4. SUOMEN JA SKANDINAVIAN MAGNEETTISISTA MALLEISTA JA KARTOISTA



Samankaltaiset tiedostot
MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET

1. Sisäsyntyinen magneettikenttä (Internal Geomagnetic Field)

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

RATKAISUT: 19. Magneettikenttä

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

1.1 Magneettinen vuorovaikutus

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

RAPORTTEJA RAPPORTER REPORTS 2009:1 GEOMAGNETISMIN ABC-KIRJA

Sähköstatiikka ja magnetismi

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n Dynaaminen Kenttäteoria GENERAATTORI.

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Fysiikka 7. Sähkömagnetismi

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

Kojemeteorologia (53695) Laskuharjoitus 1

AEROMAGNEETTISIIN HAVAINTOIHIN PERUSTUVAT RUHJEET JA SIIRROKSET KARTTALEHDEN 3612, ROVANIEMI ALUEELLA

Kuva 1. Virtauksen nopeus muuttuu poikkileikkauksen muuttuessa

Kertaus 3 Putkisto ja häviöt, pyörivät koneet. KJR-C2003 Virtausmekaniikan perusteet

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

IL Dnro 46/400/2016 1(5) Majutveden aallokko- ja virtaustarkastelu Antti Kangas, Jan-Victor Björkqvist ja Pauli Jokinen

Lentogeofysikaaliset anomaliat geologiset lähtökohdat. Meri-Liisa Airo

Kapasitiivinen ja induktiivinen kytkeytyminen

Fysiikan valintakoe , vastaukset tehtäviin 1-2

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Maankamaran kartoitus lentogeofysikaalisin menetelmin

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Aurinko. Tähtitieteen peruskurssi

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

Magneettikenttä ja sähkökenttä

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

On maamme köyhä ja siksi jää (kirjoitti Runeberg), miksi siis edes etsiä malmeja täältä? Kullan esiintymisestä meillä ja maailmalla

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Demo 5, maanantaina RATKAISUT

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Ch4 NMR Spectrometer

Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe , malliratkaisut

Tähtien magneettinen aktiivisuus; 3. luento Dynamoteoria 1

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

Magneettikentät. Haarto & Karhunen.

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

FYSP1082 / K4 HELMHOLTZIN KELAT

Mynämäen kaivon geoenergiatutkimukset

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

DEE Tuulivoiman perusteet

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

Vertaileva lähestymistapa järven virtauskentän arvioinnissa

IP-luotaus Someron Satulinmäen kulta-aiheella

Jupiter-järjestelmä ja Galileo-luotain II

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut ja arvostelu.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Magnetismi Mitä tiedämme magnetismista?

SMG-4500 Tuulivoima. Viidennen luennon aihepiirit YLEISTÄ ASIAA GENERAATTOREISTA

Mekaniikan jatkokurssi Fys102

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta

8a. Kestomagneetti, magneettikenttä

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe , malliratkaisut

7. Resistanssi ja Ohmin laki

Hydrologia. Pohjaveden esiintyminen ja käyttö

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Mekaniikan jatkokurssi Fys102

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

y=-3x+2 y=2x-3 y=3x+2 x = = 6

3.4 Liike-energiasta ja potentiaalienergiasta

Lineaarialgebra MATH.1040 / Piirianalyysiä

Geologian tutkimuskeskus 35/2017 Pohjavesiyksikkö Espoo Tuire Valjus

kipinäpurkauksena, josta salama on esimerkki.

Sähkömagneettinen induktio

LIITE 1 VIRHEEN ARVIOINNISTA

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

J.J. Nervanderin tieteellisistä saavutuksista

DEE Sähkötekniikan perusteet

KJR-C2003 Virtausmekaniikan perusteet, K2017 Tentti, perjantai :00-12:00 Lue tehtävät huolellisesti. Selitä tehtävissä eri vaiheet.

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Tuulivoimaloiden ympäristövaikutukset

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

Magnetismi Mitä tiedämme magnetismista?

