ELEC-C5210 Satunnaisprosessit tietoliikenteessä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "ELEC-C5210 Satunnaisprosessit tietoliikenteessä"

Transkriptio

1 ELEC-C5210 Satunnaisprosessit tietoliikenteessä Esa Ollila Aalto University, Department of Signal Processing and Acoustics, Finland Kevät 2017

2 E. Ollila / Kevät lk /9 Luennot Kurssin toteutus keväällä 2017 I Luennoitsija: Professori Esa Ollila, T-talo B354, Perjantaisin 10:15-12:00 U5 / U147 (Otakaari 1). Harjoitukset Assistentti: Elias Raninen, T-talo B357, Torstaisin 14:15-16 TUAS Paperilaskuharjoitukset, , joka toinen viikko Matlab-harjoitukset, Maari-K 243, joka toinen viikko Kotitehtävä (annetaan Maaliskuun lopussa) Bonus ratkaistujen tehtävien mukaan > 25% sait tenttioikeuden! > 45% 1/2 numeron korotus tenttiarvosanaan > 75% numeron korotus tenttiarvosanaan Bonus vain tentin läpäisseille

3 E. Ollila / Kevät lk /9 Kurssin toteutus keväällä 2017 II Luentokalvot Kalvot MyCourses-sivuille kurssin aikana. Luentokalvot riittävät kurssin materiaaliksi. Kirjallisuutta T.L. Fine, Probability and Probabilistic Reasoning for Electrical Engineering, Pearson Prentice Hall, R.D. Yates & D.J. Goodman, Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, Wiley, 2nd Edition, H. Stark & J.W. Woods, Probability and Random Processes with Applications to Signal Processing, Prentice Hall, 3rd Edition S. Kay, Intuitive Probability and Random Processes using MATLAB, Springer, G.R. Grimmett & D.R. Stirzaker, Probability and Random Processes, Oxford University Press, 3rd Edition 2001.

4 E. Ollila / Kevät lk /9 Kurssin suoritettuaan opiskelija Kurssin tavoitteet I osaa eritellä todennäköisyysavaruuden osatekijät ja siinä määriteltyjen tapahtumien perusominaisuudet. ymmärtää todennäköisyyden ja tilastollisen riippuvuuden käsitteet osaa tunnistaa erilaisten jakaumien käyttökohteita. osaa laskea keskeisimpiä tunnuslukuja (odotusarvo, kovarianssi) erityyppisille satunnaismuuttujille (reaaliset/kompleksiset). käyttää vektoriarvoisia satunnaismuuttujia ja niiden riippuvuussuhteita ymmärtää ilmaisun ja estimoinnin peruskäsitteet (hypoteesintestaus/uskottavuusosamäärä) osaa verrata eri ilmaisustrategioiden (MAP, Neyman-Pearson) ja estimointimenetelmien (suurimman uskottavuuden, MVUE) eroja. ymmärtää satunnaisprosessin käsitteita/ominaisuuksia (kuten stationaarisuus, tehotiheysspektri) oppii perusvalmiuden Matlab-ohjelmiston käytössä.

5 E. Ollila / Kevät lk /9 Kurssin tavoitteet II Kurssin kehittää opiskelijan ongelmanratkaisutaitoja erityisesti tietoliikennesovellusten tilastollisen mallinnuksen alueella, mistä on hyötyä esimerkiksi tietoliikenneverkkojen ja (radio)tietoliikenneyhteyksien analysoinnissa. Miten päästä tavoitteisiin? Aktiivinen osallistuminen luennoilla: kysy, kommentoi, keskustele Laskuharjoitusten tekeminen sekä niistä keskusteleminen laskareissa Lisämateriaalien hyödyntäminen: kirjallisuus, internet

