määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.



Samankaltaiset tiedostot
Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = = =

1 Aritmeettiset ja geometriset jonot

4 LUKUJONOT JA SUMMAT

a) (1, 0735) , 68. b) Korkojaksoa vastaava nettokorkokanta on

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Potenssiyhtälö ja yleinen juuri

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

9 VEROTUS, TALLETUKSET JA LAINAT

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

Aritmeettinen jono

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

Ma4 Yhtälöt ja lukujonot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka

1. taskulaskimen funktionäppäimet, pankkiautomaatti, postimerkkiautomaatti,...

Koontitehtäviä luvuista 1 9

4 Yleinen potenssifunktio ja polynomifunktio

diskonttaus ja summamerkintä, L6

Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

Prosenttilaskentaa osa 2

Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset

2 arvo muuttujan arvolla

Ratkaisut vuosien tehtäviin

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta.

Suora kulkee pisteen (1, 5) kautta leikkaamatta suoraa 2y - x + 1 = 0. Mikä on suoran yhtälö? Piirrä kuvio. (s97)(y = ½x + 9/2))

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

LUKUVUODEN E-KURSSI

MAA Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

ClassPad 330 plus ylioppilaskirjoituksissa apuna

Mat Investointiteoria Laskuharjoitus 3/2008, Ratkaisut

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kenguru 2015 Benjamin (6. ja 7. luokka)

Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa

3 Yleinen toisen asteen yhtälö ja epäyhtälö

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Polynomi ja yhtälö Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x. Ratkaisu a) 7a b) 12x c) 6x + 6

Pyramidi 9 Trigonometriset funktiot ja lukujonot HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

5 Kertaus: Matemaattisia malleja

3 Eksponentiaalinen malli

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 6, Kevät 2018

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

Aritmeettinen lukujono

Prosentti- ja korkolaskut 1

a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja

Kenguru 2017 Cadet (8. ja 9. luokka)

c) 22a 21b x + a 2 3a x 1 = a,

Preliminäärikoe Tehtävät Pitkä matematiikka / 3

Talousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan

Eksponenttiyhtälö ja logaritmi

LISÄTEHTÄVÄT. Päähakemisto Tehtävien ratkaisut -hakemisto Piirretään suorat. Kahden muuttujan lineaariset yhtälöt. y x ja a) b) y x.

LYHYT MATEMATIIKKA PRELIMINÄÄRIKOE

mplperusteet 1. Tiedosto: mplp001.tex Ohjelmat: Maple, [Mathematica] Sievennä lauseke x 1 ( mplp002.tex (PA P1 s.2011)

Matematiikan tukikurssi

Jaksolliset suoritukset, L13

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

1 Luvut jonossa 1. Kuinka monta pikkuneliötä on a) neljännessä kuviossa b) seitsemännessä kuviossa c) kymmenennessä kuviossa?

Ohjelmoinnin peruskurssi Y1

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Kenguru 2011 Cadet (8. ja 9. luokka)

MAB yo-tehtäviä prosenttilaskennasta ja talousmatematiikasta

MATEMATIIKKAKILPAILU

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x x = 2 (yksi ratkaisu, eräs neg. kokon.

Matematiikkaa kauppatieteilijöille

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

2.3. Lausekkeen arvo tasoalueessa

PRELIMINÄÄRIKOE. Lyhyt Matematiikka

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

Jakso, jonka aikana verkkokurssi on suoritettu: Kurssiarvosana muodostuu seuraavien kahden osion yhteistuloksena:

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

5. Jos x < 1 2,niin x x 1 on aina. , 1] b) pienempi kuin Yhtälön 3 3 x +3 x =4ratkaisujenlukumääräon a) 0 b) 1 c) 2 d) enemmän kuin 2.

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

Tenttiin valmentavia harjoituksia

Ohjelmoinnin perusteet Y Python

Ympyrän yhtälö

Valintakoe

OSA 2: MATEMATIIKKAA TARVITAAN, LUKUJONOT JA SUMMAT SEKÄ SALAKIRJOITUS

4. Nokian osakkeen arvo oli eräänä päivänä 12,70 ja kaksi päivää myöhemmin 11,22. Kuinka monta prosenttia osakkeen arvo oli muuttunut?

Matematiikan tukikurssi, kurssikerta 5

KOKEITA KURSSI Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

MAB3 - Harjoitustehtävien ratkaisut:

Talousmatematiikan perusteet, ORMS1030

Transkriptio:

Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. s07/10. Ratkaise graafisesti epäyhtälöryhmä y x 2 7x + 2y 14 5x + 4y 28 Anna vastauksena kuvio, johon on merkitty ratkaisujoukko. s07/8. Keltaista ja sinistä väripigmenttiä käytettiin kahden erisävyisen vihreän maalin sekoittamiseen. Maaliin A tarvittiin litraa kohden 80 g keltaista pigmenttiä ja 110 g sinistä pigmenttiä, maaliin B vastaavasti 120 g keltaista ja 90 g sinistä pigmenttiä. Kuinka monta litraa kumpaakin maalia valmistettiin, kun keltaista pigmenttiä käytettiin 3,2 kg ja sinistä 3,5 kg? s10/13. Millä vakion a arvolla yhtälöparilla 2x + ( a + 1) y = 5 3x + ( a 2) y = a ei ole ratkaisua? s96/2a. Tasoaluetta rajoittavat suorat x =2, y = x ja y + 3 = 0. Piirrä alue ja kirjoita epäyhtälöt, jotka määräävät kyseisen alueen (ilman reunoja). k98/9. Tietokoneella, johon voidaan kytkeä joko kirjoitin A tai kirjoitin B, valmistetaan 1200 kappaleen erä mainoslehtisiä. Käyttämällä ensin kirjoitinta A 1 h 55 min ja sitten kirjoitinta B 1 h 30 min tulee työ tehtyä. Sama työ saatiin tehdyksi käyttämällä ensin kirjoitinta B 1h 20 min ja sitten kirjoitinta A 2 h 10 min. Kuinka monta mainoslehteä kirjoittimet A ja B tulostavat minuutissa? Kuinka kauan työ kestää, jos käytetään vain nopeampaa kirjoitinta? k00/14. Henkilö suunnittelee kalastusaltaan perustamista liikeyrityksenä. Altaaseen istutettaisiin toukokuun alussa 5 000 kirjolohta. Joka viikko altaan kirjolohista pyydettäisiin noin 20 %, ja seuraavan viikon alussa altaaseen siirrettäisiin aina 100 uutta kirjolohta. Kirjolohia voi suurissa erissä ostaa kalankasvattajalta 10 markan kappalehintaan. Kuinka monta kalaa altaassa olisi 20 viikon kuluttua kalastussesongin päättyessä? Mikä pitäisi asettaa altaasta pyydettävän kirjolohen hinnaksi, jotta liikeyritykselle jäisi kalojenhankintakustannusten jälkeen katteeksi 20 viikon ajalta 50 000 mk, kun mahdolliset pyytämättä jääneet kirjolohet myytäisiin kalasavustamoon 13 markan kappalehintaan?

Sarja 2 k09/13. Aritmeettisen jonon ensimmäinen termi on 1, viimeinen termi on 61, ja jonon termien summa on 961. Mikä on jonon toinen termi? k09/14. Talletustilin vuosikorko on 1,50 prosenttia, ja korkotuotosta peritään vuosittain 29 prosentin lähdevero. Tiliä avattaessa talletetaan 1 000 e, eikä muita talletuksia tehdä. a) Kuinka paljon tilillä on rahaa kymmenen vuoden kuluttua, kun korko liitetään pääomaan vuoden välein? b) Monenko vuoden kuluttua talletus on kaksinkertaistunut? s08/10. Lukujonon ensimmäinen termi on 2, ja jonon kukin seuraava termi on aina 5 % suurempi kuin edellinen termi. Muodosta jonon n:nnen termin lauseke. Tutki tämän avulla, kuinka moni jonon termi on pienempi kuin 1000 miljoonaa. Laske näiden termien summa kolmen numeron tarkkuudella. k08/11. Isoisä avasi vuoden 2006 alussa lapsenlastaan varten tilin, jonka vuotuinen korkoprosentti lähdeveron vähentämisen jälkeen on 1,750, ja talletti tilille 700 euroa. Isoisä jatkaa seuraavina vuosina tallettamalla saman summan. Korko lisätään vuosittain tilin saldoon vuoden viimeisenä päivänä. Kuinka paljon tilillä on rahaa vuoden 2010 lopussa koron lisäyksen jälkeen? Muodosta ja sievennä lauseke, joka antaa tilin saldon vuoden lopussa, kun talletus on tehty n kertaa. Minkä vuoden lopussa rahaa on vähintään 12 000 euroa? s07/9. Vanhassa tarinassa šakkilaudan 64 ruudulle sijoitetaan vehnänjyviä: ensimmäiselle ruudulle yksi, toiselle kaksi, kolmannelle neljä jne. Seuraavalla ruudulla on aina edellisen ruudun määrä kaksinkertaisena. Kuinka monta ruutua voidaan täyttää Suomen vuotuisella 700 miljoonan kilogramman vehnäsadolla, jos oletetaan, että yksi vehnänjyvä painaa 25 mg? s06/14. Henkilö osallistuu jatkuvasti lottoarvontaan täyttämällä Internetissä yhden lottorivin kymmeneksi viikoksi joka toisen kuukauden alussa. Laske, kuinka paljon henkilölle kertyisi rahaa pankkitilille, jos hän loton sijasta 40 vuoden ajan, alkaen tammikuun 1. päivästä, tallettaisi joka toisen kuukauden alussa 7 euroa tilille, joka kasvaa korkoa 1,5 % vuodessa. Lähdeveroa ei oteta huomioon. k06/11. Aritmeettisen jonon ensimmäinen termi on 2 3, toinen on 7 ja viimeinen 117. Laske jonon summa. k11/13. Aritmeettisen jonon ensimmäinen termi on 10 ja toinen termi 12. Geometrisen jonon ensimmäinen termi on 2 ja suhdeluku q = 21/20. Monennestako termistä lähtien geometrisen jonon termi on suurempi kuin vastaava aritmeettisen jonon termi? Muodosta tarvittava epäyhtälö ja etsi sille ratkaisu kokeilemalla.

Sarja 1 Ratkaisut k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. s07/10. Ratkaise graafisesti epäyhtälöryhmä y x 2 7x + 2y 14 5x + 4y 28 Anna vastauksena kuvio, johon on merkitty ratkaisujoukko. s07/8. Keltaista ja sinistä väripigmenttiä käytettiin kahden erisävyisen vihreän maalin sekoittamiseen. Maaliin A tarvittiin litraa kohden 80 g keltaista pigmenttiä ja 110 g sinistä pigmenttiä, maaliin B vastaavasti 120 g keltaista ja 90 g sinistä pigmenttiä. Kuinka monta litraa kumpaakin maalia valmistettiin, kun keltaista pigmenttiä käytettiin 3,2 kg ja sinistä 3,5 kg?

s10/13. Millä vakion a arvolla yhtälöparilla 2x + ( a + 1) y = 5 3x + ( a 2) y = a ei ole ratkaisua? s96/2a. Tasoaluetta rajoittavat suorat x =2, y = x ja y + 3 = 0. Piirrä alue ja kirjoita epäyhtälöt, jotka määräävät kyseisen alueen (ilman reunoja). Piirretään rajoittavat suorat x = 2, y = x ja y = -3. 1 < 2 1 < 1 ja havaitaan että yhtälöt ovat tosia. 1 > 3 Koska alue on suorien rajoittama, sen täytyy olla suorien rajoittama. Päätellään epäyhtälöt siitä kummalla puolella suoraa alue on: x < 2 y < x y > 3 Osoitetaan että alue on yllä oleva, sijoitetaan piste (1, -1) yhtälöryhmään: k98/9. Tietokoneella, johon voidaan kytkeä joko kirjoitin A tai kirjoitin B, valmistetaan 1200 kappaleen erä mainoslehtisiä. Käyttämällä ensin kirjoitinta A 1 h 55 min ja sitten kirjoitinta B 1 h 30 min tulee työ tehtyä. Sama työ saatiin tehdyksi käyttämällä ensin kirjoitinta B 1h 20 min ja sitten kirjoitinta A 2 h 10 min. Kuinka monta mainoslehteä kirjoittimet A ja B tulostavat minuutissa? Kuinka kauan työ kestää, jos käytetään vain nopeampaa kirjoitinta? Merkitään x = tulostetut lehdet A:lla / min y = tulostetut lehdet B:llä / min A B 1h 55 min = 115 min 115x + 90y = 1200 1h 30 min = 90 min

A 2 h 10 min = 130 min 130x + 80y = 1200 B 1h 20 min = 80 min Saadaan yhtälöpari 115x + 90y = 1200 ( 130) 130x + 80y = 1200 115 14950x 11700y = 156000 + 14950x + 9200y = 138000 2500y = 18000 y = 7,2 Jos y = 7, 2, niin 115x + 90 7,2 = 1200 115x + 648 = 1200 115x = 552 :115 x = 4,8 :( 2500) Tulostus vain nopealla kirjoittimella kestää Vastaus: Tulostin A 4,8 lehteä/min Tulostin B 7,2 lehteä/min Tulostus nopeammalla kirjoittimella B kestää 2 h 50 min. 1200 min = 166,66... min 2h 50 min. 7,2 k00/14. Henkilö suunnittelee kalastusaltaan perustamista liikeyrityksenä. Altaaseen istutettaisiin toukokuun alussa 5 000 kirjolohta. Joka viikko altaan kirjolohista pyydettäisiin noin 20 %, ja seuraavan viikon alussa altaaseen siirrettäisiin aina 100 uutta kirjolohta. Kirjolohia voi suurissa erissä ostaa kalankasvattajalta 10 markan kappalehintaan. Kuinka monta kalaa altaassa olisi 20 viikon kuluttua kalastussesongin päättyessä? Mikä pitäisi asettaa altaasta pyydettävän kirjolohen hinnaksi, jotta liikeyritykselle jäisi kalojenhankintakustannusten jälkeen katteeksi 20 viikon ajalta 50 000 mk, kun mahdolliset pyytämättä jääneet kirjolohet myytäisiin kalasavustamoon 13 markan kappalehintaan? a n = kalat n. viikon päästä a 1 = 0,8 5000 = 4000 (määrä 1. viikon lopussa) Määräksi seuraavien viikkojen lopussa saadaan a = 0,8( a 1 + 100), n = 2,3,... Kaloja 20 viikon kuluttua a1 = 4000 M a2 = 3280 a17 = 501 a3 = 2704 a18 = 481 a4 = 2243 a19 = 465 a = 1873 a = 452 450 (kpl) 5 20 Kaloja on istutettu kaikkiaan 5000 + 19 100 = 6900 (kpl). Merkitään pyydettävän kirjolohen hintaa x. n n

Kaloja pyydetty 6900 450 = 6450 (kpl) Tulot: 6450 x + 450 2,20 = 6450x + 900 ( ) Kulut: 6900 1,68 = 11592 ( ) Kate on 8400, kun Tulot Kulut = 8400 6450x + 990 11592 = 8400 6450x = 19002 x = 2,946... :6450 Hinnaksi pitää laittaa 2,95. Vastaus: Jäljellä 450 kalaa. Hinta pitää olla 2,95 /kpl. Sarja 2 Ratkaisut k09/13. Aritmeettisen jonon ensimmäinen termi on 1, viimeinen termi on 61, ja jonon termien summa on 961. Mikä on jonon toinen termi? k09/14. Talletustilin vuosikorko on 1,50 prosenttia, ja korkotuotosta peritään vuosittain 29 prosentin lähdevero. Tiliä avattaessa talletetaan 1 000 e, eikä muita talletuksia tehdä. a) Kuinka paljon tilillä on rahaa kymmenen vuoden kuluttua, kun korko liitetään pääomaan vuoden välein? b) Monenko vuoden kuluttua talletus on kaksinkertaistunut? s08/10. Lukujonon ensimmäinen termi on 2, ja jonon kukin seuraava termi on aina 5 % suurempi kuin edellinen termi. Muodosta jonon n:nnen termin lauseke. Tutki tämän avulla, kuinka moni jonon termi on pienempi kuin 1000 miljoonaa. Laske näiden termien summa kolmen numeron tarkkuudella.

k08/11. Isoisä avasi vuoden 2006 alussa lapsenlastaan varten tilin, jonka vuotuinen korkoprosentti lähdeveron vähentämisen jälkeen on 1,750, ja talletti tilille 700 euroa. Isoisä jatkaa seuraavina vuosina tallettamalla saman summan. Korko lisätään vuosittain tilin saldoon vuoden viimeisenä päivänä. Kuinka paljon tilillä on rahaa vuoden 2010 lopussa koron lisäyksen jälkeen? Muodosta ja sievennä lauseke, joka antaa tilin saldon vuoden lopussa, kun talletus on tehty n kertaa. Minkä vuoden lopussa rahaa on vähintään 12 000 euroa? s07/9. Vanhassa tarinassa šakkilaudan 64 ruudulle sijoitetaan vehnänjyviä: ensimmäiselle ruudulle yksi, toiselle kaksi, kolmannelle neljä jne. Seuraavalla ruudulla on aina edellisen ruudun määrä kaksinkertaisena. Kuinka monta ruutua voidaan täyttää Suomen vuotuisella 700 miljoonan kilogramman vehnäsadolla, jos oletetaan, että yksi vehnänjyvä painaa 25 mg? s06/14. Henkilö osallistuu jatkuvasti lottoarvontaan täyttämällä Internetissä yhden lottorivin kymmeneksi viikoksi joka toisen kuukauden alussa. Laske, kuinka paljon henkilölle kertyisi rahaa pankkitilille, jos hän loton sijasta 40 vuoden ajan, alkaen tammikuun 1. päivästä, tallettaisi joka

toisen kuukauden alussa 7 euroa tilille, joka kasvaa korkoa 1,5 % vuodessa. Lähdeveroa ei oteta huomioon. k06/11. Aritmeettisen jonon ensimmäinen termi on 2 3, toinen on 7 ja viimeinen 117. Laske jonon summa. k11/13. Aritmeettisen jonon ensimmäinen termi on 10 ja toinen termi 12. Geometrisen jonon ensimmäinen termi on 2 ja suhdeluku q = 21/20. Monennestako termistä lähtien geometrisen jonon termi on suurempi kuin vastaava aritmeettisen jonon termi? Muodosta tarvittava epäyhtälö ja etsi sille ratkaisu kokeilemalla.