2. luku - Talousmatematiikan alkeita

Koko: px
Aloita esitys sivulta:

Download "2. luku - Talousmatematiikan alkeita"

Transkriptio

1 Tämä dokumentti sisältää kauppatieteiden valintakokeen matematiikan tehtäviä vuosilta. Tuona aikana tehtävät ovat perustuneet Johdatus kvantitatiiviseen analyysiin taloustieteissä -kirjaan. Tehtävien ryhmittely on tehty pääsykoekirjan kappalejaon mukaan. Vuosina 2010 ja 2011 valintakokeessa ei ollut matematiikan osiota. Tehtävien oikeat vastaukset löytyvät dokumentin viimeiseltä sivulta. 2. luku - Talousmatematiikan alkeita 2.1 Potenssifunktio, eksponenttifunktio ja logaritmifunktio 2002/38. Mikä on lukujen a = 2 1/2, b = 3 1/3 ja c = 5 1/5 suuruusjärjestys? 1. a > b > c 2. a > c > b 3. b > a > c 4. c > a > b 2008/43. TietoEnatorin liikevaihto vuonna 2007 oli 1 772, 4 MEUR (miljoona Euroa). Mikä alla olevista vaihtoehdoista on lähimpänä vuoden 1999 liikevaihtoa, kun liikevaihdon keskimääräinen vuotuinen muutosprosentti kahdella desimaalilla on ollut 3, 96%? Keskimääräinen muutosprosentti on luku, joka ilmaisee kuinka paljon liikevaihto olisi vuosittain prosentuaalisesti kasvanut, jos prosentuaalinen kasvu olisi ollut vakio ,1 MEUR ,0 MEUR ,9 MEUR ,6 MEUR 2.2 Differentiaalilaskentaa ja 2.3 Funktion maksimi- ja minimikohdat 2004/33. Tarkastellaan funktioita f(x) = x 3 + 3x 2 6x 8. Mikä seuraavista väittämistä on tosi? 1. Kun 1,5 < x < 2, niin funktio f on aidosti konkaavi. 2. Kun 0 < x < 4, niin funktio f on aidosti konveksi. 3. Kun 0 < x < 2, niin funktio f on kasvava. 4. Kun x < 1, niin funktio f ei ole konkaavi eikä konveksi. Yksityisopetus.net

2 2009/43. Yritys tuottaa tiettyä tuotetta 6 e yksikkökustannuksilla. Yritys arvioi, että se saa myytyä (20 x) määrän kyseistä tuotetta yksikköhintaan x e (1 x 20). Oletetaan, että tuotetta tuotetaan myytävä määrä. Oletetaan edelleen, että nettotuottofunktio, joka ilmaisee kokonaisnettotuoton yksikköhinnan funktiona, on derivoituva yksikköhinnan suhteen kun 1 < x < 20 (nettotuotto per yksikkö = yksikköhinta - yksikkökustannukset). Mikä seuraavista väittämistä pitää paikkansa? 1. Nettotuottofunktion lauseke on (x 6)(20 x). 2. Nettotuottofunktio maksimoituu pisteessä x = Nettotuottofunktion lauseke on x(20 x). 4. Nettotuottofunktio maksimoituu äärettömyydessä. 2006/33. Yritysten lukumäärän kehitystä toimialalla G Tukku- ja vähittäiskauppa vuosien lopussa kuvataan polynomilla: f(x) = 27,167x x ,8x , missä argumenttina oleva vuosi x annetaan muodossa 1, 2, 3, 4. Mikä seuraavista väittämistä ei ole tosi? 1. Funktiolla f(x) on minimi tarkasteluvälillä: 1 x Funktio f(x) on aidosti konveksi välillä: 1 x Funktio f(x) ennustaa yritysten lukumäärän ko. toimialalla edelleen kasvavan vuoden 2004 jälkeen ainakin vuoden 2005 aikana. 4. Funktio f(x) on konkaavi, kun 4 x /45. Tarkastellaan funktiota f(x) = x x 2 joka on määritelty kaikilla + 9 reaaliluvuilla x. Mikä seuraavista väittämistä ei pidä paikkaansa? 1. Funktiolla on ainakin kaksi äärellistä ääriarvokohtaa. 2. Funktio on konkaavi välillä 4 x 4 3. Funktiolla on vain äärellisiä ääriarvokohtia. 4. Toisella derivaatalla f (x) on nollakohta pisteessä x = /33. Tuotteen kysyntä d riippuu hinnasta p kaavan d = 4 p mukaisesti. Valmistuksen kiinteät kustannukset ovat C F = 2 ja rajakustannukset ovat MC = 3. Millä tuotantomäärällä saadaan suurin nettovoitto?

3 2003/33. Yhtä tuotetta valmistavan monopoliyrityksen kuukauden tarjontamäärän ollessa q (yks/kuukausi) on tuotteen hinta p (euroa/yks) annettu hintafunktiolla p = 100 q. Kun kyseessä on monopoli, yritys määrää markkinahinnan p valitsemalla tuotantomäärän q, jolloin hinta määräytyy hintafunktion mukaisesti. Yrityksen tuotantokustannukset c(q) (euroa/kuukausi) tuotantomäärän q funktiona ovat c(q) = q, kun q 15, ja c(q) = q, kun q 15. Yrityksen voitto pq c(q) saavuttaa maksimiarvonsa, kun 1. q = q = q = q = /33. Janojuoman keskimääräinen päivämyynti on d (pulloa/päivä) ja hinta p = 1,00 (e/pullo), jolloin päivämyyntitulo on m = dp (e/päivä). Välittömät yksikkötuotantokustannukset c eivät riipu määrästä eivätkä hinnasta ja ovat suuruudeltaan c = 0,60 (e/pullo), jolloin keskimääräinen myyntikate on k = d(p c) (e/päivä). Markkinatutkimuksella on todettu, että Janojuoman keskimääräisen päivämyynnin d jousto hinnan suhteen on 2,0. Jos hinta laskee 2% tasosta p, niin keskimääräisen päivämyyntitulo m ja myyntikate k muuttuvat siten, että 1. m kasvaa ja k kasvaa 2. m kasvaa ja k pienenee 3. m pienenee ja k kasvaa 4. m pienenee ja k pienenee 2007/41. Monopoliyrityksellä erään tuotteen myyntimäärä q (yks/kk) ja hinta p (e/yks). riippuvat toisistaan hintafunktion p = aq e mukaisesti, missä a = 0,05 ja e = 0,5. Muuttuvat yksikkökustannukset c = 100 (e/yks) ovat valmistusmäärästä riippumattomia. Myyntikatteen maksimoinnista seuraa myyntihinta ja -määrä. Jos kysyntä kasvaa siten, että parametri a saa arvon 0,06, niin myyntihinta kasvaa 1. 20% %. 3. 0% %.

4 2007/42. Yrityksen tuotteesta saama hinta p (e/yks) määräytyy myynnin q (yks/v) funktiona siten, että p = p 0 2q, missa p 0 = 2800 (e/yks). Tuotteen muuttuvat yksikkökustannukset ovat c = 800 (e/yks), jolloin myyntikate on m = (p c)q. Myynnin ollessa q = 600 (yks/v) on myyntikatteen jousto ɛ m (p) hinnan p suhteen 1. 0, , , , /35. Vakiofunktion f(x) = 2 jousto on ääretön 2009/48. Oletetaan, että tuotteen kysyntäfunktio on muotoa x = 10 5p, missä p kuvaa tuotteen hintaa ja x tuotteen kysyttyä määrää (0 < p 2). Laske tuotteen kysynnän hintajouston arvo, kun p = 1. Mikä seuraavista väittämistä pitää paikkansa? 1. Jouston arvo = 1, kun p = Jouston arvo on = 1, kun p = Jouston arvo on vakio välillä 0 < p Jouston arvoa ei voida laskea, koska kysyntäfunktio on lineaarinen. 2009/45. Tarkastellaan funktiota f(x) = x r (x > 0, r 0). Millä r:n arvoilla funktio on aidosti konkaavi? 1. r > 1 tai r < < r < 1 3. r < r > 1

5 2001/34. Funktiosta f(x) tiedetään, että pisteessa x = a funktion ensimmäinen ja toinen derivaatta ovat molemmat nollia eli f (a) = 0 ja f (a) = 0. Tällöin pisteessä x = a funktiolla f(x) 1. ei ole ääriarvoa. 2. on samassa pisteessä sekä minimi että maksimi. 3. saattaa olla ääriarvo, mutta välttämättä ääriarvoa ei ole. 4. on ääriarvo, mutta annettujen tietojen perusteella ei voida päätellä onko kyseessä maksimi vai minimi. 2000/33. Erään tuotteen kysyntämäärä d (yksikköä) riippuu yksikköhinnasta p (mk/yksikkö) funktion d = 5000p 1,5 mukaisesti. Tuotteen yksikkökustannukset ovat vakio 15 mk/yksikkö. Suurin nettotuotto saadaan tällöin hinnalla mk mk mk mk 2000/34. Mikä seuraavista väitteistä ei pidä paikkaansa? 1. Jos funktiolla f(x) on maksimi kohdassa x 0, niin funktion derivaatta f (x 0 ) = Logaritmifunktio on konkaavi. 3. Jos funktion f(x) toinen derivaatta f (x) 0 kaikkialla, niin funktio on konveksi. 4. Konveksilla funktiolla ei välttämättä ole minimikohtaa. 2002/39. Oletetaan, että funktio f(x) sekä sen derivaatta f (x) ovat kaikkialla derivoituvia aidosti konvekseja funktioita. Tällöin 1. funktiolla f(x) ei voi olla ääriarvoja. 2. funktiolla f (x) ei voi olla ääriarvoja. 3. funktiolla f(x) on aina yksi minimi. 4. funktiolla f (x) on aina yksi minimi.

6 2004/34. Tuotteen kysyntä q riippuu sen hinnasta p funktion q = ae bp mukaisesti (a > 1 ja b > 0 ovat vakioita). Oletetaan, että tuotteen tuotantomäärä on kysynnän suuruinen. Olkoon tuotteen yksikkötuotantokustannus c vakio. Mikä seuraavista vaihtoehdoista on tosi? 1. On olemassa äärellinen hinta p 0, p < c, jolla myyntitulon ja tuotantokustannusten erotus on Kun hinta putoaa nollaan, niin kysyntä q on ääretön. 3. Myyntitulon ja tuotantokustannusten erotus ei ole nolla millään äärellisellä hinnalla (0 p < ). 4. Kysynnän jousto hinnan suhteen on pb. 2.4 Lineaariset yhtälöt ja epäyhtälöt 2009/41. Tarkastellaan seuraavia funktioita f(x 1, x 2 ): a) f(x 1, x 2 ) = x 1 + x 2 2 b) f(x 1, x 2 ) = 5x 1 + 3x 2 + ln 7 c) f(x 1, x 2 ) = 5x 1 3x 2 d) f(x 1, x 2 ) = ln x 1 + ln x 2 e) f(x 1, x 2 ) = ax 1 + b 2 x 2, jossa a ja b ovat vakioita. Mitkä yllä olevista funktioista ovat lineaarisia? 1. a, b, c 2. a ja e pelkästään 3. b, c, e 4. b, d, e

7 2.5 Lineaarisen ohjelmoinnin ongelma ja 2.6 LP-ongelman duaali 2005/34. Eräs yritys valmistaa kahta tuotetta, joiden valmistusmäärät (yks/kk) ovat x 1 ja x 2. Tuotteen 1 myyntikate on 6 (e/yks) ja tuotteen 2 myyntikate on 3 (e/yks). Yksinkertaistettu tuotannonsuunnitteluongelma on etsiä kuukauden ei-negatiiviset tuotantomäärät siten, että kokonaiskate maksimoituu huomioiden käytettävässä olevat tuotantoresurssit. Kokonaiskatetuoton z maksimoimiseksi yritys päätyy lineaarisen ohjelmoinnin ongelmaan: Maksimoi z = 6x 1 + 3x 2 ehdoin 3x 1 + 8x x 1 + x x x 1, x 2 0 Optimaaliselle katetuotolle z pätee e < z e < z e e < z e 4. z 8 000e 2009/47. Ratkaise graafisesti seuraava lineaarisen ohjelmoinnin tehtävä: maksimoi z = x 1 + x 2 ehdoilla: 2x 1 + x x 1 + x 2 80 x 1 35 x 1, x 2 0 Mikä seuraavista yllä olevaa tehtävää koskevista väittämistä pitää paikkansa? 1. Optimiratkaisu on pisteessä (x 1, x 2 ) = (35, 30). 2. Optimiratkaisu ei ole yksikäsitteinen. 3. Optimiratkaisu on pisteessä (x 1, x 2 ) = (0, 0). 4. Jos rajoitusehdon x 1 35 epäyhtälön suunta käännetään (toisin sanoen, tarkastellaan rajoitusta x 1 35 alkuperäisen sijasta), optimiratkaisu ei muutu.

8 2000/38. Yritys, joka pyrkii maksimoimaan myyntikatteensa, tuottaa kahta tuotetta A ja B. Tuotteen A myyntikate on 2 mk/yksikkö ja tuotteen B 2,50 mk/yksikkö. Tuotantoa rajoittaa kaksi kapasiteettirajoitetta: Yrityksellä on käytössä komponenttien valmistukseen tuntia vuodessa ja kokoonpanoon tuntia vuodessa. Tuotteen A komponenttien valmistukseen kuluu 2 tuntia/yksikkö, ja tuotteen B komponenttien valmistukseen kuluu 1 tunti/yksikkö. Kokoonpanoon kuluu tuotteen A osalta 1 tunti/yksikkö ja tuotteen B osalta 2 tuntia/yksikkö. Kokonaismyyntikatteen maksimoiva vuosituotantosuunnitelma on yksikköä tuotetta A ja yksikköä tuotetta B yksikköä tuotetta A ja yksikköä tuotetta B yksikköä tuotetta A ja yksikköä tuotetta B yksikköä tuotetta A ja yksikköä tuotetta B. 2003/35. Tarkastellaan lineaarisen ohjelmoinnin ongelmaa maksimoi z = x 1 + 2x 2 ehdoin 3x 1 + 2x x 1 + x x x 2 3. Optimaalinen kohdefunktion arvo z on 1. 7,0 2. 5,5 3. 4,5 4. 3,5 2004/35. Tarkastellaan kahden muuttujan LP-ongelmaa: min z = 2x 1 + x 2 s.t. x 1 + x 2 2 2x 1 3 2x 2 3 x 1 + x 2 4 x 1 0 x 2 0 Tavoitefunktion z optimaalinen arvo on 1. 2, ,

9 2008/46. Par Oy on golftarvikkeita valmistava yritys, joka on päättänyt ryhtyä valmistamaan kahta mailakassimallia (x 1 = standardimallin valmistusmäärä ja x 2 = deluxe-mallin valmistusmäärä). Valmistamisessa on seuraavia keskeisiä vaiheita: a. Leikkaus ja värjäys b. Ompelu c. Viimeistely d. Tarkastus ja pakkaus Yhden standardimallin valmistamisessa leikkaukseen ja värjäykseen tarvitaan 7/10 tuntia, ompeluun 1/2 tuntia, viimeistelyyn 1 tunti ja tarkastukseen ja pakkaukseen 1/10 tuntia. Vastaavasti deluxe-mallin valmistamiseen tarvitaan 1 tunti leikkaukseen ja värjäykseen, 5/6 tuntia ompeluun, 2/3 viimeistelyyn sekä 1/4 tarkastukseen ja pakkaukseen. Kuhunkin vaiheeseen on käytettävissä kapasiteettia seuraavasti: 630 tuntia leikkaukseen ja värjäykseen, 600 tuntia ompeluun, 708 tuntia viimeistelyyn ja 135 tuntia tarkastukseen ja pakkaukseen. Standardimallin myynnistä saadaan voittoa 10 e/kassi ja deluxemallista 9 e/kassi. Tavoitteena on valita valmistusmäärät siten, että voitto maksimoituu. Ongelman ratkaisemiseksi formuloidaan seuraava malli: Maksimoi 10x 1 + 9x 2 ehdoin (7/10)x 1 + x (leikkaus ja värjäys) (1/2)x 1 + (5/6)x (ompelu) x 1 + (2/3)x (viimeistely) (1/10)x 1 + (1/4)x (tarkastus ja pakkaus) x 1, x 2 0 Mikä seuraavista yllä olevaa mallia koskevista väittämistä ei pidä paikkaansa? 1. Tavoitefunktion arvo optimissa on e. 2. Optimiratkaisussa tarkastukseen ja pakkaukseen varattua kapasiteettia jää käyttämättä. 3. Optimiratkaisussa 10, 3% kassien kokonaismäärästä on deluxe-mallia. 4. Ompeluun tarvittavalla kapasiteettirajoituksella ei ole vaikutusta optimointiongelman käypään joukkoon.

10 2001/40. Tarkastellaan kahta LP-ongelmaa. Ongelma A: Maksimoi z = x 1 + x 2 ehdoin 2x 1 + x 2 1 x 1 + 2x 2 1 x 1, x 2 0 Ongelma B: Minimoi w = y 1 + y 2 ehdoin 2y 1 + y 2 1 y 1 + 2y 2 1 y 1, y 2 0 Tällöin 1. Ongelmalla A on äärellinen ratkaisu z ja ongelmalla B on äärellinen ratkaisu w. Ratkaisut toteuttavat ehdon z = w. 2. Ongelmalla A on äärellinen ratkaisu z ja ongelmalla B on äärellinen ratkaisu w. Ratkaisut toteuttavat ehdon z < w. 3. Ongelmalla A on äärellinen ratkaisu z ja ongelmalla B ei ole äärellistä ratkaisua. 4. Kummallakaan ongelmalla ei ole äärellistä ratkaisua. 2007/43. Yritys valmistaa kahta tuotetta, joiden valmistusmäärät (yks/kk) ovat x 1 ja x 2. Tuotteen 1 yksikkökate on 2 (e/yks) ja tuotteen 2 yksikkökate on 3 (e/yks). Yksinkertaistettu tuotannonsuunnitteluongelma on etsiä kuukauden ei-negatiiviset tuotantomäärät siten, että kokonaiskate maksimoituu huomioiden käytettävissä olevat koneistus- ja kokoonpanoresurssit. Kokonaiskatetuoton maksimoimiseksi yritys päätyy lineaarisen ohjelmoinnin ongelmaan maksimoi 2x 1 + 3x 2 (katetuotto ehdoin) x 1 + 2x (koneistuskapasiteetti) x 1 + x (kokoonpanokapasiteetti) x 1, x 2 0 Onnettomuuden takia koneistuskapasiteetti pienenee 50%. Yllä olevan alkuperäisen ongelman duaaliongelman optimiratkaisusta seuraa, etta onnettomuudesta johtuvalle optimaalisen katetuoton muutokselle pätee e e 3. = 1500e 4. = 2000e

11 2002/40. Tarkastellaan LP-ongelman yleistä muotoa koskevia väitteitä: A. Tehtävänä on maksimoida tavoitefunktio. B. Rajoitteet ovat epäyhtälöitä. C. Muuttujien arvoilla on alaraja. Väitteistä ovat tosia 1. A, B ja C. 2. A ja B. 3. vain A. 4. Kaikki väitteet ovat vääriä. 2009/46. Tarkastellaan lineaarisen ohjelmoinnin tehtävää, jossa tavoitefunktion arvoa pyritään maksimoimaan. Mikä seuraavista väittämistä ei pidä paikkaansa? 1. Lineaarisen ohjelmoinnin tehtävällä voi olla nollasta poikkeavia alarajoja muuttujien arvoille. 2. Lineaarisen ohjelmoinnin tehtavä voi sisältää =, tai tyyppisiä rajoituksia. 3. Lineaarisen ohjelmoinnin tehtävällä ei aina ole yksikäsitteistä ratkaisua. 4. Lineaarisen ohjelmoinnin tehtävän käypien ratkaisujen joukko ei voi koskaan jatkua rajatta. 2008/44. Mikä seuraavista lineaarista optimointia koskevista yleisistä väittämistä pitää paikkansa? 1. Jos optimiratkaisu maksimointitehtävässä on nolla, niin päätösmuuttujien arvot ovat aina nollia. 2. Maksimointitehtävässä rajoitukset muuttujien ei-negatiivisuusrajoitusta lukuun ottamatta ovat tyyppiä 3. Jos duaalilla on äärellinen optimiarvo, niin primaalin optimiarvo voi olla ääretön. 4. Päätösmuuttujalla voi optimiratkaisussa olla myös negatiivinen arvo. 3. luku - Tilastotieteen perusteita Mitä tilastotiede on

12 3.2 - Havaintoaineiston käsitteitä ja esittämistapoja 2002/36. Perusjoukko koostuu 1. niistä yksilöistä, jotka eivät ole olennaisesti muista poikkeavia. 2. kaikista yksilöistä, joista voidaan saada mittaustuloksia. 3. niistä yksilöistä, joista on käytettävissä mittaustuloksia. 4. kaikista yksilöistä, jotka ovat mittauksen kohteena. 2001/36. Tarkastellaan kahta havaintomatriisiin liittyvää väitettä. A. Kukin havaintomatriisin sarake sisältää aineiston yhden yksittäisen muuttujan tiedot. B. Kukin havaintomatriisin rivi sisältää aineiston yhden havainnon muuttujan tiedot. Mikä seuraavista pitää paikkansa? 1. sekä A että B ovat tosia 2. A on tosi, B on epätosi 3. A on epätosi, B on tosi 4. sekä A että B ovat epätosia Muuttujien mittaaminen Havaintoaineiston kuvaaminen Havaintoaineiston tunnusluvut 2001/37. Tarkastellaan seuraavia kolmea väitettä. A. Tunnusluku yksilöi havainnon. B. Tunnusluvut ovat aina positiivisia kokonaislukuja. C. Tunnuslukuja käytetään aineiston kuvailussa. Mitkä väitteistä pitävät paikkansa? 1. A, B ja C 2. vain A ja B 3. vain C 4. vain A

13 2005/35. Seuraavassa sarjassa on 17 yrityksen yhden vuoden tuottoprosentit suuruusjärjestyksessä: 5, 5, 6, 8, 9, 9, 9, 10, 10, 12, 12, 12, 12, 13, 15, 17, 18. Olkoon e tuottoprosenttien mediaanin ja aritmeettisen keskiarvon erotus ja h mediaanin ja moodin erotus. Parametreille e ja h pätee 1. 0 < e 1 ja h < e ja h 1 3. e 1 ja h < e 0 ja h /42. Seuraavassa on lueteltu 10 henkilön kuukausipalkat euroissa: 500, 2100, 2100, 2400, 20000, 2900, 2300, 500, 1750, 500. Mikä seuraavista väittämistä pitää paikkansa? 1. Kuukausipalkkojen moodia ei voi määrittää, koska moodi ei ole yksikäsitteinen yllä olevassa aineistossa. 2. Kuukausipalkkojen aritmeettinen keskiarvo > mediaani > moodi yllä olevassa aineistossa. 3. Kuukausipalkkojen mediaani = 1925 e yllä olevassa aineistossa. 4. Kuukausipalkkojen mediaani on suurempi kuin kuukausipalkkojen aritmeettinen keskiarvo yllä olevassa aineistossa. 2008/48. Seuraavassa taulukossa on kahdesta osa-aineistosta ilmoitettu erikseen naisista ja miehistä lukumäärät, keskiarvot ja varianssit. Naiset Miehet Lukumäärä Keskiarvo 3 6 Varianssi 4 9 Mikä alla olevista vaihtoehdoista on lähinnä oikea yllä olevien tietojen pohjalta koko aineistolle laskettu varianssi? 1. 5, , , ,44

14 2004/37. Alla olevassa taulukossa on identtisesti luokiteltuna neljän eri kokeen arvosanajakauma. Jokaisessa kokeessa osallistujia oli 100. Koe 1 Koe 2 Koe 3 Koe 4 Arvosanaluokka Lukumäärä Lukumäärä Lukumäärä Lukumäärä Yhteensä Kun päätelmät tehdään yllä annetuista jakaumista, niin mikä seuraavista väittämistä ei pidä paikkaansa? 1. Kokeen 4 mediaani on suurempi kuin kokeen keskiarvo. 2. Kokeen 1 keskiarvo oli alhaisin. 3. Kokeen 3 keskiarvo ylitti kokeen mediaanin yli 15 pisteellä. 4. Kokeen 2 mediaaniluokka on arvosanaluokka [40, 49]. 2005/36. Merkitään havaintoaineiston tunnuslukuja seuraavasti: a = keskipoikkeama, b = standardipoikkeama ja c = variaatiovälin leveys. Mille tahansa kahden havainnon havaintoaineistolle (havaintojen lukumäärä n = 2) on 1. a b c 2. b a c 3. a c b 4. a < b < c 2000/36. Mikä seuraavista tilastoaineistoa koskevista väitteistä ei pidä paikkaansa? 1. Varianssi on aina suurempi kuin keskihajonta. 2. Standardoidun muuttujan arvojen keskiarvo on aina 0 ja varianssi Keskipoikkeama on aina Positiivisen muuttujan x variaatiokerroin on aina suurempi kuin muuttujan y = x + c, mikäli c > 0.

15 2007/44. Havaintoaineistossa muuttujan x arvot ovat x i, i = 1, 2,..., n. Olkoon x muuttujan x aritmeettinen keskiarvo. Muuttujan x logaritmin aritmeettinen keskiarvo on z = ( ) 1 n i ln x i ja muuttujan x geometrinen keskiarvo on ȳ = e z. Mikä seuraavista pitää paikkansa mille tahansa aineistolle x i > 0, i = 1, 2,..., n? 1. x ȳ 2. x > ȳ 3. x ȳ 4. x < ȳ Todennäköisyyslaskennan perusteita 2001/39. Tutkija haluaa selvittää, mikä on todennäköisyys sille, että heittäessä nasta päätyy kantansa päälle piikki ylöspäin. Kokeessa heitetään nastaa kertaa, joista heittoa päätyy piikki ylöspäin. Kokeen perusteella päätellään, että todennäköisyys sille, että heittäessä nasta päätyy piikki ylöspäin, on p = = 0,321. Näin laskettuna kyseessä on klassinen todennäköisyys. 2. suotuisa todennäköisyys. 3. tilastollinen todennäköisyys. 4. subjektiivinen todennäköisyys. 2004/38. Autokauppias Mustonen myy autoja. Tyypillisenä lauantaipäivänä kaupaksi menevien autojen lukumäärä on satunnaismuuttuja X, joka voi saada viisi arvoa. Myytyjen autojen todennäköisyysjakauma on annettu alla olevassa taulukossa. Myytyjen autojen lukumäärä (kpl) Todennäköisyys P (x j ) 0 0,2 1 0,1 2 0,2 3 0,4 4 0,1 Mustosen myymien autojen odotusarvo on 1. 2, , , ,5.

16 2005/37. Yritys Y toimii kaupungissa, jonka väestöstä on 55% naispuolisia ja 45% miespuolisia. 10% miespuolisista ja 2% naispuolisista on Y :n asiakkaita. Satunnaisesti valittu kaupungin asukas on yrityksen Y asiakas todennäköisyydellä p, jolloin 1. p 4% 2. 4% < p 5% 3. 5% < p 6% 4. 6% < p 2007/45. Monialayrityksen johto arvioi asiakkaitaan käyttäen kahta kriteeriä: kannattavuus ja myynti. Näiden perusteella asiakkaat on jaettu kannattavuuden mukaan kategorioihin hyvä (h), tyydyttävä (t) ja välttävä (v). Vastaavasti myynnin mukaan kategoriat ovat Hyvä (H), Tyydyttävä (T ) ja Välttävä (V ). Seuraava taulukko antaa asiakkaiden prosenttijakautuman kannattavuus-myyntipareittain. Myynti H Myynti T Myynti V Kannattavuus h Kannattavuus t Kannattavuus v Esimerkiksi pari Kannattavuus h ja Myynti T tarkoittaa kategoriaa, jossa asiakkaan kannattavuus on hyvä, myynti Tyydyttävä ja johon kuuluu 15% asiakkaista. Mikä seuraavista väittämistä ei pidä paikkaansa? 1. Kategoriassa h H on 65% asiakkaista. 2. Kategoriassa h H on 20% asiakkaista. 3. Kategoriassa (h T ) c on 40% asiakkaista. 4. Kategoriassa (h T ) c on 85% asiakkaista. 2008/42. Kulhossa on 50 eriväristä palloa, joista 5 on punaista, 10 sinistä, 15 keltaista ja 20 vihreää. Pallojen yksilöimiseksi pallot on väreittäin numeroitu juoksevasti, eli punaiset pallot 1,..., 5, siniset 1,..., 10, jne. Kulhosta nostetaan aluksi satunnaisesti kaksi palloa, joista toinen on vihreä 4 ja toinen sininen 6. Palloja ei laiteta kulhoon takaisin. Tämän jälkeen kulhosta nostetaan satunnaisesti vielä yksi pallo. Tarkastellaan seuraavia tapahtumia: A = viimeksi nostetun pallon numero on 4 tai 6 ja B = viimeksi nostettu pallo on vihreä tai sininen. Mikä on tapahtuman A B todennäköisyys kahdella desimaalilla ilmaistuna? 1. 0, , , , 62

17 2009/44. Kosmetiikka-alan yritys suunnittelee uuden hajuveden tuomista markkinoille. Tuotepäällikkö on arvioinut seuraavan kumulatiivisen todennäköisyysjakauman ensimmäisen vuoden myynnille (merkitään X:llä) ilmaistuna miljoonissa pulloissa: X Kumulatiivinen tn. 0,01 0,10 0,20 0,30 0,50 0,75 0,85 0,95 1,00 Mikä seuraavista väittämistä ei pidä paikkaansa? 1. P (2 X 3) = 0, P (X 6) = 0, P (X 1) = 0, P (X < 3) = 0, /34. Käsitellään seuraavia väitteitä. A. Alkeistapahtumat ovat aina toisensa poissulkevia. B. Tapahtumat ovat aina toisensa poissulkevia. C. Tapahtuma ja tapahtuman komplementtitapahtuma ovat aina toisensa poissulkevia. Väitteistä ovat tosia 1. A, B ja C. 2. vain A. 3. vain A ja C. 4. vain C. 2003/36. Eräässä henkilön ryhmässä tiedetään 100 henkilöllä olevan Tauti. Testillä voidaan selvittää onko kyseessä tautitapaus vai ei, mutta testi ei ole täysin luotettava. Mikäli testattavalla on Tauti, on testitulos positiivinen (viitaten Tautiin) 99 tapauksessa sadasta, mutta testi on positiivinen myös yhdessä tapauksessa sadasta, vaikka testattavalla ei olekaan Tautia. Jos henkilön testitulos on positiivinen, on tilastollinen todennäköisyys sille, että henkilöllä on Tauti, 1. 0, , , ,98.

18 2003/37. Erään kaupungin aikuisesta väestöstä 50 % lukee sanomalehteä A, 70 % lukee kilpailevaa sanomalehteä B ja 20 % ei lue kumpaakaan lehteä. Kun kaupungista valitaan satunnaisesti yksi aikuinen, on todennäköisyys sille, että hän lukee kumpaakin lehteä, 1. 0, , , , /36. Jokainen myyntihenkilö yrityksessä nimeltä Vipu Oy on luokiteltu saavutusten perusteella kolmeen luokkaan: alle keskitason, keskitasoa, yli keskitason. Heidät on myös luokiteltu potentiaalisen kyvykkyyden mukaan luokkiin: kohtalainen, hyvä ja erinomainen. Näitä luokkia käyttäen 500 myyntihenkilöä on ristiintaulukoitu seuraavasti: Saavutusluokka kohtalainen hyvä erinomainen alle keskitason keskitasoa yli keskitason Oletetaan, että tuosta 500 myyntihenkilön joukosta valitaan satunnaisesti yksi henkilö. Mikä seuraavista todennäköisyyksistä ei ole tosi? 1. Todennäköisyys on 1/10, että henkilö on saavutukseltaan alle keskitason. 2. Todennäköisyys on 149/250, että henkilön potentiaalinen kyvykkyys on kohtalainen tai hyvä. 3. Todennäköisyys on 73/100, että henkilö ei ole potentiaaliselta kyvykkyydeltään erinomainen eikä saavutuksiltaan yli keskitason. 4. Todennäköisyys on 4/121, että henkilö on saavutuksiltaan alle keskitason ja potentiaaliselta kyvykkyydeltään kohtalainen.

19 2008/41. Tuotteen X valmistaminen voidaan jakaa suunnitteluun ja tuotteen konstruointiin. Tuotteen valmistumisaikojen arvioimiseksi 50 tuotteen valmistamisesta on kerätty historiatietoa sekä suunnittelusta että konstruoinnista. Sekä suunnitteluun että konstruointiin käytettävä aika vaihtelee alla olevan taulukon mukaisesti. Kun suunnitteluun on käytetty aikaa 2 kk (kuukautta), konstruointiin on mennyt aikaa 4 kk tai 8 kk. Vastaavat luvut 3 kk kestäneelle suunnittelulle ovat 3 kk ja 6 kk. Taulukossa oleva määrä ilmoittaa, kuinka usein kyseinen aika esiintyy historiatiedoissa. Suunnittelu Konstruointi Aika Määrä Aika Määrä 4 kk 18 kpl 2 kk 20 kpl 8 kk 2 kpl 3 kk 15 kpl 3 kk 30 kpl 6 kk 15 kpl Annettujen tietojen perusteella arvioidaan tulevaa kehitystä. Mikä seuraavista yllä olevaa tilannetta koskevista väittämistä ei pidä paikkaansa? 1. Todennäköisyys, että tuotteen valmistamiseen menee aikaa 6 kk, on 0, Tuotteen valmistamisajan odotusarvo on 7,06 kk. 3. Tuotteen valmistamisajan odotusarvo on 6,67 kk silloin, kun suunnitteluun käytetään 2 kk. 4. Tuotteen suunnitteluajan odotusarvo on 2,6 kk. 4. luku - Päätösongelmien systeemianalyysi Päätösongelmien piirteitä 2002/37. Opiskelija harkitsee lähtöä syksyllä 2002 vaihto-oppilaaksi Saksaan suorittamaan kolmen vuoden tutkintoa. Päätösongelma on tällöin 1. deterministinen ja dynaaminen 2. deterministinen ja staattinen 3. stokastinen ja dynaaminen 4. stokastinen ja staattinen

