MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24
Mikä on pinta? Esimerkkejä. Pallon kuori, ellipsoidi Torus, xy-taso (rajoittamaton) Parabloidi (rajoittamaton) Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 2 / 24
Parametrisoitu pinta Olkoon D R 2 alue ja r : D R 3. Voidaan kirjoittaa r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, (u, v) D. Tällöin r(d) = {r(u, v) R 3 : (u, v) D} on parametrisoitu pinta, mikäli vektorit r(u, v), u r(u, v) v ovat lineaarisesti riippumattomia kaikilla (u, v) D. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 3 / 24
Esimerkki Olkoon r : R 2 R 3 funktio r(u, v) = ui + vj + (u 2 + v 2 )k R 3. Tällöin r(r 2 ) on parametrisoitu pinta, koska vektorit ovat lineaarisesti riippumattomia. r = i + 2uk ja u v r = j + 2vk Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 4 / 24
Esimerkki Olkoon r : R 2 R 3 funktio r(u, v) = 0 R 3. Nyt r(r 2 ) on origon sisältävä yhden pisteen joukko, eli Tässä u r = 0, ovat lineaarisesti riippuvia. r(r 2 ) = { 0} R 3. Siten r(r 2 ) ei ole parametrisoitu pinta. v r = 0, Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 5 / 24
Esimerkki Olkoon r : R 2 R 3 funktio r(u, v) = vk. Tällöin r(r 2 ) = {r(u, v) : (u, v) R 2 } = {vk : v R}. Siis r(r 2 ) on käyrä (z-akseli). Siten vektorit u r, v r, ovat lineaarisesti riippuvia, ja r(r 2 ) ei ole parametrisoitu pinta. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 6 / 24
Huomautuksia Jos r(d) R 3 on parametrisoitu pinta, niin vektorit ovat pinnan tangenttivektoreita. u r ja v r Vaatimus lineaarisesta riippumattomuudesta takaa, että pinnalla on jokaisessa pisteessä (yksikäsitteinen) kaksiulotteinen tangenttitaso. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 7 / 24
Normaalivektori Oletetaan, että r : D R 3 määrää parametrisoidun pinnan r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k, (u, v) D. Asetetaan n: D R 3 n(u, v) = r(u, v) r(u, v). u v Jos a, b R 3 ovat vektoreita, niin a (a b) = 0 ja b (a b) = 0. Siten n(u, v) on kohtisuorassa vektoreihin r(u, v), u r(u, v). v Tästä seuraa, että n(u, v) on kohtisuorassa r:n tangettitasoon nähden, eli parametrisoidun pinnan normaali pisteessä (u, v). Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 8 / 24
Lauseke normaalivektorille Lasketaan u r = x(u, v)i + y(u, v)j + z(u, v)k. u u u ja v r = x(u, v)i + y(u, v)j + z(u, v)k. v v v Voidaan kirjoittaa i j k n(u, v) = det. u x v x u y v y u z v z Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 9 / 24
Funktion kuvaaja parametrisoituna pintana Olkoon D R 2 alue ja r : D R 3 funktio, joka on muotoa r(u, v) = ui + vj + f (u, v)k jollakin derivoituvalla funktiolla (skalaarikentällä) f : D R. Tällöin r(d) on aina parametrisoitu pinta, koska vektorit u r = i + u f k ja v r = j + v f k ovat lineaarisesti riippumattomia. Pinnan r(d) normaalivektori on n(u, v) = u r v r = u f i v f j + k. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 10 / 24
Yleinen pinta Yleinen pinta saadaan liimaamalla yhteen äärellisen monta parametrisoitua pintaa. Esimerkkejä: pallo, kuutio. Pinnalla voi olla myös reuna. Jos pinnalla ei ole reunaa, niin pintaa sanotaan suljetuksi (vrt. suljettu käyrä). Esimerkiksi pallo ja kuutio ovat suljettuja pintoja. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 11 / 24
Funktion pintaintegraali 1/2 Oletetaan, että funktio r : D R 3, D R 2 määrää pinnan S = r(d). Lisäksi oletetaan, että pinta on valmistettu levystä, jonka massa määräytyy funktiosta g : S R, yksikkönä esim. kg/m 2. Tehtävänä on laskea pinnan S massa. Ajatellaan pientä koordinaattiakselien suuntaista suorakaidetta tasossa, jonka sivujen pituudet ovat du ja dv. Tutkitaan suorakulmion kuvautumista parametrisoinnissa r. Pisteessä (u, v) kuvajoukkoa voidaan approksimoida suunnikkaalla ds, jonka sivut ovat a = r(u + du, v) r(u, v) = r du ja b = u v r du. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 12 / 24
Funktion pintaintegraali 2/2 Lasketaan suunnikkaan ds pinta-ala: ds = a b = u r v r du dv = n du dv. Suunnikkaan ds massa siis on noin g ( r(u, v) ) n(u, v) du dv. Pinnan S kokonaismassa on siis g(r(u, v)) n(u, v) du dv = g ds. D S Määritelmä: Tällöin sanotaan, että g ds on funktion g pintaintegraali pinnan S yli. S Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 13 / 24
Funktion kuvaaja Oletetaan, että r : D R 3 on muotoa jollakin funktiolla f : D R. Tällöin = D S r(u, v) = ui + vj + f (u, v)k, g ds = D g(r(u, v)) n(u, v) du dv ( ) 2 ( ) 2 g(r(u, v)) u f + v f + 1 du dv. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 14 / 24
Pinta-alan laskeminen Erityisesti funktiolle g(u, v) = 1 saadaan ( ) 2 ( ) 2 1 ds = u f + v f + 1 du dv mikä on S:n pinta-ala. S Tulos pätee myös yleisille pinnoille. D Vrt. käyrän pituus ja integraali kaarenpituuden suhteen. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 15 / 24
Esimerkki Lasketaan funktion F (x, y, z) = z integraali yli kartiomaisen pinnan z = x 2 + y 2, kun z [0, 1]. Saadaan z/x = x/z ja z/y = y/z. Siten ds = 1 + x 2 z 2 + y 2 dx dy = z2 z2 + z 2 dx dy = 2 dx dy. Koska z = x 2 + y 2 = r, kannattaa käyttää napakoordinaatteja laskuissa: z ds = 2 z dx dy = ˆ 2π ˆ 1 2 dθ r 2 dt = 2 2π. 3 S x 2 +y 2 1 z 2 0 0 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 16 / 24
Suunnistetut pinnat ja vuointegraalit Kysymys: Mikä on nesteen vuo pinnan läpi? Ongelma: Kuinka kiinnittää positiivinen kulkusuunta pinnan läpi? Sanotaan, että pinta S R 3 on suunnistuva, jos löytyy sellainen jatkuva vektorikenttä ˆN: S R 3, että kaikilla r S, ˆN on normaali S:lle ja ˆN(r) = 1. Jos ˆN on suunnistus, niin myös ˆN on suunnistus. Suunnistuvalla pinnalla on kaksi puolta, positiivinen ja negatiivinen. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 17 / 24
Parametrisoidun pinnan suunnistukset Olkoon S = r(d) parametrisoitu pinta, D R 2 ja r : D R 3. Tällöin n(u, v) = u r v r on normaali S:lle ja n 0. Siten S:n mahdolliset suunnistukset ovat u ˆN = ± r v r u r v r = ± n n. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 18 / 24
Funktion kuvaajat ja suunnistukset Olkoon S pinta (x, y, f (x, y)), (x, y) D, missä D R 2 ja f on funktio f : D R. Aiemmin: n = x f i y f j + k Siten S:n mahdolliset suunnistukset ovat ˆN = ± x f i y f j + k ( x f ) ( ). 2 2 + y f + 1 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 19 / 24
Huomautuksia Edellisessä +-merkki tarkoittaa, että ˆN osoittaa ylöspäin, miinusmerkki vastaavasti alaspäin. Kaikki pinnat eivät ole suunnistuvia. Esimerkki. Möbiuksen nauha. Konstruktio: leikkaa paperiliuska, käännä toista päätä puoli kierrosta pitäen toinen paikallaa ja liimaa päät yhteen. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 20 / 24
Reunan suunnistus Olkoon S pinta, jolla on suunnistus ˆN. Jos C on S:n suljettu reunakäyrä, niin C suunnistetaan (eli kiinnitetään positiivinen kiertosuunta) seuraavalla säännöllä: Määritelmä Reunakäyrän C:n positiivinen kiertosuunta on kiertosuunta, jossa pinta S jää vasemmalle puolelle, kun ollaan pinnan positiivisella puolella. Huomautus. Suunnistettuja pintoja voi liimata yhteen, kun liittymäkohdassa suunnistukset menevät vastakkain. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 21 / 24
Vektorikentän pintaintegraali eli vuointegraali 1/2 Olkoon v = Cj nopeuskenttä nesteelle ja C > 0 nesteen nopeus [m 3 /s]. Tutkitaan R-säteistä kiekkoa S, joka on xz-tasossa. Laskettava nesteen virtausnopeus eli vuo kiekon S läpi. Yhden sekunnin aikana kiekon läpi virtaa tilavuus πr 2 C, mitä voidaan havainnollistaa sylinterillä. Sylinteri esittää nestettä, joka virtaa yhden sekunnin aikana kiekon läpi. Siten vuo on πr 2 C. Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 22 / 24
Vektorikentän pintaintegraali eli vuointegraali 2/2 Tarkastellaan seuraavaksi vuota pinta-ala-alkion ds läpi. Vuo ds:n läpi on (v ˆN) ds. Kokonaisvuo on S v ˆN ds. Vektorikentän v pintaintegaali eli vuointegraali S:n yli saadaan siis laskemalla v ds = v ˆN ds. Tässä S ds = ˆN ds = ± n n du dv = ±n du dv, n missä etumerkki valitaan S:n suunnistuksen mukaisesti. S Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 23 / 24
Huomautuksia Jos S on suljettu pinta merkitään myös v ˆN ds = v ˆN ds, missä ˆN on pinnan S yksikköulkonormaali. S Huom. Jos v on yhdensuuntainen pinnan S:n (yksikkö-) ulkonormaalin ˆN kanssa, niin v ˆN ds > 0. S Huom. Jos pinnan S suunnistus vaihtuu, niin merkki vaihtuu integraalissa v ˆN ds. S S Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 24 / 24