6 E. Ollila / Kevät lk /9 Kurssin alustava sisältö muutokset mahdollisia 1 Todennäköisyys 2 Satunnaismuuttujat 3 Momentit 4 Satunnaisvektorit 5 Estimointi 6 Ilmaisu 7 Satunnaisjonot 8 Satunnaisprosessit 9 Tehotiheysspektri

7 E. Ollila / Kevät lk /9 Kurssin liitynnät Esitiedot Matematiikan peruskurssit Todennäköisyyslaskenta Signaalit ja järjestelmät Aiheesta syvemmin kurssilla ELEC-E5440 Statistical signal processing

8 E. Ollila / Kevät lk /9 Motivointia I Todennäköisyyslaskenta ja tilastolliset menetelmät ovat tärkeä perustyökalu kehittyneiden tietoliikennejärjestelmien suunnittelussa. Reaalimaailman ongelmien ja ilmiöiden mallintaminen deterministisillä malleilla on yleisesti mahdotonta, koska emme täysin tunne, pysty määrittämään tai mittaamaan kaikkia vaikuttavia tekijöitä. Mittaukset sisältävät aina satunnaista virhettä eli kohinaa. kohina on tuntematon tekijä, joten mittausprosessia mallinnetaan yleensä tilastollisilla työkaluilla. Satunnaismallien ja niihin liittyvien tilastollisten tunnuslukujen avulla voidaan suunnitella optimaalisia menetelmiä kiinnostuksen kohteena olevien suureiden arviointiin ja päätöksentekoon. Tehtäviä: parametrien estimointi, verkkoliikenteen mallinnus, signaalien estimointi (optimisuodatus), signaalien ilmaisu (detection), päätöksenteko ja spektrin estimointi.

9 E. Ollila / Kevät lk /9 Motivointia II Esimerkkisovelluksia tietoliikenteessä: Radiokanavan impulssivasteen estimointi Radiokanavan mallinnus Lähetetyn symbolin ilmaisu vastaanottimessa RAKE-vastaanotin CDMA järjestelmässä Älykkäät antennijärjestelmät, moniantennijärjestelmät Adaptiivinen keilanmuodostus tietoliikenne- ja tutkasovelluksissa Puheenkoodaus AR-mallin avulla Kuvanehostus, -restorointi ja -koodaus Hahmon- ja puheentunnistus Verkkosuunnittelu, tietoliikenneverkkojen reititysongelmat

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä

ELEC-C7230 Tietoliikenteen siirtomenetelmät. Yleistä Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2016 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto Yleistä Esitiedot: (kurssi

Lisätiedot

ELEC-C7230 Tietoliikenteen siirtomenetelmät

ELEC-C7230 Tietoliikenteen siirtomenetelmät A! Aalto University Comnet ELEC-C7230 Tietoliikenteen siirtomenetelmät Kurssisuunnitelma, kevät 2018 Olav Tirkkonen, Tietoliikenne- ja tietoverkkotekniikan laitos, Aalto-yliopisto A! Yleistä Esitiedot:

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

OPETUSSUUNNITELMALOMAKE

OPETUSSUUNNITELMALOMAKE OPETUSSUUNNITELMALOMAKE Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit siis dokumentoida

Lisätiedot

MS-C2111 Stokastiset prosessit

MS-C2111 Stokastiset prosessit Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos toimisto: Y241, vastaanotto: pe 13:30-14:30 2017, periodi I KURSSIN JÄRJESTELYT Kurssin järjestelyt Luennot ja harjoitusryhmät Luennot tiistaisin

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2015 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely

MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely MS-C2128 Ennustaminen ja Aikasarja-analyysi, 5 op Esittely Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Aikataulu ja suoritustapa (Katso MyCourses) Luennot

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat Prof. Anouar Belahcen Anouar.belahcen@aalto.fi Opetushenkilökunta Luennoitsijat: Anouar Belahcen (anouar.belahcen@aalto.fi),

Lisätiedot

Hallintotieteiden opinto-opas lkv 2014 15, Yleisopinnot ok 16.4.14. Yleisopinnot

Hallintotieteiden opinto-opas lkv 2014 15, Yleisopinnot ok 16.4.14. Yleisopinnot Yleisopinnot STAT1020 Tilastotieteen johdantokurssi 5 op TITE1022 Tietokone työvälineenä 3 op LIIK1200 Johdatus liiketoimintaosaamiseen 5 op Kansainvälistyminen 10 op OPIS0033 Harjoittelu 5 op Tilastotieteen

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

T DATASTA TIETOON

T DATASTA TIETOON TKK / Informaatiotekniikan laboratorio Syyslukukausi, periodi II, 2007 Erkki Oja, professori, ja Heikki Mannila, akatemiaprofessori: T-61.2010 DATASTA TIETOON TKK, Informaatiotekniikan laboratorio 1 JOHDANTO:

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat

ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat ELEC-C8001 Sähköenergiatekniikka, 5 op Kurssin tavoitteet, sisältö ja käytännön asiat Prof. Anouar Belahcen Anouar.belahcen@aalto.fi Opetushenkilökunta Luennoitsijat: Matti Lehtonen (matti.lehtonen@aalto.fi),

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite

KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite KJR-C2002 Kontinuumimekaniikan perusteet Kurssiesite Menestyminen nykypäivän poikkitieteellisissä työtehtävissä vaatii vahvan ymmärryksen eri insinöörialojen perusteista. Mekaniikan perusteiden ymmärtäminen

Lisätiedot

HAHMONTUNNISTUKSEN PERUSTEET

HAHMONTUNNISTUKSEN PERUSTEET HAHMONTUNNISTUKSEN PERUSTEET T-61.3020, 4 op., Kevät 2007 Luennot: Laskuharjoitukset: Harjoitustyö: Erkki Oja Tapani Raiko Matti Aksela TKK, Informaatiotekniikan laboratorio 1 FOREIGN STUDENTS Lectures

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

DEE Sähkötekniikan perusteet 5 op

DEE Sähkötekniikan perusteet 5 op DEE-11110 Sähkötekniikan perusteet 5 op Anna Kulmala ja Antti Stenvall Kurssi-info Mallintaminen istä kehitetään malleja luonnonilmiöiden seurauksien ennustamiseksi. Mallit formalisoidaan matematiikan

Lisätiedot

Tilanne sekä MS-A0003/4* Matriisilaskenta 5 op

Tilanne sekä MS-A0003/4* Matriisilaskenta 5 op MATEMATIIKKA Mat-1.1210 Matematiikan peruskurssi S1 ei järjestetä enää MS-A0103/4* Differentiaali- ja integraalilaskenta I 5 op sekä MS-A0003/4* Matriisilaskenta 5 op Mat-1.1110 Matematiikan peruskurssi

Lisätiedot

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan

Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan Mitä pitäisi vähintään osata Tässäkäydään läpi asiat jotka olisi hyvä osata Nämä ovat siis minimivaatimukset, enemmänkin saa ja suositellaan osattavan 333 Kurssin sisältö Todennäköisyyden, satunnaismuuttujien

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

TIETOLIIKENNETEKNIIKKA I A

TIETOLIIKENNETEKNIIKKA I A TIETOLIIKENNETEKNIIKKA I 521359A KURSSI ANALOGISEN TIEDONSIIRRON PERUSTEISTA Dos. Kari Kärkkäinen Tietoliikennelaboratorio, huone TS439, 4. krs. kk@ee.oulu.fi, http://www.telecomlab.oulu.fi/~kk/ puh: 08

Lisätiedot

SGN-4200 Digitaalinen audio

SGN-4200 Digitaalinen audio SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,

Lisätiedot

Ohjelmistoarkkitehtuurit. Kevät

Ohjelmistoarkkitehtuurit. Kevät Ohjelmistoarkkitehtuurit Kevät 2012-2013 Johannes Koskinen http://www.cs.tut.fi/~ohar/ Tervetuloa Oulun yliopisto, Tampereen yliopisto, Turun yliopisto, Tampereen teknillinen yliopisto 2 Kurssin tavoitteet

Lisätiedot

Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko

Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko Pv Pvm Aika Kurssin koodi ja nimi Sali Tentti/Vk Viikko Ma 02.09.13 16:00-19:00 ELEC-A7200 Signaalit ja järjestelmät 4/S1 A102 T02 36 Mon 02.09.13 16:00-19:00 S-104.3310 Optoelectronics 4/S1 A102 T2 36

Lisätiedot

HAHMONTUNNISTUKSEN PERUSTEET

HAHMONTUNNISTUKSEN PERUSTEET HAHMONTUNNISTUKSEN PERUSTEET T-61.3020, 4 op., Kevät 2008 Luennot: Laskuharjoitukset: Harjoitustyö: Erkki Oja Elia Liiitiäinen Elia Liitiäinen TKK, Tietojenkäsittelytieteen laitos 1 FOREIGN STUDENTS Lectures

Lisätiedot

PHYS-A0120 Termodynamiikka (TFM) Maanantai

PHYS-A0120 Termodynamiikka (TFM) Maanantai PHYS-A0120 Termodynamiikka (TFM) Maanantai 26.10.2015 Käytännönjärjestelyt Kurssin alkuosan henkilökunnasta Kurssi jakautuu kahteen osaan: ensimmäistä 3 viikkoa luennoi TkT Kati Miettunen ja jälkimmäistä

Lisätiedot

TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV Kurssikuvaukset

TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV Kurssikuvaukset TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 25.4.2007 Yhteensä 18 kurssia. A-36.3326 Tutkimusmetodologia (5 op.) 24+0 (2+0) I-II Opettaja prof. Kimmo Lapintie,

Lisätiedot

Harjoitus 2: Matlab - Statistical Toolbox

Harjoitus 2: Matlab - Statistical Toolbox Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Elektroniikan ja nanotekniikan laitos Kevät 2017 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 26.4.2007

TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 26.4.2007 TIETEEN METODIIKKA MODUULIN YHTEISEN OSUUDEN KURSSILISTA LV 2007-2008 Kurssikuvaukset 26.4.2007 Yhteensä 20 kurssia. A-36.3326 Tutkimusmetodologia (5 op.) 24+0 (2+0) I-II Opettaja prof. Kimmo Lapintie,

Lisätiedot

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan

Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Menetelmiä jatkuvaan opiskeluun kannustamiseen ja oppimisen seurantaan Matemaattiset menetelmät, syksy 2012 Lassi Korhonen, Oulun yliopisto, Matematiikan jaos 4.12.2012 1 Lähtökohta, opiskelijan näkökulma

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015

https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa

Lisätiedot

Kurssin esittely (syksy 2016)

Kurssin esittely (syksy 2016) Kurssin esittely (syksy 2016) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Opettajat Tuntiopettaja Anna Anttalainen (BIO), aktiivinen kiltatoiminnassa

Lisätiedot

Digitaalinen audio

Digitaalinen audio 8003203 Digitaalinen audio Luennot, kevät 2005 Tuomas Virtanen Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2 Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot, sekä niissä

Lisätiedot

Additions, deletions and changes to courses for the academic year Mitä vanhoja kursseja uusi korvaa / kommentit

Additions, deletions and changes to courses for the academic year Mitä vanhoja kursseja uusi korvaa / kommentit s, s and changes to courses for the academic year 2016 2017 Mikro ja nanotekniikan laitos Department for Micro and Nanosciences S 69, S 87, S 104, S 129, ELEC A3, ELEC C3, ELEC D3, ELEC E3, ELEC L3 T 4030

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

T Johdatus tietoliikenteeseen ja multimediatekniikkaan 5 op. Kevät 2013

T Johdatus tietoliikenteeseen ja multimediatekniikkaan 5 op. Kevät 2013 T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan 5 op Kevät 2013 Käytännön asioita Ilmoittaudu Oodissa, tarvitsemme listan palautusjärjestelmään Ajantasaisin tieto kurssin asioista aina

Lisätiedot

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja. Jari Melgin Huone H 3.35/Töölö Puhelin

22A00110 Laskentatoimen perusteet (6 op) SYLLABUS. Opettaja. Jari Melgin Huone H 3.35/Töölö Puhelin 22A00110 Laskentatoimen perusteet (6 op) SYLLABUS Kurssin asema ja ajankohta; luentojen aika ja paikka Opettaja Liiketoimintaosaamisen perusteet Syksy 2016, II-periodi Ma 13.15 15 Ke 13.15 15 To 13.15

Lisätiedot

Helsinki University of Technology

Helsinki University of Technology Helsinki University of Technology Laboratory of Telecommunications Technology S-38.211 Signaalinkäsittely tietoliikenteessä I Signal Processing in Communications (2 ov) Syksy 1997 12. Luento: Kertausta,

Lisätiedot

Hallintotieteiden opinto-opas lkv / Yleisopinnot Yleisopinnot

Hallintotieteiden opinto-opas lkv / Yleisopinnot Yleisopinnot Yleisopinnot STAT1020 Tilastotieteen johdantokurssi 5 op TITE1022 Tietokone työvälineenä 3 op Liiketoimintaosaaminen 5 op Kansainvälistyminen 10 op Tilastotieteen johdantokurssi Basic Course in Statistics

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2002 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,

Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU AB TEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2001 Samuli Aalto Tietoverkkolaboratorio Teknillinen korkeakoulu samuli.aalto@hut.fi http://keskus.hut.fi/opetus/s38145/

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi

Lisätiedot

T-76.611 Ohjelmistojen määrittely- ja suunnittelumenetelmät

T-76.611 Ohjelmistojen määrittely- ja suunnittelumenetelmät T-76.611 Ohjelmistojen määrittely- ja suunnittelumenetelmät Software design and specification methods Kurssin henkilökunta ja sponsori Luennoitsija DI Antti Karanta, Napa Oy www.napa.fi Assistentti TkL

Lisätiedot

JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK

JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK JOITAKIN KOMMENTTEJA JA LISÄEHDOTUKSIA TIETEEN METODIIKKA MODUULIN YHTEISEEN KURSSILISTAAN Esitys 25.4.2007 KK 1 Osastojen kommentteja (1. ja 2.) ja tarkennus (3.) : 1. Tu-osasto (suunn. Tarja Timonen,

Lisätiedot

Suodatus ja näytteistys, kertaus

Suodatus ja näytteistys, kertaus ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;

Lisätiedot

T Johdatus tietoliikenteeseen 5 op. Kevät 2013

T Johdatus tietoliikenteeseen 5 op. Kevät 2013 T-110.2100 Johdatus tietoliikenteeseen 5 op Kevät 2013 Yleistä Suunnattu tietotekniikan opiskelijoille Esitietona T-106.1150 Tietokone ja käyttöjärjestelmä tai vastaavat tiedot Kurssin tavoitteet: Tietää

Lisätiedot

Digitaalisen kuvankäsittelyn perusteet

Digitaalisen kuvankäsittelyn perusteet Digitaalisen kuvankäsittelyn perusteet Jukka Teuhola Turun yliopisto Tietojenkäsittelytiede Syksy 2010 http://staff.cs.utu.fi/kurssit/digitaalisen_kuvankasittelyn_perusteet/syksy_2010/index.htm DKP-1 J.

Lisätiedot

Parametrin estimointi ja bootstrap-otanta

Parametrin estimointi ja bootstrap-otanta Parametrin estimointi ja bootstrap-otanta Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Parametrin estimointi ja bootstrap-otanta 1/27 Kevät 2003 Käytännön asioista

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Tutkimustiedonhallinnan peruskurssi

Tutkimustiedonhallinnan peruskurssi Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,

Lisätiedot

Mittaustekniikka (3 op)

Mittaustekniikka (3 op) 530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5A Bayeslainen tilastollinen päättely Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy

Lisätiedot

Kurssijärjestelyt. ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos

Kurssijärjestelyt. ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos Kurssijärjestelyt ME-C2300 Verkkojulkaisemisen perusteet (5 op) Mari Hirvi Informaatioverkostot / Mediatekniikan laitos (Alkuperäiset luentokalvot: Markku Laine) 8. syyskuuta 2015 Luennon sisältö Kurssin

Lisätiedot

ELEC-C3220 KVANTTI-ILMIÖT

ELEC-C3220 KVANTTI-ILMIÖT ELEC-C3220 KVANTTI-ILMIÖT Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Miksi opiskella kvanttimekaniikkaa? Suuri osa nykyisestä elektroniikasta perustuu jollain tavalla

Lisätiedot

Hallintotieteiden opinto-opas lkv 2015 16 / Yleisopintoja 27.5.15. Yleisopinnot

Hallintotieteiden opinto-opas lkv 2015 16 / Yleisopintoja 27.5.15. Yleisopinnot Yleisopinnot STAT1020 Tilastotieteen johdantokurssi 5 op TITE1022 Tietokone työvälineenä 3 op Liiketoimintaosaaminen 5 op Kansainvälistyminen 10 op OPIS0033 Harjoittelu 5 op Tilastotieteen johdantokurssi

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen

Lisätiedot

Kurssin aloitus. AS-0.110 XML-kuvauskielten perusteet Janne Kalliola

Kurssin aloitus. AS-0.110 XML-kuvauskielten perusteet Janne Kalliola Kurssin aloitus AS-0.110 XML-kuvauskielten perusteet Janne Kalliola English Summary The lectures will be held in Finnish The slides are in Finnish, too All other material is in English The course book

Lisätiedot

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio

ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio ABTEKNILLINEN KORKEAKOULU Tietoverkkolaboratorio S-38.145 Liikenneteorian perusteet (2 ov) Kevät 2003 Aleksi Penttinen & Eeva Nyberg Tietoverkkolaboratorio Teknillinen korkeakoulu http://www.netlab.hut.fi/opetus/s38145/

Lisätiedot

5.6.3 Matematiikan lyhyt oppimäärä

5.6.3 Matematiikan lyhyt oppimäärä 5.6.3 Matematiikan lyhyt oppimäärä Matematiikan lyhyen oppimäärän opetuksen tehtävänä on tarjota valmiuksia hankkia, käsitellä ja ymmärtää matemaattista tietoa ja käyttää matematiikkaa elämän eri tilanteissa

Lisätiedot

Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi

Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi 8.8.2016 Mallilukujärjestys 2016 2017 Yleisiä ohjeita Opinto-oppaat ja kurssikuvaukset Teknistieteellisen kandidaattiohjelman opinto-oppaat löytyvät osoitteesta http://studyguides.aalto.fi. Kurssien tarkemmat

Lisätiedot

Tietokoneen rakenne (2 ov / 4 op) Syksy 2006

Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Luento 0 581365 Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento 0-1 Tietokoneen rakenne Asema opetuksessa u 1999 HajaTilin pakollinen,

Lisätiedot

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari

Kertaus. MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari MS-C2128 Ennustaminen ja Aikasarja-analyysi, Lauri Viitasaari Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2017 Viikko 1: Yleinen lineaarinen malli 1 Määritelmä

Lisätiedot

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu

https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu Johdatus ohjelmointiin 811122P Yleiset järjestelyt: Kurssin sivut noppa -järjestelmässä: https://noppa.oulu.fi/noppa/kurssi/811122p/etusivu 0. Kurssin suorittaminen Tänä vuonna kurssin suorittaminen tapahtuu

Lisätiedot

Yleisopinnot (28 op) Johdatus liiketoimintaosaamiseen Introduction to Business

Yleisopinnot (28 op) Johdatus liiketoimintaosaamiseen Introduction to Business Yleisopinnot (28 op) Yleisopinnot 28 op: Johdatus liiketoimintaosaamiseen 5 op Tietokone työvälineenä 3 op Tilastotieteen johdantokurssi 5 op Kansainvälistymisopinnot 10 op Harjoittelu 5 op Johdatus liiketoimintaosaamiseen

Lisätiedot

Seminaariesitelmä. Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator

Seminaariesitelmä. Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator S-38.310 Tietoverkkotekniikan diplomityöseminaari Seminaariesitelmä Channel Model Integration into a Direct Sequence CDMA Radio Network Simulator Teemu Karhima 12.8.2002 Koostuu kahdesta eri kokonaisuudesta:

Lisätiedot

T Johdatus tietoliikenteeseen 5 op

T Johdatus tietoliikenteeseen 5 op T-110.2100 Johdatus tietoliikenteeseen 5 op T-110.2100 Johdatus tietoliikenteeseen Suunnattu tietotekniikan opiskelijoille Esivaatimuksena Tietokone Työvälineenä -kurssi T-106.1001 Kurssin tavoitteet:

Lisätiedot

Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1

Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1 Tietoliikenne I (muuntokoulutettaville) 2 ov Syksy 2002 Luennot Liisa Marttinen 11/6/2002 1 581333-1 Tietoliikenne I (2 ov) Kohderyhmät: eri alojen tulevat asiantuntijat mm. mm. ohjelmistojen suunnittelijat,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

Kurssin esittely. Kurssin esittely. MS-C2107 Sovelletun matematiikan tietokonetyöt 1

Kurssin esittely. Kurssin esittely. MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Kurssin esittely MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Opettajat Tuntiopettaja Anna Anttalainen (BIO). Harrastuksia kiltatoiminta ja bodypump.

Lisätiedot

Tietokoneen rakenne (2 ov / 4 op) Syksy 2007 Liisa Marttinen. Helsingin yliopisto Tietojenkäsittelytieteen laitos

Tietokoneen rakenne (2 ov / 4 op) Syksy 2007 Liisa Marttinen. Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento 0 581365 Tietokoneen rakenne (2 ov / 4 op) Syksy 2007 Liisa Marttinen Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento0-1 Tietokoneen rakenne Asema opetuksessa u 2005 HajaTilin valinnainen,

Lisätiedot

Parametristen mallien identifiointiprosessi

Parametristen mallien identifiointiprosessi Parametristen mallien identifiointiprosessi Koesuunnittelu Identifiointikoe Epäparametriset menetelmät Datan esikäsittely Mallirakenteen valinta Parametrien estimointi Mallin validointi Mallin käyttö &

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Syksy 2015 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 27.10.2015 1 / 8 Kangaslampi Lineaarialgebra ja differentiaaliyhtälöt

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CS-A1111 18.9.2017 CS-A1111 Ohjelmoinnin peruskurssi Y1 18.9.2017 1 / 11 Tämä kurssi Oppimistavoitteena ohjelmoinnin perusasiat Ohjelmointikieli Python Keskittyy kuitenkin asioihin,

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

21C00250 Organisaatiokäyttäytyminen, 6 op

21C00250 Organisaatiokäyttäytyminen, 6 op 21C00250 Organisaatiokäyttäytyminen, 6 op SYLLABUS Versio 17.8.2016 Opettajan yhteystiedot Nimi: Apulaisprofessori Olli-Pekka Kauppila, KTT S-posti: olli-pekka.kauppila@aalto.fi Huone: Arkadia E.3.11,

Lisätiedot