20 4.2 - Yksinkertainen valintaongelma 2004/40. Piensijoittajan rahavarat r vuoden alussa ovat e, ja ne kasvavat korkoa vuotuisen korkotekijän R = 1,04 mukaisesti. Vuoden lopussa korko lisätään pääomaan, ja seuraavana vuotena vuotuinen korkotekijä on R = 1,10. Korkotuotto kahdelta vuodelta on (lähimpään kokonaislukuun pyöristettynä) e e e e Monitavoitteinen päätösongelma 2004/39. Mikä seuraavista väittämistä on oikein? Monitavoitteinen valintaongelma tarkoittaa, että valintatilanteessa 1. vaihtoehtoja on enemmän kuin kaksi. 2. valintaongelmaa tarkastellaan vähintään kahden periodin yli. 3. vaihtoehdot määritellään usean rajoituksen avulla. 4. vaihtoehtoja verrataan usean eri kriteerin näkökulmasta. 2003/38. Oletetaan, että 2-tavoitteisen päätösongelman käypien tavoitepisteiden (g 1, g 2 ) joukko G muodostuu seuraavasta kahdeksasta pisteestä: ( 8, 8), (9, 0), (4, 6), (8, 4), (6, 4), (5, 5), (9, 2) ja (4, 9). Kummankin tavoitteen arvo halutaan mahdollisimman suureksi, jolloin G:n Pareto-optimaaliset eli tehokkaat pisteet ovat 1. kaikki kahdeksan pistettä. 2. (4, 9), (4, 6), (5, 5), (6, 4), (8, 4) ja (9, 2). 3. (4, 9), (5, 5), (8, 4) ja (9, 2). 4. (4, 9), (8, 4) ja (9, 2). 2005/38. Määritellään käypien ratkaisujen joukko X siten, etta se käsittää kaikki pisteet (x 1, x 2 ), jotka toteuttavat ehdot 1 x 1 2 ja 0 x 2 2 ja sekä x 1 että x 2 ovat kokonaislukuja. Määritellään maksimoitavat tavoitteet g 1 ja g 2 siten, että g 1 = 2x 1 x 2 ja g 2 = 2x 1 + 3x 2. Määrittelemällä a = (0, 4), b = (2, 2), c = (4, 4), d = (2, 2), e = (1, 1) ja f = (3, 1) Pareto-optimaalisten pisteiden (g 1, g 2 ) joukko muodostuu 1. janoista ad ja cd. 2. pisteistä a, c, d ja e. 3. janoista ab ja bc. 4. pisteistä a, b, c ja f.

21 2008/47. Yritys Plan Oy on kartoittanut kuusi mahdollista alla olevassa taulukossa esitettyä suunnitelmaa seuraavalle vuodelle. Suunnitelmaa arvioidaan kahdella tavoitteella: kokonaiskustannus (minimoidaan) ja kate (maksimoidaan). Alla olevassa taulukossa kokonaiskustannus ilmaistaan vastalukuna, jolloin ongelmaa voidaan tarkastella molempien tavoitteiden maksimointitehtävänä. Kokonaiskustannuksen vastaluku Kate A -2 3 B -3 6 C -5 5 D -7 8 E F Suunnitelmista A ja E voidaan muodostaa uusi suunnitelma G kertomalla suunnitelmien A ja E tavoitesuureiden arvot ei-negatiivisilla painoilla (w 1 0 ja w 2 0), jotka summautuvat ykkoseen (w 1 + w 2 = 1) : G = w 1 A + w 2 E. Painot maaritetaan suunnittelun aikana. Suunnitelmia vastaaviin tavoitepisteisiin viitataan samoilla symboleilla kuin itse suunnitelmiin. Mikä seuraavista yllä olevia suunnitelmia koskevista väittämistä ei pidä paikkaansa? 1. Suunnitelma B dominoi suunnitelmaa C. 2. Suunnitelman G painot voidaan määrittää siten, että suunnitelma G dominoi suunnitelmaa D. 3. Suunnitelman G painot voidaan määrittää siten, että suunnitelma B dominoi suunnitelmaa G. 4. Suunnitelma G dominoi suunnitelmaa F aina, jos painojen summan sallitaan olevan enintään 1,02 (w 1 + w 2 1,02).

22 2007/46. Sijoittaja arvioi investointivaihtoehtojen tuottoa kahden tavoitteen näkökulmasta: g 1 = vuosituoton odotusarvo (%) ja g 2 = vuosituoton standardipoikkeama (%). Tavoitesuureen g 1 hän haluaisi mahdollisimman suureksi ja tavoitesuureen g 2 mahdollisimman pieneksi. Kahdeksan vaihtoehtoisen sijoitussuunnitelman osalta hän on päätynyt seuraaviin tavoitesuureiden arvoihin: Sijoitussuunnitelma Odotusarvo g 1 (%) Standardipoikkeama g 2 (%) Näiden kesken määräytyy Pareto-optimaalisten pisteiden joukko sijoitussuunnitelmista 1. 2, 4, 5, 6, , 4, 6, , 5, , Dynaaminen tarkastelu Epävarmuuden huomiointi 2000/37. Eräässä monivalintakokeessa, jossa kussakin kysymyksessä on viisi vaihtoehtoa, saa oikeasta vastauksesta +5 pistettä, väärästä vastauksesta 2 pistettä ja vastaamatta jättämisestä +1 pistettä. Jos henkilö käyttää valinnassaa odotusarvokriteeriä, niin pienin subjektiivinen todennäköisyys, jolla hänen vielä kannattaa vastata yksittäiseen kysymykseen, on 1. 1/5 2. 1/4 3. 2/5 4. 3/7

23 2005/39. Yrityksellä on valittavana yksi neljästä projektista A j, j = 1, 2, 3, 4. Kustakin projektista saatava voitto eli tulos riippuu markkinoiden kehityksestä, jota yritysjohto kuvaa mahdollisilla skenaarioilla S i ja todennäköisyyksillä p i, i = 1, 2, 3. Jos projekti A j valitaan, on tulos skenaarion S i tapauksessa v ij (1 000 e). Lukuarvot parametreille v ij ja todennäköisyydet p i, kaikille i ja j, on annettu seuraavalla taulukolla: A 1 A 2 A 3 A 4 p i % S , 25 S , 25 S , 50 Riskineutraali valinta perustuu tuloksen odotusarvon maksimointiin ja äärimmäisen riskiä karttava valinta huonoimman tuloksen maksimointiin. Muodostetaan kombinoitu valintakriteeri painotettuna keskiarvona näistä kahdesta kriteeristä antamalla sama paino 0, 5 kummallekin. Optimivalinta kombinoidulla kriteerillä on 1. A 1 2. A A A /39. Yrityksellä on valittavana yksi neljästä projektista A j, j = 1, 2, 3, 4. Kustakin projekteista saatava voitto riippuu markkinoiden kehityksestä, jota yritysjohto kuvaa kolmella mahdollisella skenaariolla S i, i = 1, 2, 3. Jos projekti A j valitaan, on voitto skenaarion S i tapauksessa v ij (1 000 euroa). Lukuarvot parametreille v ij, kaikille i ja j, on annettu seuraavalla taulukolla: A 1 A 2 A 3 A 4 S S S Paras valinta max-min-kriteerin nojalla on 1. A 1 2. A A A 4.

