

5 Lineaariset yhtälöryhmät 5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Luento 9: Yhtälörajoitukset optimoinnissa

Luento 9: Yhtälörajoitukset optimoinnissa Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =

4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C = BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö

JYVÄSKYLÄN YLIOPISTO. 3. Luennon sisältö JYVÄSKYLÄN YLIOPISTO 3. Luennon sisältö Lineaarisen optimointitehtävän sallittu alue Optimointitehtävien muunnoksia Lineaarisen yhtälöryhmän perusmuoto ja perusratkaisut Lineaarisen optimointitehtävän

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Luku 21 Kustannuskäyrät

Luku 21 Kustannuskäyrät Luku 2 Kustannuskärät Edellisessä luvussa johdimme ritksen kustannusfunktion minimoimalla ritksen tuotannon kokonaiskustannuksia. Kustannusfunktiota ja sen ominaisuuksia voidaan tarkastella graafisesti

Lisätiedot

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö

Toisen asteen käyrät 1/7 Sisältö ESITIEDOT: käyrä, kartio ja lieriö Toisen asteen kärät 1/7 Sisältö ESITIEDOT: kärä, kartio ja lieriö Hakemisto KATSO MYÖS: mprä, toisen asteen pinnat Toisen asteen kärä Toisen asteen käräksi kutsutaan kärää, jonka htälö -ssa on muuttujien

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Talousmatematiikan perusteet: Luento 14 Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta Viime luennolla Tarkastelimme usean muuttujan funktioiden

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Piste ja jana koordinaatistossa

Piste ja jana koordinaatistossa 607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan

Lisätiedot

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS

TEKNILLINEN TIEDEKUNTA, MATEMATIIKAN JAOS 1. Suorakaiteen muotoisen lämmönvaraajan korkeus on K, leveys L ja syvyys S yksikköä. Konvektiosta ja säteilystä johtuvat lämpöhäviöt ovat verrannollisia lämmönvaraajan lämpötilan T ja ympäristön lämpötilan

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot