OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen 2012. 1. Mekaniikka 2



Samankaltaiset tiedostot
OPINTOJAKSO MEKANIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA 2 OV. Isto Jokinen Mekaniikka 2

MEKANIIKAN PERUSTEITA

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

12. ARKISIA SOVELLUKSIA

F Y S I I K K A KERTAUSTEHTÄVIÄ 1-20

FYSIIKAN HARJOITUSTEHTÄVIÄ

KOE 2 Ympäristöekonomia

4.3 Liikemäärän säilyminen

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!

7. Pyörivät sähkökoneet

RATKAISUT: 3. Voimakuvio ja liikeyhtälö

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

PD-säädin PID PID-säädin

2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t

Intensiteettitaso ja Doplerin ilmiö

Mat Sovellettu todennäköisyyslasku A

Derivoimalla ensimmäinen komponentti, sijoittamalla jälkimmäisen derivaatta siihen ja eliminoimalla x. saadaan

b) Laskiessani suksilla mäkeä alas ja hypätessäni laiturilta järveen painovoima tekee työtä minulle.

2. Suoraviivainen liike

Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.

Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

Mat Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

RATKAISUT: 8. Momentti ja tasapaino

W dt dt t J.

Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E Tampere

Öljyshokkien talousvaikutusten heikkeneminen ja ilmiön syyt

C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET

x v1 y v2, missä x ja y ovat kokonaislukuja.

LVM/LMA/jp Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

PARTIKKELIN KINETIIKKA

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.

Triathlon Training Programme 12-week Sprint Beginner

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

KOMISSION VALMISTELUASIAKIRJA


MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Telecommunication engineering I A Exercise 3

LVM/LMA/jp Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

Sanomalehtien kysyntä Suomessa Sanomalehtien kysynnän kehittymistä selittävä ekonometrinen malli

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

DEE Lineaariset järjestelmät Harjoitus 6, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

Viikkotehtävät IV, ratkaisut

Elektroniikan, tietoliikenteen ja automaation tiedekunta

RATKAISUT: 17. Tasavirtapiirit

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Harjoituksen 1 ratkaisuehdotukset

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Toistoleuanvedon kilpailusäännöt

Muunnokset ja mittayksiköt

KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA

Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus

Viivakuormituksen potentiaalienergia saadaan summaamalla viivan pituuden yli

SUOMEN AKTUAARIYHDISTYS THE ACTUARIAL SOCIETY OF FINLAND

Äänen nopeus pitkässä tangossa

Rak Rakenteiden mekaniikka C, RM C (4 ov) Tentti

KOHINAN JA VAIHEVIRHEEN VAIKUTUS VAIHEKOHERENTEILLA JÄRJESTELMILLÄ

Mittaustekniikan perusteet, piirianalyysin kertausta

LUKION FYSIIKKAKILPAILU avoimen sarjan vast AVOIN SARJA

RATKAISUT: Kertaustehtäviä

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

HARJOITUS 4 1. (E 5.29):

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

g-kentät ja voimat Haarto & Karhunen

5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =

Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus

Kuntaeläkkeiden rahoitus ja kunnalliset palvelut

Teknistä tietoa TARRANAUHOISTA

2:154. lak.yht. lak.yht. lak.yht. 2:156 2: :156. lak.yht. 2: dba. sr-1. No330. YY/s-1. Työväentalo No30. sr-2.

LASKENTA laskentakaavat

MASSIIVIPUUTILAELEMENTEISTÄ

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa

Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

MUODONMUUTOKSET. Lähtöotaksumat:

FDPa. Rei itetty seinään asennettava poistoilmalaite

Flippauksen arvioinnista

Alipäästösuodatuksesta jää kuitenkin pieni vaihtovirtakomponentti, joka summautuu tasajännitteen päälle:

KÄYTTÖOPAS. Ilma vesilämpöpumppujärjestelmän sisäyksikkö ja lisävarusteet RECAIR OY EKHBRD011ADV1 EKHBRD014ADV1 EKHBRD016ADV1

Luento 4. Fourier-muunnos

S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH2. f i C C. λ 2, m 1 cos60,0 1, m 1,2 pm. λi λi

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I

S Fysiikka III (Est) Tentti

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

Copyright Helsingin yliopisto, psykologian laitos ja Tampereen yliopisto, psykologian laitos

1. Matemaattinen heiluri, harmoninen värähtelijä Fysiikka IIZF2020

Transkriptio:

OPINTOJAKSO FYSIIKKA 1 OV OPINTOKOKONAISUUTEEN FYSIIKKA JA KEMIA OV Io Jokinen 01 SISÄLTÖ SIVU 1. Mekaniikka Nopeu Kekinopeu Kehänopeu 3 Kiihyvyy 3 Puoamikiihyvyy 4 Voima 5 Kika 6 Työ 7 Teho 8 Paine 9

Copyrigh Io Jokinen Opinojakomonie käielee fyiikan perueia ja en laadinnaa on pyriy painoamaan pinakäielyalaan liiyviä fyiikan iälöjä. Opinojakomonie jakauuu euraaviin oakokonaiuukiin joia jokaiea järjeeään oma koe. 1. Mekaniikka. Lämpöoppi 3. Sähköfyiikka 4. Energia eri muodoiaan Opinojakon iälö painouu lämpöoppiin ja energiakyymykiin, koka niiden painoarvo on pinakäielyekniikaa mekaniikkaa ja ähköoppia uurempi. Mekaniikka Lakuehävien rakaieminen Fyiikaa ehävien rakaiu vaaii lakemia. Lakeminen on uein helpompaa kun noudaaa euraavaa rakaiuapaa: 1. Miei miä kyyään ja merkie e omalla unnukella. Eim. kun kyyään maaa merkie e euraavai: m =?. Kao ehävää miä iedeään ja merkie ne omilla unnukilla. Eim. kun iedeään voima ja kiihyvyy merkie ne euraavai: F = 500 N ja a = 5 m/. 3. Selviä mikä lakukaava opiva lakemieen. Ne ova ellaiia joia eiinyy kyyy ermi ( m ) ja iedey ermi ( F ). 4. Jo lakukaavoia on ehävä ekijän yhälön muokkaua ee e. Jo arviaan eri lakukaavojen yhdiämiä, niin ee ekin. 5. Tee arviaea laaumuunnoke ( eim. km / h muooon m / ) 6. Sijoia arvo ja rakaie ehävä Nopeu Nopeu on kuljeavan makan uhde aikaan eli: v miä v = nopeu ( m/ ) = maka ( m ) = aika ( ) Kekinopeu Yleenä jonkin kappaleen, kuen auon nopeu ei ole aaia vaan nopeu vaihelee. Tällöin kuljeu maka jaeuna kulueulla ajalla on kekinopeu v k Nopeuden ykikkö on m/. Hyvin uein kuienkin käyeään ykikköä km/h. Lakuoimiukia varen ykikköjä jouduaan uein muunamaan. Nopeuden ykikköjen muunaminen: Alkuperäinen Muunneu Kerroin m/ km/h 3,6 km/h m/ 0,777 Lakueimerkki: Mikä on ollu juokijan kekinopeu kun hän on juou 100 meriä aikaan 1? Vaau: 100m v m k 8, 33 1 Käyöoikeu opeukea luvalla 1

Copyrigh Io Jokinen Lakueimerkki: Kuva 1. Kehänopeu Mikä on auon nopeu ykiköä m/ kun en miarilukema on 80 km/h? Vaau: m km v 80 0,777, m h km h Lakueimerkki: Mikä on uulen nopeu ykiköä km/h kun en nopeu on 0 m/? Vaau: Kehänopeu Kun pyöreä kappale kuen auon renga pyörii, on renkaalla kaki pyöriminopeua. a) Kierrokia ekunnia ( 1 / ai r / ) Uein käyeään myö ykikköä rpm joka on ( kierroa minuuia = round per minue ). b) Kehänopeu ( m / ) Kehänopeu voidaan lakea kaavalla: v kehä = d n miä: km 0m v 3,6 h 7 m v kehä = pyörän kehänopeu ( m / ) = 3,14 d = pyörän halkaiija ( m ) n = pyörän pyöriminopeu ( 1 / ) km h Lakueimerkki: Auon pyörä pyörii nopeudella 5 r/. Mikä on en kehänopeu kun pyörän halkaiija on 50 cm? Vaau: 1 v m m kehä 0,5 4 6, 8 Kiihyvyy Taaiea liikkeeä nopeu ei muuu vaan pyyy koko ajan amana. Kun nopeu muuuu apahuu kiihyvyyä. Eimerkiki auolla ajeaea nopeu on harvoin aaia. Nopeu joko liäänyy ai vähenee. Kiihyvyy on nopeuden muuo jaeuna kuluneella ajalla eli: a miä v v a = kiihyvyy ( m/ ) v = loppunopeu ( m/ ) v1= alkunopeu ( m/ ) = muuokeen kulunu aika 1 Käyöoikeu opeukea luvalla

Copyrigh Io Jokinen Kuva. Kiihyvyy Puoamikiihyvyy Maa veää puoleena kappaleia. Eimerkiki kun ihminen irroaa oeen kappaleea puoaa kappale maahan. Puoamien aiheuaja on painovoima, jonka odellia yyä ei ede iedeä. Painovoima aiheuuu graviaaioa, joa kappaleilla on veovoima oiiaan kohaan. Miä maiiviempi kappale on, iä voimakkaammin e veää oiia kappaleia puoleena. Lakueimerkki: Mikä on auon kiihyvyy ykiköä m/, kun e kiihyy 0-100 km/h ajaa 10? Maapallolla graviaaio aiheuaa painovoimakiihyvyyden. jonka arvo on 9,81 m/. Kuva 4. Painovoima aa aikaan kiihyvyyden puoavaan kappaleeeen Rakaiu: 1. a =?. v 1 = 0 v =100 km/h = 10 3. v v1 a 4. Ei muuokia kaavaan. 5. Nopeuden muuo ykikköön m/ m 100km/ h 0,77 7, 7 m km h 6. Kiihyvyyden lakeminen 7,7 m 0 a,77 m 10 Lakueimerkki: Kivi pudoeaan ala ornia. Mikä on en nopeu 3 kuluua? Rakaiu: 1. v=?. =3 ; g=9,81 m/ ; v1=0 3. v g v 1 Koka v 1 =0,voidaan e jäää poi kaavaa. Käyöoikeu opeukea luvalla 3

Copyrigh Io Jokinen 5. v =g Lakueimerkki 6. v 9,81m / 3 9, 4m Mien uuri voima arviaan kiihdyämään 1500 kg:n maainen auo kiihyvyydellä 6m/? Tulo ei oa huomioon ilman vaua. Voima Kun kappale aaeaan pyähdykiä liikkeeeen ai liikkuvan kappaleen nopeua muueaan arviaan muuokeen voimaa. Tarviavan voiman uuruu riippuu liikkeelle laieavan kappaleen maaa ja kappaleelle aaavaa kiihyvyydeä. On elvää, eä uuren maan liikkeelle aaaminen vaaii enemmän voimaa kuin pienen maan liikkeelle aaaminen. Samoin uuren kiihyvyyden aikaanaaminen vaaii enemmän voimaa, koka juuri kiihyvyyden liäy anaa kappaleelle liää nopeua. Voima on maa kerrouna kiihyvyydellä eli: F miä m a F= voima ( kgm/ = N) m= maa ( kg ) a= kiihyvyy ( m/ ) Voiman ykikkö on Newon ( N ) Kuva 3. Voima aa aikaan kiihyvyyden Rakaiu: 1. F=. m=1500 kg a=6m/ 3. F=m a 4. Ei kaavan muokkaua 5. F=1500 kg 6 m/= 9000kgm/ = 9 kn Lakueimerkki: Mopo kiihyy nopeudea 15 km/h nopeueen 45 km/h 5 ekunnia. Mopon ja kuljeajan maa on yheenä 150 kg. Mien uuri voima kiihdyykeen arviaan? Rakaiu: 1. F =?. v1=15 km/h ( = 4,165 m/) v=45 km/h ( = 1,49 m/ ) = 5 m = 150 kg 3. F = m a ; a=(v- v1) / 4. Kaavan ijoiu oieen kaavaan: F = m (v- v1) / ) 5. F = 150kg [(1,49 m/ 4,165 m/) / 5 ]= 50 kgm/= 50 N Käyöoikeu opeukea luvalla 4

Copyrigh Io Jokinen Lakueimerkki: Auon mooori kykenee uoamaan 4000 N voimalla 6 m/ kiihyvyyden. Mikä on auon maa? Rakaiu: 1. m =?. F = 4000 N a = 6m/ Normaalivoima on kappaleen maa kerrouna puoamikiihyvyydellä. Tää kaua kappaleen maa vaikuaa kikavoimaan. F n = m G Normaalivoima on Newonin 3. lain mukaan vaakkaiuunainen kuin m g. Tämä ei vaikua kuienkaan lakuulokiin, joen yllä olevaa lakukaavaa voidaan käyää. Kuva 5. Kikavoima, aainen liike 3. F = m a 4. m = F / a 5. kgm 4000N 4000 m 667kg 6m 6m Kika Kika on liikeä vauava voima jonka aiheuajana on pinojen kokeu oiiina. Kikan uuruueen vaikuaa ainoaaan pinojen laau. Kikaa on kahdenlaia; lepokikaa ja liikekikaa. Lepokika on liikekikaa uurempaa mikä huomaaan mm. yönneäeä jokin kappale liikkeelle. Alua kappale on vaikea aada liikkeeeen lepokikan vuoki, mua kun e on aau liikkeeeen e liikkuu helpommin. miä F Fn = kikakerroin Fn = normaalivoima ( N ) Fu = kikavoima ( N ) Kuva 6. Kikavoima, kiihyvä liike Sekä lepokikalla eä liikekikalla on pinojen laadua riippuva kikakerroin. Kikakerroin on kikavoiman uhde normaalivoimaan. µ = Fu / Fn,miä µ= kikakerroin Fn = normaalivoima ( N ) Fu = kikavoima ( N ) Käyöoikeu opeukea luvalla 5

Copyrigh Io Jokinen Kuva 7. Hidauva liike Työ Työ määriellään euraavai: W = F miä W = yö F = voima = voiman uunnaa kuljeu maka Kikaa pyriään vähenämään koneen oia voielulla ja ekemällä kappaleiden pinna ileiki. Kun kika on pieni eivä oa kulu eiväkä kuumene kikan vaikuukea. Kikaa pyriään liäämään kun haluaan eim. pioa auon renkaiiin ai laiapinnoieiden ja kenkien välille. Kikan uuruu riippuu aina molempien pinojen yheivaikuukea. Lakueimerkki: Kelkan ja jään välinen kikakerroin on 0,08. Kelkan maa on 10 kg. Mien uurella voimalla kelkkaa on yönneävä, joa nopeu pyyy vakiona ( amana)? 1. F=? Työ kappaleen liikuamiea Kun kelkkaa vedeään ieyllä voimalla laiaa pikin, ehdään yöä. Työn määrä riippuu arviavaa voimaa joka aa riippuu kelkan ja laian välieä kikaa ja vedeävän kelkan maaa. Jo kikakerroin on uuri arviaan enemmän voimaa ja amalla ehdään enemmän yöä. Jo vedeävän kelkan maa liäänyy niin amalla liäänyy myö yö. Samoin jo kelkkaa vedeään pidempi maka niin yö liäänyy. Kuva 6. Työ vedeäeä ai yönneäeä kappalea. m = 0,08 m = 10 kg a = 0 3. Fu = m Fn Fn = m g Koka nopeu ei muuu on kikavoiman ja yönövoiman olava yhä uuria. Näin ollen: Fu = F 4.Sijoieaan kaava Fn = m x g kaavaan Fu = m Fn ;aadaan F= µ x m x g 5. F = 0,08 10 kg 9,81 m/ = 1177, N Työnnöä ai vedoa yön määrään vaikuava ii: - Kappaleen maa ( m ) - Painovoima ( g = vakio ) - Maka ( ) - Kikakerroin (µ ) Huomaa eä aika ei vaikua yön määrään. Käyöoikeu opeukea luvalla 6

Copyrigh Io Jokinen Lakueimerkki Iä veää laaan pulkaa 300 m makan. Lapen ja pulkan yheimaa on 35 kg ja pulkan ja lumen välinen kikakerroin 0,. Mien uuren yön iä ekee? 1. W=?. = 300m m = 35 kg µ = 0, 3. W = F F = µ m g 4. Sijoieaan kaava F = µ m g kaavaan W = F aadaan: W = µ m g 5. W = 0, 35 kg 9,81m/ 300 m = 0601 Nm Työ nooa Kun joain kappalea noeaan ylöpäin arviaan nooon voimaa, koka maan veovoima vauaa nooa. Kuva 7. Työ noeaea kappalea Nooyön määrään vaikuava ii: - Kappaleen maa ( m ) - Nookorkeu ( h ) - Painovoima ( g = vakio ) Lakueimerkki Mie noaa 30 kg maalipurkin maaa 80 cm korkealle pöydälle. Mien uuren yön hän ekee? 1. W =?. m = 30 kg g = 9,81m/ h = 0,8 m 3. W = m x g x h 4. Ei kaavamuuokia ai ijoiukia 5. W= 30 kg x 9,81m/ x 0,8 m = 35,44 Nm Teho Teho on ehy yö jaeuna yöhön kuluneeeen aikaan eli P miä W W Nm P = eho ( Nm / =W ) W= ehy yö ( Nm ) = yöhön käyey aika ( ) Tehon ykikköä on Wai ( W ) Koka yö on voima keraa maka ( W = F S ), niin eho voidaan lakea myö kaavalla: F P W N m Käyöoikeu opeukea luvalla 7

Copyrigh Io Jokinen Teho nooa Noeaea kappalea ylö ehdään yöä. Jo kappale noeaan hiaai ai nopeai amalle korkeudelle ehdään ama yö. Nopeaa nooa on kuienkin eho uurempi vaikka yö onkin ama koka noo ehdään nopeammin. Lakueimerkki Maalari kiipeää poraia kädeään 0 kg painava maalipurkki 5 m 15 ekunnia. Maalarin oma paino on 60 kg. Mikä on eho nouua? 1. P=?. m = 0 kg + 60 kg = 80 kg h = 5 m = 15 3. W = m x g x h Sijoiu: 4. 5. W P P m g h 80kg9,81m / 5m P 61W 15 Paine Kun voima vaikuaa pinaan aiheuaa e paineen. Paine on ii voima jaeuna pinaalalla. Paineen ykikkö on Pacal. Miä uurempi on voiman vaikuu pinaalaan nähden, iä uurempi on paine. Eim. jo uhannen kilon paino on 1 cm:n alan päällä on paine aluaa vaen 100 keraa uurempi kuin jo paino olii 1 dm :n alan päällä. Lakueimerkki Mikä on 60 kg:n aiheuama paine pinaan kun paino kohdiuu 1 cm:n alalle? 1. P=?. m=60 kg A=1 cm ; 1 cm =0,0001 m 3. F = m x a 4. Sijoieaan kaava F = m a kaavaan P = F/A 5. P P F A F A N m P m g A Pa 6. m 60kg 9,81 P 5886000Pa 0,0001m Käyöoikeu opeukea luvalla 8

Copyrigh Io Jokinen Puriu ja veo Kun voima painaa pinaa oia pinaa vaen on pinojen välille paine joka on puriua. Kun voima veää pinaa iri oiea pinnaa on pinojen välillä paine joka on veoa. Puriu ja veo ova oiena vaakohia. Molempien ykikköinä on paineen ykikkö Pacal. Kuva 8. Puriu ja veo Lakueimerkki: Mien uura maaa vaaavan paineen ilman paine aiheuaa neliömerin alalle? 1. m=?. A=1m P=101kPa=101000 Pa 3. P= F/A ; F=m g 4. Sijoiu: P m g A Kaavan muokkau: P A m g 5. Lakeminen Ilmanpaine Maapallon ilmakehällä on maa. Ilman maa aiheuaa ilmakehän paineen joka on meren pinnan korkeudella n. 101 kpa. Kun nouaan ylemmä merenpinnaa ilman paine lakee, koka yllä olevan ilman määrä ja maa vähenee koko ajan ylöpäin menäeä. Ihminen ei havaie ilmakehän painea, koka en vaikuu on joka uunaan ama. Liikkeeä ilman olemaaolo on helpoi havaiavia ilman vaukena. Kaau puriuva kaaan paineen vaikuukea. Tällöin niiden paine kavaa. Samaa yyä ilman ihey alenee kun nouaan ylöpäin merenpinnan aoa. Kaikki ykikö on muueu peruykiköiki, jolloin voidaan upiamalla odea eä vaauken ykikkö on oikea.. kgm 101000 1m m m 1095kg m 9,81 Tulokea on havaiavia eä ilmakehän paine on neliömerinpina-alaa kohden on uuri. Se vaaa uunnilleen veden aiheuamaa painea kymmenen merin yvyydeä. Maalin arunaa aluaan voidaan miaa veokokeella. Hyvin aluaan arunu maali keää veoa MP:a. Koe ehdään liimaamalla veonuppi maalipinaan ja liiman kuivuua nuppia vedeään iri laieella joka näyää murumiheken vedon ( paineen ). Käyöoikeu opeukea luvalla 9