24 2007/47. Yritys on järjestämässä rock-festivaalia tulevan vuoden kesällä. Säätilastot osoittavat, että festivaalipäivinä ilma on lämmintä (L) todennäköisyydellä 0, 8 ja viileää (V ) todennäköisyydellä 0, 2. Jos L sattuu, on sää poutainen (P ) todennäköisyydellä 0, 75 ja sateinen (S) todennäköisyydellä 0, 25. Vastaavasti jos V sattuu, on poutaista (P ) todennäköisyydellä 0, 5 ja sateista (S) todennäköisyydellä 0, 5. Yrityksen voitto festivaalista riippuu säätilasta seuraavasti: Lämpötila L Lämpötila V Sateisuus P 300 te 0 te Sateisuus S -100 te -200 te Yritys harkitsee sadevakuutusta, joka korvaa puolet tappiosta siinä tapauksessa, että S sattuu (ts. festivaalisää on sateinen). Voiton odotusarvoa maksimoivan yrityksen kannattaa maksaa vakuutuksesta korkeintaan 1. 5 te te te te Kilpailuongelmat 2005/40. Tarkastellaan täydellisen kilpailun markkinatilannetta, jossa erään tuotteen kokonaistarjonnan ollessa v (yks/v) määräytyy markkinahinta hintafunktion p = 100 5v (e/yks) mukaan. Markkinoilla kilpailevat kaksi yritystä A ja B. Niiden tuotantomääriä merkitään x A ja x B (yks/v), jolloin kokonaistarjonta on v = x A + x B. Keskimääräisiä tuotantokustannuksia merkitään vastaavasti symboleilla c A ja c B (e/yks). Nämä kustannukset kasvavat tuotantomäärien mukana siten, että c A = x A ja c B = , 5x B. Hinnalla p olisi tällöin yrityksen A voitto (p 40 5x A )x A ja yrityksen B voitto (p 60 2,5x B )x B. Näiden perusteella määräytyvät optimaaliset tuotantomäärät x A (p) ja x B (p) hinnan p funktioina sekä kokonaistarjonta v(p) = x A (p) + x B (p). Kysynnän ja tarjonnan tasapaino määrää täydellisen kilpailun tasapainohinnan p, joka on e/yks e/yks e/yks e/yks.

25 2007/48. Kuvitteellisessa valtiossa sähkön hinta p (e/kwh) riippuu sähkön kulutuksesta q (TWh/v) funktion p = 0,30 0,002q mukaan. Sähkön tarjonnasta huolehtivat kaksi kilpailevaa yritystä i, joiden tuotantomäärät ovat q i (TWh/v), i = 1, 2. Olkoon c i yrityksen i sähkön tuotannon rajakustannus (eli tuotetusta sähkön lisäyksiköstä aiheutuva muuttuvien yksikkökustannusten lisäys) tuotannon tasolla q i. Rajakustannus nousee tuotantomäärän kasvaessa siten, että yrityksellä 1 se on c 1 = 0,10 + 0,001q 1 (e/kwh) ja yrityksellä 2 se on c 2 = 0,06 + 0,002q 2 (e/kwh). Sähkön hinta sekä määrät q 1, q 2 ja q määräytyvät täydellisen kilpailun markkinatasapainossa. Ilmastonmuutoksen hillitsemiseksi valtio asettaa yritysten maksettavaksi hiilidioksidin päästöveron, joka nostaa sähköntuotannon rajakustannuksia yrityksellä 1 määrän 0,03 e/kwh ja yrityksellä 2 määrän 0,01 e/kwh. Päästövero muuttaa täydellisen kilpailun markkinatasapainoa ja sen myötä sähkön hinta nousee noin 1. 10% 2. 12% 3. 14% 4. 16% 2000/40. Tarkastellaan tilannetta, jossa erään tuotteen markkinoilla kilpailee kaksi yritystä A ja B. Yrityksen A tarjonta on X A ja yrityksen B tarjonta X B (yksikköä vuodessa). Tarjonta määräytyy markkinatasapainohinnan p perusteella seuraavasti: X A = 5(p 200), kun p 200, muulloin 0 ja X B = 2(p 400), kun p 400, muulloin 0. Tuotteen hinta p määräytyy funktion p = 500 0,1V perusteella, missä V = X A + X B on tuotteen kokonaistarjonta. Markkinatasapainohinta on tällöin mk mk mk mk.

26 2003/40. Markkinoilla kuluttajien kysynnän q (yks/päivä) ja tuotteen hinnan p (euroa/yks) välillä vallitsee hintafunktio p = 100 q. Näillä kuvitteellisilla markkinoilla toimii kaksi yritystä A ja B. Kun tuotantomääriä merkitään muuttujilla x A ja x B (yks/päivä), ovat tuotantokustannukset euroissa c A (x A ) = x A ja c B (x B ) = x B, jolloin A:n voitto on px A c A (x A ) ja B:n voitto on px B c B (x B ). Täydellisen kilpailun markkinatasapainossa kysyntä on kokonaistarjonta eli q = x A +x B, tuotteen hinta on hintafunktion mukainen ja kummallakin yrityksellä tuotanto on valittu siten, että voitto maksimoituu, jolloin 1. tuotteen hinta on 50 euroa/yks. 2. yritys A tuottaa enemmän kuin yritys B. 3. yrityksen A voitto on suurempi kuin yrityksen B voitto. 4. yritys B tuottaa yli puolet kokonaistarjonnasta Yhteistyöongelmat

27 Vuosi 2000 Tehtävä Vastaus , Vuosi 2001 Vuosi 2002 Vuosi 2003 Tehtävä Vastaus Tehtävä Vastaus Tehtävä Vastaus Vuosi 2004 Vuosi 2005 Vuosi 2006 Tehtävä Vastaus Tehtävä Vastaus Tehtävä Vastaus , Vuosi 2007 Vuosi 2008 Vuosi 2009 Tehtävä Vastaus Tehtävä Vastaus Tehtävä Vastaus

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) f(x) = 2x + 21. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että imoinnin suhteen. Funktio on konveksi ja konkaavi. b) f(x) = x (pienin kokonaisluku

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Lineaarisen ohjelman määritelmä. Joonas Vanninen

Lineaarisen ohjelman määritelmä. Joonas Vanninen Lineaarisen ohjelman määritelmä Joonas Vanninen Sisältö Yleinen optimointitehtävä Kombinatorinen tehtävä Optimointiongelman tapaus Naapurusto Paikallinen ja globaali optimi Konveksi optimointitehtävä Lineaarinen

Lisätiedot

Luento 6: Monitavoitteinen optimointi

Luento 6: Monitavoitteinen optimointi Luento 6: Monitavoitteinen optimointi Monitavoitteisessa optimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f,,f m Esimerkki ortfolion eli arvopaperijoukon optimoinnissa: f

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8.9.06 HYVÄN VASTAUKSEN PIIRTEITÄ Tutkintoaineen sensorikokous on hyväksynyt seuraavat hyvän vastauksen piirteet. Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty.