SMG-2100: SÄHKÖTEKNIIKKA

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

SMG-2100: SÄHKÖTEKNIIKKA

LIITE 1 VIRHEEN ARVIOINNISTA

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.


KOMPASSI. * Magneettisen pohjoissuunan ja maantieteellisen pohjoissuunnan

Transkriptio:

117 4. SUOMEN JA SKANDINAVIAN MAGNEETTISISTA MALLEISTA JA KARTOISTA Edellisessä luvussa käsiteltiin globaalista laajuutta olevaa magneettikenttää ja sen kuvaamista palloharmoniseen analyysin avulla multipolimallina. Tulokseksi saadaan magneettikenttää kuvaavia maailmankarttoja, jotka esittävät magneettisen peruskentän (ytimestä peräisin olevan) jakautumisen eri puolilla maapalloa. Kansainväliseen käyttöön toimitetaan joka viides vuosi uudet referenssimallit (IGRF). Uusimmat mallit ovat vuodelta 2000. Mallit perustuvat laajaan satelliiteilla (Örsted) tehtyjen mittausten magneettikenttätiedostoon, jota päivitetään magneettisten observatorioiden sekulaarimuutostiedoilla. Kalottiharmoninen esitysmuoto on sukua palloharmoniselle analyysille. Kalotin tapauksessa pintaharmoniset funktiot ovat kalottiharmonisia funktioita. (Julkaisusta: Nevanlinna, H. et al., 1988. Spherical cap harmonic analysis applied to the Scandinavian geomagnetic field 1985.0. )

118 Usein tarvitaan joltain tietyltä alueelta siellä vallitsevan geomagneettisen kentän globaalista mallia tarkempi kuvaus. Esim. Suomen ja Skandinavian alueella on tehty useita tuhansia magneettisia mittauksia, joiden avulla voidaan saada IGRFmallia tarkempi kuvaus Pohjolan magneettikentästä. Tavoitteena on kehittää magneettikentän malli, joka kuvaa paikan suhteen hitaasti muuttuvan pääkentän sekä Maan kuoresta johtuvan paikan mukana nopeasti vaihtelevan magneettikentän. Käytettävissä oleva magneettikenttäaineisto perustuu vuonna 1965 tehtyyn Skandinavian (Suomi mukaanlukien) aeromagneettiseen kartoitukseen. Mittaukset tehtiin lentokoneesta 3 km korkeudella ja koko alue lennettiin n. 30 km linjavälein. Lopullisessa aineistossa mittapisteiden, lukumäärältään hieman yli 2000, keskimääräinen etäisyys on 30 km. Aeromagneettisias lentoja ei voitu tehdä Suomen itärajan tuntumassa. Nämä alueet mitattiin maastomittauksilla 1968-1972, jolloin tehtiin yli tuhat magneettikentä mittausta Suomenlahdelta Pohjois-Lappiin. Tätä aineistoa päivitetään Skandinaviassa toimivien magneettisten observatorioiden sekulaarimuutosrekisteröinneillä. Näinkin suuri pistetiheys mahdollistaa periaatteessa magneettikentän tarkan kuvauksen magneettisen kartan muodossa yhdistämällä mittauspisteiden havaintoarvot tasaarvoviivoilla. Tällöin tulokseksi saataisiin magneettiset kartat, joissa on runsaasti yksityiskohtia, mutta tavoitteena on saada yleiskuva Skandinavian alueen magneettikentästä. Tällöin havaintoarvoja joudutaan tasoittamaan jollain sopivalla menetelmällä. Tavallisesti havaintojoukkoon sovitetaan jokin paikasta riippuva funktio, josta lasketaan tasoitetut kenttäarvot. Ilmatieteen laitoksella on tällaisia malleja kehitelty jo vuosikymmeniä. Ensimmäiset Suomen kartat tehtiin 1930-luvulla ja siitä lähtien on melko säännöllisesti tuotettu erilaisia magneettikentän numeerisia ja matemaattisia malleja. Mallit päivitetään joka vuosi. Niissä pääkentän osuutta kuvataan IGRF:n avulla, joka vähennettiin pois itse havaintoarvoista. Näin saatu jäännöskenttä on peräisin siis Maan kuorikerroksen magneettisesta materiasta.

119 Skandinavian ja Suomen alueen magneettikentän kokonaiskomponentin (F) kalottiharmoninen malli 1985. Mallin perustana on ns. Sknadinavian aeromagneettinen kartoitus vuodelta 1965, jossa alueen magneettikenttä mitattiin lentokoneella 3 km korkeudella ja 30 km linjavälein. Kuvassa pisteviivat esittävät mittauksista laskettuja 5 min keskiarvoja. Mitattavat komponentit olivat D, H ja Z. Ympyräviiva alueen ympärilla on käytetyn pallokalotin reunaviiva (säde 10 ).

123 Kalottiharmoninen malli deklinaatiolle Fennoskandian alueella 1985. Sen kuvaamiseen käytettiin palloharmonisen analyysin sovellutusta pallokalotille, ns. kalottiharmonista menetelmää (KHM). Pallokalotiksi valittiin sellainen ympyräkalotti, jonka sisäpuolelle joutuu koko Skandinavia tai Suomi riippuen kumpaa aluetta mallinnettiin. Skandinavian tapauksessa kalotin säde oli 9. KHM:ssä jäännöskenttään sovitetaan kalottiharmonisia funktioita, joiden vastineet pallotapauksessa ovat eri asteiset multipolit. Tyypillisesti korkeimmat kalottiharmoniset asteluvut olivat 16 20, joiden avulla voidaan kuvata n. 200 km laajuisia yksityiskohtia magneettikentästä. Mallin avulla laadittiin Suomen alueelta mittakaavassa 1 : 2 500 000 olevat magneettiset kartat, jotka kuvaavat magneettikentän eri komponenttien jakautumista Suomessa. Kartat on julkaistu myös Suomen Kartaston Geologian vihossa. Lisäksi valmistettiin mallista PC:ssä toimiva ohjelma, joka antaa halutuille koordinaateilla tietyt lasketut kentän komponentit. KHM:t ovat yleisesti käytössä haluttaessa kuvata mallin avulla paikallisia magneettikenttiä. Malli on kehitetty Kanadassa 1980-luvulla Kanadan Geologian Tutkimuskeskuksessa (Canadian Geological Survey, Ottawa, G. Haines). KH malleja on Kanadan ja Suomen lisäksi ainakin Italiasta, Espanjasta, Kiinasta, Australiasta ja Etelämantereelta.

124 Kalottiharmoninen malli on palloharmonisen mallin sovellus kalottipinnalle. Siinä havaittuja magneettikenttäarvoja kuvataan kalottiharmonisilla funktioilla. Tällaiseen malliin perustuvat Suomen alueen yleismagneettiset kartat. Kalottiharmonisten funktioiden asteluku on 20 ja mallin erotuskyky noin 200 km.

125

126 Suomen alueen erantokartta 2004.0. Kartta perustuu aeromagneettisiin korkealentomittauksiin 3 km korkeudella 30 km linjavälein. Havaintoaineisto on kuvattu 20. asteen kalottiharmonisella funktiolla. Magneettikentän horisontaalikomponentti Suomessa 2004.0.

127 Magneettikentän kokonaiskomponentti Suomessa 2004.0.

128 Magneettikentän inklinaatio Suomessa 2004.0.

129 Tässä kuvatut alueelliset magneettikenttämaliit antavat siis yleiskuvan magneettikentän jakautumisesta eri vektorikomponenteille. Yleensä lyhyin magneettikentän spatiaalinen aallonpituus on 200 km luokkaa. Tätä suuruusluokkaa olevat magneettikentän vaihtelut ovat peräisin maapallon kuorikerroksen magnetoituneesta materiasta. Lyhyimmät aallonpituudet, jotka tulevat maapallon ytimestä ovat suunnilleen 2500 km. Geologisia rakennetutkimuksia varten tarvitaan kuitenkin paljon yksityiskohtaisempia magneettisia mittauksia yhdistettäväksi muihin olennaisiin geofysikaalisiin suureisiin (esim. painovoima, sähkönjohtavuus jne.). Suomessa on tällaisia tarkoituksia varten suoritettu matalalentomittauksia aeromagneettisia karttoja varten. Niissä lentolinjat ovat olleet 50-300 m välein ja lentokorkeus muutamia kymmeniä metrejä. Mitattava magneettikentän komponentti on skalaarinen kokonaiskenttä (B). Mittaukset aloitettiin jo 1950- luvun alussa ja niitä tehdään edelleen Geologisen Tutkimuskeskuksen toimesta.

130 Geologian tutkimuskuksen aeromagneettisista matalalentomittauksista koostettu anomaliakartta, joka kuvaa Maan magneettikentän kuorikerroksen magneettisuutta. Anomalia on laskettu IGRF:n suhteen. Väripalkki oikealla antaa anomalian suuruuden nanotesloina.

131 Geogian tutkimuskesku on myöss koonnut Suomen ja lähialueiden aeromagneettiset mittaustulokset yhtenäiseksi kartaksi (1 : 10 0000) koko Fennoskandian alueella. 5. GEOMAGNEETTISEN PÄÄKENTÄN SYNNYSTÄ Monessa yhteydessä on jo todettu, että maapallon magneettisuus aiheutuu osittain Maan kuorikerroksen ferromagneettisesta materiasta ja osittain nesteytimen sähkövirroista. Tässä luvussa tarkastellaan lähemmin nesteytimestä lähtevän Maan pääkentän syntymekanismeja. Maapallon nesteydin jakaantuu kahteen osaan: sisä- ja ulkoytimeen. Sisemmän ytimen läpimitta on n. puolet ulkoytimestä, jonka säde on noin 3500 km. Seismisten aaltojen perusteella on päätelty, että sisempi ydin on kiinteässä tilassa kun taas ulompi ydin on nestemäinen. Se koostuu rauta-nikkeliseoksesta. Lämpötila on korkea, n. 5000 C ja paine yli miljoonakertainen maanpinnalla vallitsevaan ilmanpaineeseen verrattuna. Ydinnesteessä on laajoja konvektiovirtauksia, jotka aiheutuvat sisältäpäin tapahtuvasta lämpiämisestä. Lämmön muodostumisen arvellaan johtuvan tiettyjen aineiden radioaktiivisesta hajaantumisesta syvällä ytimessä. Lämpö laajentaa ydinnestettä, joka ympäristöään keveämpänä nousee ylöspäin ja jäähtyy samalla. Jäähtynyt materia painuu takaisin alaspäin ja näin syntyy ytimeen laaja-alaisia konvektiovirtauksia. Ydinneste on melko hyvin sähköä johtava. Sähkönjohtavuuden (σ) on arveltu olevan 1 5 10 5 S/m (S, tulee nimestä Siemens, on johtavuuden yksikkö SI-järjestelmässä). Vertailun vuoksi mainittakoon, että kuparille, joka on tunnetusti hyvä sähkönjohde, σ = 10 8 S/m, elohopealle σ = 10 6 S/m ja merivedelle 0.2 S/m. Voidaankin sanoa, että ydinneste vastaa sähkönjohtavuudeltaan, tiheydeltään ja viskositeetiltaan elohopeanestettä (tiheys 10 g/cm 3 ) normaalilämpötilassa ja -paineessa. On siis ymmärrettävää, että ytimeen voi muodostua suuria sähkövirtoja, suuruusluokaltaan 10 9 A, jotka aiheuttavat maanpinnalla havaittavan pääkentän. Virtauksen hitaat muutokset havaitaan taas vastaavana hitaana, sekulaarisena, muutoksena magneettikentässä. Vaikka ydinneste on suhteellisen hyvin sähköä johtava, on sillä myös oma sähkövastuksensa, jonka vaikutuksesta Ohmin lain mukaan siellä kiertävät

132 sähkövirrat koko ajan heikkenevät. Ydinnesteessä täytyy siis olla jokin ohmista häviötä kompensoiva mekanismi, muutenhan magneettikenttä ajan mittaan katoasi pois. Ohmin laista johtuvat virtojen heikkenemisnopeus riippuu paitsi johtavuudesta (σ) niin myös ytimen koosta (L). Voidaan osoittaa, että ohminen vastus pienentää magneettikenttää eksponentiaalisesti siten, että tietyn alkutilanteen magneettikenttä B o vähenee kuten B(t) = B 0 e -t/! (5.1) missä aikavakio! = L 2 "µ o /4# 2 ja L on ytimen säde. Aika, joka kuluu tietyn lähtökentän vaimenemiseen puoleen on ns. puoliintumisaika t 1/2 = τ ln2. Maan ytimelle puoliintumisaika on n. 10 000 vuotta, auringolle n. 10 10 vuotta ja kuparipallolle, jonka halkaisija on 1 m, n. 2 s. Tämä siis merkitsee sitä, että kestäisi muutamia kymmeniä tuhansia vuosia ennenkuin magneettikenttä katoaisi maapallolta kenttää ylläpitävän mekanismin pysähdyttyä. Ohmisen vastuksen kautta tapahtuva kentän pieneneminen estetään ydinvirtauksista saatavalla lisäenergialla. Energian siirto mekaanisesta liikeenergiasta magneettiseksi energiaksi tapahtuu monimutkaisen ns. dynamoprosessin kautta. Ehtona energian saamiseksi nestevirtauksista on, että ns. Reynoldsin luku R m = µ o!lv >> 1. Reynoldsin vaatimus täyttyy siis varsin monilla johtavuuden, virtausnopeuden ja nesteytimen koon arvoilla kunhan vain niiden tulo on >> 1. Maapallon tapauksessa on arvioitu, että oletetuilla johtavuuden arvoilla riittää virtausnopeudeksi 10-7 m/s eli noin metrin vuosivauhti siirtää riittävästi energiaa magneettikentälle. Toisaalta pelkkä virtausnopeus ei ole riittävä ehto magneettikentän syntymiselle. On voitu osoittaa, että virtausgeometria on olennainen tekijä magneettikentän aikaansaamiseksi. Jos nesteytimen virtaukset ovat hyvin symmetrisiä, ei pysyvää kenttää voi muodostua, vaan se kuolee pois. Virtauskentän geometriassa täytyy olla riittävästi epäsymmetriaa ennekuin magneettikentän säilyvyys on taattu. Dynamoprosessin toimintaperiaatetta havainnollistaa kuva 4.4. Siinä on akselin ympäri pyörivä johdinkiekko. Akselin ympäri kiertää johdinsilmukka, joka on kytketty sekä akseliin että kiekon reunaan. Kiekon pyörimisliike satunnaisessa akselin suuntaisessa magneettikentässä indusoi kiekkoon akselista reunoille suuntautuvan sähkövirran. Virta ohjautuu myös silmukkaan, jossa se aiheuttaa akselin suuntaisen magneettikentän vahvistaen alkuperäistä kenttää. Näin siis mekaaninen liike-energia on saatu induktion kautta magneettikentäksi.

133 Yksinkertainen kiekkodynamo, sopivilla johtavuuden ja pyörimisnopeuden arvoilla pystyy ylläpitämään vakiokenttää, mutta ei esimerkiksi selittämään kentän napaisuuden vaihtumista. Kytkemällä yhteen kaksi kiekkodynamoa saadaan oskilloiva kenttä aikaan. Mekaanisen dynamon vastineita todellisessa nestytimessä on ehkä vaikea löytää, mutta dynamomalli havainnollistaa sellaisen prosessin olemassaoloa, jossa mekaaninen liike-energia synnyttää uutta magneettikenttää kompensoimaan ohmisen vastuksen kautta tapahtuvia häviöitä. Magnetohydrodynaamisesti tarkasteltuna, jossa siis otetaan huomioon nesteytimen virtauksiin vaikuttavat mekaaniset ja sähkömagneettiset voimat, magneettikentän syntymekanismit ovat hyvin monimutkaisia. Olennaisia tekijöitä ovat ytimen suuri sähkönjohtavuus, ytimen ja sitä ympäröivän vaipan erisuuruiset pyörimisnopeudet, nesteytimen konvektioliike. Ytimessä magneettikentän kenttäviivat ovat kuin "kiinni" nesteytimess, so. kenttäviivojen muoto ja liike riippuu täysin nestevirtauksista. Kuvan 4.5. tilanne esittää kuinka ytimen ja vaipan pyörimisnopeuksien ero muuttaa alunperin dipolimaisen magneettikentän toroidimaiseksi renkaaksi ytimen ympärille ja dipolikenttä vähitellen häviää. Tässä toroidi-tyyppisellä kentällä ymmärretään sellaista kenttäviivojen konfiguraatiota, jolla ei ole säteen suuntaista komponenttia lainkaa, eli sitä ei voi lainkaan havaita maanpinnalla. Poloidinen kenttä (esim. dipoli) havaitaan ytimen ulkopuolellakin. Uutta poloidista kenttää syntyy nesteytimen konvektiokeskuksissa. Niissä ylöspäin suuntautuva nestevirtaus Coriolis-voiman vaikutuksesta on kierteinen. Tästä syystä toroidimaiset kenttäviivarenkaat kiertyvät auki muodostaen poloidimaisen kentän.

134 Kiekkodynamo. Hevoskenkämagneetin napojen väliin on asetettu kierrettävä kuparikiekko. Kun kiekkoa pyöritetään magneettikentässä, syntyy induktiolain mukaan kiekon säteen suuntainen sähkövirta. Jos näin syntynyt virta ohjataan johdinsilmukkaan, joka kiertää kiekon akselin, synnyttää induktiovirta akselin suuntaisen magneettikentän., joka säilyy vaikka erillinen magneetti poistetaan. Näin magneettikenttä säilyy niin kauan kun kiekko on pyörimisliikkeessä. Maan magneettikentän syntymekanismi dynamoteorian mukaan. Kuvassa ympyrä esittää Maan nesteydintä joka pyörii hitaammin kuin sitä ympäröivä vaippakerros (differentiaalirotaatio). Kuvassa (a) kaartuvat viivat kuvaavat Maan dipolaarista magneettikenttää, joka ulottuu ytimestä ulos. Koska ydinneste on sähköä hvyin johtavaa, magneettikentän kenttäviivat ovat nesteeseen "liimautuneina" ja kulkevat nestevirtauksen mukana. (b) Vaipan ja ytimen eri suuruisesta pyörimisnopeudesta johtuu, että ytimeen kiinnittyneet kenttäviivat jäävät jälkeen, ne venyvät ja kaartuvat pitkin nesteytimen pintaa, jolloin dipoliosuus jatkuvasti heikkenee (c). Lopulta dipolikenttä katoaa kokonaan, kun

135 kaikki kenttäviivat on imetty ytimeen. Tilanne palautuu dipolimaiseksi nesteytimen konvektiovirtauksissa, joissa nesteytimeen imeytynyt magneettikenttä kelautuu auki muodostaen pieniä silmukoita, joiden summakenttä palauttaa dipolikomponentin takaisin (f).!b!t = 1!µo " 2 B + "#(v # B) Jos magneettikentän muutos ( B/ t) on vähintäin nolla, niin integroitaessa yli tieyn aikavälin ( t) magneettikenttä säilyy. Yhtälön oikean puolen 1. termi on magneettikikentän eksponentiaalista vaimenemista kuvaava ns. diffuusiotermi (kts. yhtälö 5.1). Se aina heikentää magneettikenttää. Oikean puolen toinen termi on induktiovaiktusta kuvaava, missä ytimen virtaus (v) yhdessä magneettikentän kanssa synnyttää uutta magneettikenttää. Jos se on suurempi kuin diffuusiotermi, magneettikenttä säilyy.