FERMIONIJÄRJESTELMÄT (AH 9.1, 9.2) Metallien johtavuuselektronit

Samankaltaiset tiedostot
FERMIONIJÄRJESTELMÄT (AH 9.1, 9.2) Metallien johtavuuselektronit

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

FYSA242 Statistinen fysiikka, Harjoitustentti

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Kvanttifysiikan perusteet 2017

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

H7 Malliratkaisut - Tehtävä 1

10. Kvanttikaasu. Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi kl Huone: FL240. Ei kiinteitä vastaanottoaikoja.

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1 Eksergia ja termodynaamiset potentiaalit

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

766334A Ydin- ja hiukkasfysiikka

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

BOSONIJÄRJESTELMÄT (AH 8.1, 8.2) Bosekondensaatio

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

S Fysiikka III (EST) Tentti ja välikoeuusinta

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

S , Fysiikka III (Sf) tentti/välikoeuusinta

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

8. Klassinen ideaalikaasu


S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017

Maxwell-Boltzmannin jakauma

766334A Ydin- ja hiukkasfysiikka

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Shrödingerin yhtälön johto

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Teddy 7. harjoituksen malliratkaisu syksy 2011

PHYS-A0120 Termodynamiikka syksy 2016

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k

766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)

S , Fysiikka III (S) I välikoe Malliratkaisut

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

Voima ja potentiaalienergia II Energian kvantittuminen

S , Fysiikka III (Sf) tentti/välikoeuusinta

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Elektrodynamiikka, kevät 2008

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

y 2 h 2), (a) Näytä, että virtauksessa olevan fluidialkion tilavuus ei muutu.

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

Ydinfysiikkaa. Tapio Hansson

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

4.0.2 Kuinka hyvä ennuste on?

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia.

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Matematiikan tukikurssi

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016

Suhteellisuusteorian perusteet, harjoitus 6

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

ELEC C4140 Kenttäteoria (syksy 2015)

KLASSISISTA REAALIKAASUISTA (AH 10.1)

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Kiinteiden materiaalien magneettiset ominaisuudet

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

Statistinen fysiikka, osa B (FYSA2042)

Aikariippuva Schrödingerin yhtälö

Varatun hiukkasen liike

Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

Kvanttifysiikan perusteet, harjoitus 5

= 84. Todennäköisin partitio on partitio k = 6,

8. MONIELEKTRONISET ATOMIT

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

KIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT

TILASTOLLISEN KVANTTIMEKANIIKAN PERUSTEITA (AH ) Mikrotilat (kertausta Kvanttimekaniikan kurssilta)

y + 4y = 0 (1) λ = 0

Transkriptio:

FERMIONIJÄRJESTELMÄT (AH 9., 9.) Metallien johtavuuselektronit Tyypillinen esimerkki lähes ideaalisesta fermionisysteemistä on metallin johtavuuselektronien muodostama järjestelmä. Metallissa atomien ulkokuorten elektronit ovat vain heikosti sidottuja tiettyyn ytimeen ja voivat liikkua melko vapaasti metallin sisällä. Ne vuorovaikuttavat toistensa sekä atomiytimien kanssa pitkän kantaman Coulombin vuorovaikutuksen kautta, jossa taustakentän muutokset ovat varsin pieniä ja hitaita. Siispä elektronien voidaankin approksimoida liikkuvan vakiokentässä, eikä takaisinkytkentää tarvitse huomioida. Kvanttimekaaniset efektit sen sijaan ovat huomattavia, koska kuten tuonnempana huomataan, normaalioloissa metallin johtavuuselektronien muodostama systeemi on varsin kylmä ja tiheä verrattuna sen luonnollisiin energia- ja pituusskaaloihin. Lämpötila T = Tarkastellaan aluksi täysin degeneroitunutta fermikaasua, jolle pätee >, /T. Rajalla T = miehityslukufunktio n = e β(ε ) + selvästi redusoituu askelfunktioksi n = θ( ε) θ(ε F ε) missä olemme merkinneet symbolilla ε F n T = ns. Fermi-energiaa, ε F =. Tämä erittäin merkittävä suure kirjoitetaan usein muodossa T = pieni ε ε F = = p F m ħ k F m, jossa olemme määritelleet myös Fermi-impulssin p F. Nollalämpötilan rajalla siis kaikki tilat relaation p F = m määrittelemään Fermi-pintaan asti ovat miehitettyjä ja sen ulkopuolella täysin miehittämättömiä.

Siirrytään seuraavaksi aiempia tuloksia käyttäen suoraan jatkumoapproksimaatioon, jossa yksihiukkastilatiheys on tunnetusti ω (ε) = πgv ( m h ) 3/ ε, missä elektroneille spindegeneraatio g =. Häviävän lämpötilan rajalla tästä saadaan systeemin kokonaishiukkasmääräksi N = n (ε)ω (ε)dε = 4πV ( m 3 ε F h ) εdε = 8π 3 (mε F h ) 3 V eli fermienergia ε F voidaan kirjoittaa hiukkastiheyden n avulla muodossa ε F = h /3 m (3n 8π ). Vastaavasti saadaan laskettua systeemin sisäinen energia E = n (ε)ω (ε)εdε = 4πV ( m 3 ε F h ) ε 3/ dε = 8π 3 5 (m h ) 5/ εf V = 3 5 Nε F ja paine suuren potentiaalin kautta pv = Ω = T ln Z G = T 4π ( m 3 h ) V ε ln [ + e ε T ] dε, joista jälkimmäisessä = ε F ja nollalämpötilaraja on vielä ottamatta. Jälkimmäisen yhtälön voisi liittää aiempiin tuloksiin suorittamalla yksi osittaisintegrointi, mutta tuloksen näkee suoremminkin: kun T, pätee selvästi joten saamme ln[ + e (ε ε F)/T ] { (ε F ε)/t, ε < ε F, ε > ε F pv = 4π ( m h ) 3/ ε F ε F V ε(ε F ε)dε. Vertaamalla tätä tulosta N:n ja E:n lausekkeisiin nähdään, että

mikä on tuttu ideaalikaasutulos. pv = Nε F E = Nε F 3 5 Nε F = 5 Nε F = 3 E, Saatuja tuloksia on mielenkiintoista verrata aluksi esitettyyn väitteeseen, että systeemi on normaalioloissa kylmä ja tiheä (mikä oikeutti T = approksimaation). Jos määritellään tiettyä fermienergiaa vastaava ns. degeneraatiolämpötila T F = ε F ja edelleen elektronikaasun tiheyttä kuvaava parametri r i s.e. 4πr i 3 = V/N, niin tyypillisille metalleille T F ~ 5 K ja r i on puolestaan vain tekijällä -5 isompi kuin Bohrin säde, a.5å. Varsinkin approksimaatio /T on siis normaalioloissa erittäin tarkkaan pätevä. 3 Matalat lämpötilat Voidaksemme tarkastella fermionisen kaasun ominaisuuksia pienillä, mutta nollasta poikkeavilla lämpötiloilla (sekä esim. löytääksemme lämpökapasiteetin nollalämpötilarajalla) on ylläoleva tarkastelu ulotettava askelfunktiomuodon omaavan miehityslukufunktion ympärillä suoritettavaksi matalan lämpötilan kehitelmäksi. Tätä silmälläpitäen oletetaan nyt funktio f(ε) tasaiseksi ja analyyttiseksi, ja tutkitaan integraalin f(ε) I = dε f(ε)n (ε) = dε e β(ε ) + käytöstä kun suhde T/ on pieni mutta nollasta poikkeava. Merkitsemällä β(ε ) = z saadaan I = T dz /T f( + Tz) e z + f( + Tz) = T dz e z + /T + T dz f( Tz) e z + missä jälkimmäisessä termissä on vaihdettu z z. Seuraavaksi käytetään tulosta jonka avulla e z + = e z + 3

T I = T dz f( Tz) + T dε f(ε) + T dz [ dz f( + Tz) e z + T f( + Tz) f( Tz) e z + f( Tz) dz e z + ] Tässä on ensimmäisessä termissä kirjoitettu Tz ε ja jälkimmäisessä hyödynnetty sitä, että T rajalla voidaan eksponentiaalisella tarkkuudella viedä kolmannen integraalin yläraja /T. Selvästikin ensimmäinen termi edustaa koko integraalin nollalämpötilarajaa, kun taas jälkimmäinen tuottaa korjauksia siihen. Kehitetään seuraavaksi jälkimmäisen termin integrandi sarjaksi muodossa jolloin saadaan I:lle f( + Tz) f( Tz) = f ()Tz + 3 f ()(Tz) 3 +,. I dε f(ε) + T dz f ()Tz + 3 f ()(Tz) 3 e z + +. Tässä esiintyy muotoa dz z x e z + olevia integraaleja, joissa x on parillinen kokonaisluku. Nämä voidaan laskea (yleisellä x:llä) hyvin samankaltaisin metodein kuin bosonisessa tapauksessa: dz e z + = dz z x = ( ) n dz z x e z(n+) n= z x e z + e z = dz zx e z ( e z ) n = ( ) n n= n= (n + ) x dt tx e t 4

= Γ(x) ( ) n+ n= n x Summa voidaan laskea erottelemalla siitä parilliset ja parittomat luvut ( ) n+ n= n x = (m + ) x m= (l) x l= = (m + ) x + (m) x (l) x m= m= l= = n x x l x n= l= = ( x )ζ(x). Kaikkiaan on siis saatu dz e z + = ( x )Γ(x)ζ(x), z x josta tarvitsemme käytännössä vain pari ensimmäistä parillista x:n arvoa (joille ζ() = π 6 dε, ζ(4) = π4 ). Lopputuloksena on ns. Sommerfeldin kehitelmä 9 f(ε) e β(ε ) + = f(ε)dε + π T 6 f () + 7π4 T 4 36 f () +, jota tulemme seuraavaksi käyttämään laskiessamme fermikaasujen ominaisuuksia matalissa lämpötiloissa. Hiukkasmäärä ja kemiallinen potentiaali Systeemin hiukkasten kokonaismääräksi saadaan ε / N = C V e β(ε ) dε; + C = 4π ( m h ) 3/ = C V ( ε / dε + π T 6 dε / dε + ) 5

= C V ( 3 3/ + π T + ). Koska systeemin kokonaishiukkasmäärä ja tilavuus ovat lähes aina vakioita, on tulos tulkittava siten, että ääreellisessä lämpötilassa :n arvo eroaa sen nollalämpötilarajasta, joka on määritelmällisesti Fermi-energia (T = ) = ε F. Kirjoitetaan siis = ε F +, jossa on lämpötilan aikaansaama siirtymä, jolloin yltä saadaan N = C V ( 3 (ε F + ) 3/ π T + ε F + + ) = C V ( 3 ε 3/ F + ε / F + π T / ε + ). F Koska ensimmäinen termi toisaalta vastaa T = tulosta N = C V ε 3/ 3 F, voidaan identifioida = π T ε F ja siten kirjoittaa ε F π T = ε ε F [ π F ( T ) ], T F missä T F = ε F on aiemmin määritelty Fermilämpötila. Sisäinen energia ja lämpökapasiteetti Seuraavaksi lasketaan systeemin sisäinen energia, joka saadaan integraalista ε 3/ E = C V dε e β(ε ) = C + V ( 5 5/ + π T 3 6 + ) = C V ( 5 ε 5/ F + ε 3/ F + π T 4 ε / F + ) = C V ( 5 ε 5/ F + π T 6 ε / F + ), missä olemme kolmannen yhtäsuuruusmerkin kohdalla käyttäneet yllä johdettua kemiallisen potentiaalin lauseketta lämpötilan funktiona. Tästä saadaan edelleen helposti laskettua energiaksi hiukkasta kohti 6

E N = 3 5 ε F + π T 4 T F sekä lämpökapasiteetiksi C V = ( E T ) V = N π joka riippuu lineaarisesti lämpötilasta. Tätä kannattaa verrata vastaavaan tulokseen klassiselle MB-ideaalikaasulle, jolle C V on vakio. Matalan lämpötilan fermisysteemin pienen lämpökapasiteetin voi ymmärtää Paulin kieltosäännön kautta: suurin osa elektroneista on sidottuina fermipallon sisälle, ja vain fermipinnan lähellä olevat moodit kontribuoivat suureeseen termisten fluktuaatioiden kautta. Matalan lämpötilan rajalla fermisysteemin ominaisuudet siis riippuvat vain suhteellisen heikosti T:stä. T T F, Paulin paramagnetismi Elektronien spinin ja magneettikentän välinen vuorovaikutus tuottaa aineeseen magnetoituman, jota kutsutaan Paulin paramagnetismiksi. Sille on ominaista magnetoituman välitön häviäminen magneettikentän poistuessa, mikä erottaa sen ferromagnetismista, jossa magnetoituma jää aineeseen myös sen jälkeen kun ulkoinen kenttä häviää. Paramagnetismi voidaan johtaa lähtien yksittäisen elektronin potentiaalienergiasta magneettikentässä, V = B, missä on elektronin magneettinen momentti. Spinin avulla lausuttuna voidaan kirjoittaa = γs γ s, missä γ = e on ns. klassinen gyromagneettinen suhde (se saa pieniä QED:n kautta laskettavissa olevia vuorovaikutuskorjauksia) ja spinin magneettikentän suuntainen komponentti s z = ± ħ. Määritellään nyt ns. Bohrin magnetoni B = eħ m, jolloin potentiaalienergiaksi tulee B = ± B B ja yksihiukkasenergioiksi edelleen m 7 ε p± = p m ± BB ε p ± B B.

Magneettikenttä siis poistaa spiniin liittyvän degeneraation lisäten samalla antiparalleelien elektronien määrää magneettikentän suuntaisiin spineihin verrattuna. Tämä nähdään helpoimmin miehitysluvuista n p± = e β(εp± ) + = e β(ε p± B B ) +, mikä luonnollisesti aiheuttaa systeemiin magnetoituman. Tarkastellaan ilmiötä seuraavaksi suuren potentiaalin avulla, joka saa muodon Ω = T ln[ + e β(ε l ) ] l = T (ln [ + e β(ħ k m + BB ) ] + ln [ + e β( ħ k m BB ) ]). k Koska magneettikenttä effektiivisesti vain muuttaa kemiallista potentiaalia, voidaan Ω lausua nollakentän suuren potentiaalin Ω avulla muodossa: Ω = Ω ( B B) + Ω ( + B B) Ω + ( BB) Ω + Oletetaan nyt, että kenttä on heikko, B B, jolloin riittää tarkastella sarjan kahta ensimmäistä termiä. Koska ( Ω ) V,T = N, saadaan josta relaation Ω Ω ( BB) ( N ) V,T ( Ω B ) T,V = B B ( N ), V,T dω = SdT VM db + avulla saadaan magnetoituma kirjoitettua muodossa M = V ( Ω B ) T,V = B B V ( N ) T,V Tästä saadaan edelleen paramagnaattinen suskeptiivisuus = B H V ( N ). T,V 8

χ para = ( M H ) = B T,V V ( N ). B= T,V Nollalämpötilan rajalla hiukkasmäärä voidaan toisaalta kirjoittaa muodossa N = ω (ε)dε V ( N ) T,V = V ω () D(), jossa olemme merkinneet tilatiheyttä fermipinnalla symbolilla D. Paulin paramagneettinen suskeptiivisuus saa siis Curien laista huomattavasti poikkeavan muodon χ para = B D(). Tulos saa lisäksi merkittävän korjauksen elektronien liikkeestä magneettikentässä, joka aiheuttaa diamagneettisen magnetoituman χ dia = 3 χ para. Yhteensä pätee siis (tällä tarkkuudella) χ = 3 B D(). Relativistinen elektronikaasu Tarkastellaan seuraavaksi elektronikaasua relativistisella rajalla, jossa hiukkasten kineettinen energia on samaa suuruusluokkaa tai suurempi kuin niiden lepomassa. Elektronin relativistinen energia on m c 4 + p c = mc + ( p mc ) = mc + p m +, missä m on sen lepomassa ja mc =.5 MeV vastaava lepoenergia, ja viimeisessä vaiheessa olemme ekspandoineet tulosta epärelativistisella rajalla. Elektronin Compton-aallonpituus on puolestaan λ c = π =.43 m, missä k c k c = mc =.59 ħ m, joten käyttämällä yhtälöä p = ħk saadaan elektronin energia kirjoitetuksi muotoon 9

ε k = ( ħk c c ) c 4 + c (ħk) = ħc k c + k. Vapaiden hiukkasten tasoaallot vastaavat k-avaruudessa samaa pistejoukkoa k = π L (n x, n y, n z ) kuin epärelativistisessa tapauksessa, joten degeneroituneella rajalla (T = ) on hiukkastiheydelle edelleen voimassa tuttu tulos n = N V = 8π 3 3 (mε F h ) 8π = 3 ( k F 4π ) 3 = k F 3 3π, missä olemme jälleen merkinneet ε F p F = ħ k F. Suhteellisuusteoreettiset m m korjaukset on otettava huomioon rajalla k F k c tai n F n c, jossa n c = k c 3 3π = 5.87 35 m 3. Vertailun vuoksi mainittakoon, että metallin elektronikaasulle n 9 m 3, joten tämä arkipäiväinen systeemi on hyvin epärelativistinen. Määritetään nyt joitakin termodynaamisia suureita kylmälle ja tiheälle reletivistiselle elektronisysteemille, jolle T T F = ε F = ( 3 keskimääräiseksi energiaksi saadaan 8π N V )/3 h. Elektronien m ε = 4π k F dk k ħc k + k c k 4π F dk k X dx x x + = ħck c X dx x = 3mc X 3 dx x x + X jossa olemme merkinneet k = k c x, k F = k c X. Integrandille x x + saadaan toisaalta sarjakehitelmät x : x + x4 8 x6 + O(x 8 ), x : x 3 + x 8x + O ( x 3),

joista saadaan (huomaa, että isoilla X:n arvoilla integraali saa ylivoimaisesti suurimmat kontribuutionsa suurilta x:ltä) X dx x x + = { 3 X3 + X5 56 X7 + O(X 9 ) 4 (X4 + X ) 8 ln X + O ( X 4) Erikoistutaan nyt ultrarelativistiseen tapaukseen, jossa k F k c ja n n c eli X. Energia per hiukkanen on tällöin ε = 3mc X 3 [ 4 (X4 + X ) 8 ln X + O ( X 4)] = mc [ 3 4 X + 3 4X 3 ln X + ] 8X3 3 4 mc k F k c = 3 4 ħc k F = 3 4 ħc (3π n) /3. Energiatiheydelle saadaan puolestaan ja paineelle E V = Nε V = nε = 3 4 ħc (3π ) /3 n 4/3 p = E V = V [3 4 ħc (3π ) /3 N 4/3 V /3 ] = 4 ħc (3π ) /3 n 4/3 = E 3 V, kuten ultrarelativistiselle systeemille pitääkin (vrt. fotonikaasun paine). Korjaukset tilanyhtälöön ovat verrannollisia pienen parametrin m/ε F potensseihin. Toisin kuin bosonisessa tapauksessa, kylmän fermiaineen paine riippuu vahvasti tilavuudesta. Ylläkuvatun kaltaista kylmää ja tiheää elektroniainetta löytyy ns. valkoisten kääpiötähtien sisältä, jotka syntyvät kun tavallinen tähti on kuluttanut polttoainevarantonsa loppuun ja luhistunut kasaan. Valkoisissa kääpiöissä vain elektronien fermipaine estää tähden luhistumisen edelleen joko neutronitähdeksi tai mustaksi aukoksi. Valkoisten kääpiöiden sisärakenne voidaan selvittää varsin tarkasti tarkastelemalla hydrostaattista tasapainotilaa, jossa elektronien degeneraatiopaineen ja painovoiman aikaansaamat voimat balansoivat toisensa.