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

2 Osittaisderivaattojen sovelluksia

2 Osittaisderivaattojen sovelluksia 2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

, tuottoprosentti r = X 1 X 0

, tuottoprosentti r = X 1 X 0 Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan hieman peliteoriaan. Keskeisiä asioita ovat Nash-tasapaino ja sekastrategia. Cournot n duopolimalli vuodelta 1838 toimii oivallisena havainnollistuksena

Lisätiedot

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin)

Tehtävät. 1. Ratkaistava epäyhtälöt. a) 2(4 x) < 12, b) 5(x 2 4x + 3) < 0, c) 3 2x 4 > 6. 1/10. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot

Luento 6: Monitavoiteoptimointi

Luento 6: Monitavoiteoptimointi Luento 6: Monitavoiteoptimointi Monitavoiteoptimointitehtävässä on useita optimoitavia kohdefunktioita eli ns kriteereitä: f 1,, f m Esimerkiksi opiskelija haluaa oppia mahdollisimman hyvin ja paljon mahdollisimman

Lisätiedot

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin

Lisätiedot

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku.

Algebra. 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. 2. Laske. a) Luku 2 on luonnollinen luku. Algebra 1. Ovatko alla olevat väittämät tosia? Perustele tai anna vastaesimerkki. a) Luku on luonnollinen luku. b) Z c) Luvut 5 6 ja 7 8 ovat rationaalilukuja, mutta luvut ja π eivät. d) sin(45 ) R e)

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Henkilötunnus Sukunimi Etunimet

Henkilötunnus Sukunimi Etunimet Valintakokeessa on kaksi osaa: Osa 1 sisältää viisi esseetehtävää kansantaloustieteestä. Osasta 1 voi saada 0 30 pistettä. Osa sisältää kuusi matematiikan laskutehtävää. Osasta voi saada 0 30 pistettä.

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

MAA2.3 Koontitehtävät 2/2, ratkaisut

MAA2.3 Koontitehtävät 2/2, ratkaisut MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi.

Yksikkökate tarkoittaa katetuottoa yhden tuotteen kohdalla. Tämä voidaan määrittää vain jos myytäviä tuotteita on vain yksi. KATETUOTTOLASKENTA laskennassa selvitetään onko liiketoiminta kannattavaa. Laskelmat tehdään liiketoiminnasta syntyvien kustannuksien ja tuottojen perusteella erilaisissa tilanteissa. laskennassa käytetään

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ

1. a) Laske lukujen 1, 1 ja keskiarvo. arvo. b) Laske lausekkeen. c) Laske integraalin ( x xdx ) arvo. MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 13..015 MATEMATIIKAN MALLIKOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17)

Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Osa 12b Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, Chs 16-17) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä valintojen seurauksien eli voittojen

Lisätiedot

Lyhyen aikavälin hintakilpailu 2/2

Lyhyen aikavälin hintakilpailu 2/2 Lyhyen aikavälin hintakilpailu 2/2 Ilkka Männistö Esitelmä 10 - Ilkka Männistö Optimointiopin seminaari - Kevät 2003 / 1 Kilpailun aste Markkinahinta ei kerro mitään kilpailun asteesta jos kustannusrakennetta

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla? 6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ 06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3.2.27 Tehtävä. Valmisohjelmistolla voidaan ratkaista tehtävä min c T x s. t. Ax b x, missä x, c ja b R n ja A R m n. Muunnetaan tehtävä max x + 2x 2 + 3x 3 + x s. t. x + 3x 2 + 2x

Lisätiedot

Malliratkaisut Demo 4

Malliratkaisut Demo 4 Malliratkaisut Demo 4 1. tehtävä a) () = 2+1. Funktio on lineaarinen, joten se on unimodaalinen sekä maksimoinnin että minimoinnin suhteen. Funktio on konveksi ja konkaavi. b) () = (suurin kokonaisluku

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta

1 Johdanto LP tehtävän luonteen tarkastelua Johdanto herkkyysanalyysiin Optimiarvon funktio ja marginaalihinta Sisältö Johdanto 2 LP tehtävän luonteen tarkastelua 3 Johdanto herkkyysanalyysiin 5 2 Optimiarvon funktio ja marginaalihinta 5 3 Johdanto duaaliteoriaan 6 2 LP-tehtävän standardimuoto 9 Johdanto Optimoinnista

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Maximum likelihood-estimointi Alkeet

Maximum likelihood-estimointi Alkeet Maximum likelihood-estimointi Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Maximum likelihood-estimointi p.1/20 Maximum Likelihood-estimointi satunnaismuuttujan X

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

Voitonmaksimointi, L5

Voitonmaksimointi, L5 , L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto

Lisätiedot

Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 19.02.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli.

Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. Luento 2: Optimointitehtävän graafinen ratkaiseminen. LP-malli. LP-malli Esimerkki. Maalitehdas valmistaa ulko- ja sisämaalia raaka-aineista M1 ja M2. Sisämaalin maksimikysyntä on 2 tonnia/päivä. Sisämaalin

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi

Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi Kauppakorkean pääsykoe 2016 / Ratkaisut Johtaminen ja markkinointi 1. / Ratk: Osio 1 / Epätosi; Ei, vaan tällöin vallitsevaa ihmiskuvaa on kuvattu mekanistiseksi (s.1). Osio 2 / Epätosi; Ei, vaan tällöin

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä

Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 4

MS-C2105 Optimoinnin perusteet Malliratkaisut 4 MS-C2105 Optimoinnin perusteet Malliratkaisut 4 Ehtamo Duaalin muodostamisen muistisäännöt Duaalin muodostamisessa voidaan käyttää muistisääntötaulukkoa, jota voidaan lukea vasemmalta oikealle tai oikealta

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Sopimusteoria: Salanie luku 3.2

Sopimusteoria: Salanie luku 3.2 Sopimusteoria: Salanie luku 3.2 Antti Pirjetä Taloustieteiden kvantitatiiviset menetelmät Helsingin kauppakorkeakoulu 12.2.2008 1 Kilpaillut markkinat, yksi tai useampi päämies Agenttien 1 ja 2 tuottamat

Lisätiedot

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo

LP-mallit, L19. Aiheet. Yleistä, LP-malleista. Esimerkki, Giapetto. Graafisen ratkaisun vaiheet. Optimin olemassaolo LP-mallit, L19 Yleistä 1 LP-mallit on yksi Operaatioanalyysin (Operations Research) perustyökaluista. Perusongelma: Miten pitää suorittaa operaatio mahdollisimman hyvin, kun käytettävissä on rajalliset

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo

KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo 1 KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo ÄLÄ IRROTA PAPEREITA TOISISTAAN! Ohjeet: Tenttikysymyksiä on kuusi (+ jokeri ohjeineen viimeisellä sivulla). Valitse tenttikysymyksistä

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot