Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Samankaltaiset tiedostot
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Johdatus matematiikkaan

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

MS-A0402 Diskreetin matematiikan perusteet

Hieman joukko-oppia. A X(A a A b A a b).

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Johdatus matematiikkaan

1 Joukkojen mahtavuuksista

Matemaattisten työvälineiden täydentäviä muistiinpanoja

1 sup- ja inf-esimerkkejä

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Miten osoitetaan joukot samoiksi?

Johdatus matemaattiseen päättelyyn

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Äärettömistä joukoista

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate

811120P Diskreetit rakenteet

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Matematiikan tukikurssi, kurssikerta 1

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

(2n 1) = n 2

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

MS-A0401 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

MS-A0402 Diskreetin matematiikan perusteet

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

1 sup- ja inf-esimerkkejä

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Johdatus matematiikkaan

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Joukot. Georg Cantor ( )

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

1 Lineaariavaruus eli Vektoriavaruus

Tehtävä 4 : 2. b a+1 (mod 3)

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

1. Logiikan ja joukko-opin alkeet

802320A LINEAARIALGEBRA OSA I

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

1 Reaaliset lukujonot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

1 Supremum ja infimum

Todistusmenetelmiä Miksi pitää todistaa?

Johdatus matemaattiseen päättelyyn (5 op)

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Johdatus matemaattiseen päättelyyn

Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13

reaalifunktioiden ominaisuutta, joiden perusteleminen on muita perustuloksia hankalampaa. Kalvoja täydentää erillinen moniste,

Johdatus matemaattiseen päättelyyn

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

5.3 Ratkeavia ongelmia

Johdatus matemaattiseen päättelyyn

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Luonnollisten lukujen induktio-ominaisuudesta

Matematiikan tukikurssi

Determinoiruvuuden aksiooma

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Matematiikka kaikille, kesä 2017

JOHDATUS MATEMATIIKKAAN

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.

1 Määrittelyjä ja aputuloksia

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

FUNKTIONAALIANALYYSIN PERUSKURSSI Johdanto

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

4. Ryhmien sisäinen rakenne

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Johdatus diskreettiin matematiikkaan Harjoitus 1,

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

Tietojenkäsittelyteorian alkeet, osa 2

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Transkriptio:

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan lukumääriä suoraan asettamalla joukkojen A ja B alkiot vastaamaan toisiaan. Matemaattisesta näkökulmasta tämä tarkoittaa bijektion g : A B muodostamista. (Esim. g(a) = d, g(b) = e ja g(c) = f.)

Yleisesti sanomme, että A ja B ovat keskenään yhtä mahtavia eli niihin liittyy sama kardinaaliluku, jos on olemassa bijektio joukolta A joukolle B. Merkitsemme tällöin A B. Lisäksi pitää sopia, että. (Miksi?) Huom. Vaihtoehtoisesti mahtavuuksien yhteydessä voidaan hyväksyä tyhjä funktio :, joka on selvästi bijektio. Lause 15. Olkoon X perusjoukko. Mahtavuuksien yhtäsuuruus on ekvivalenssirelaatio joukossa P(X ). Todistus. Taululla.

Sanomme, että joukko A on äärellinen, jos A {0,..., n 1} jollakin n N. (Tässä {0,..., n 1} = {m N m < n} =, jos n = 0.) Muussa tapauksessa A on ääretön. Siis intuitiivisesti joukko on äärellinen, jos siinä on n alkiota jollain n N.

Selvästi luonnollisten lukujen joukko N on ääretön: ei ole olemassa bijektiota N {0,..., n 1} millään n N. (Tämä todistetaan Joukko-opin kurssilla.) Esimerkki. N 2N = {0, 2, 4, 6,...}, sillä f : N 2N: f (n) = 2n on bijektio. N : 0, 1, 2, 3,..., n,... 2N : 0, 2, 4, 6,..., 2n,...

Luonnollisia lukuja on siis tässä mielessä yhtä monta kuin parillisia luonnollisia lukuja. Yleisesti jokainen ääretön joukko on yhtä mahtava jonkin aidon osajoukkonsa kanssa. Kokonaisuus ei siis olekaan aina osiansa suurempi. Esimerkki. Kaikki suljetut reaalilukuvälit [a, b], a < b, ovat keskenään yhtä mahtavia pistejoukkoja. Tätä voi havainnollistaa kuviollakin taululla.

Määrittelemme vielä, että joukon A mahtavuus on pienempi tai yhtäsuuri kuin joukon B mahtavuus, jos A on yhtä mahtava B:n jonkin osajoukon kanssa. Merkitsemme tällöin A B. On helppo huomata, että A B, jos ja vain jos on olemassa injektio f : A B, tai A =. Huom. Jos tyhjä injektio : B otetaan huomioon, vaihtoehtoa A = ei tarvitse mainita. Edelleen voidaan todistaa, että A B on yhtäpitävää sen kanssa, että A = tai on olemassa surjektio B:ltä A:lle. (Todistuksessa tarvitaan valinta-aksioomaa.)

Lause 16. Olkoot A, B ja C joukkoja. Tällöin Mahtavuus (r) A A. (as) Jos A B ja B A, niin A B (heikko muoto). (t) Jos A B ja B C, niin A C. (v) A B tai B A. Todistus. (r) on triviaalisti tosi, sillä A A A. (t) on helppo (injektioiden yhdistetty kuvaus on injektio). (as) on Cantorin, Schröderin, Bernsteinin lause; se ja (v) todistetaan Joukko-opin kurssilla. Huom. ei ole järjestysrelaatio, sillä antisymmetrisyydestä pätee vain heikko muoto.

Joukko, joka on äärellinen tai yhtä mahtava luonnollisten lukujen joukon kanssa, on numeroituva. Intuitiivinen kriteeri numeroituvuudelle. Joukko A on numeroituva, jos ja vain jos sen alkiot voidaan luetella. Todistus. Oletetaan ensin, että joukko A on numeroituva. Jos se on ääretön, niin on olemassa bijektio f : N A. Joukon A alkiot voidaan tällöin luetella seuraavasti: f (0), f (1), f (2), f (3),... Koska f on surjektio, niin kaikki joukon A alkiot todellakin esiintyvät luettelossa.

Jos taas A on äärellinen, niin on olemassa bijektio g : {0,..., n 1} A, jolloin sen alkiot voidaan luetella jonona g(0),..., g(n 1). Oletetaan sitten, että joukon A alkiot voidaan luetella. Jos A ei ole äärellinen, niin on kuitenkin siis on olemassa ääretön luettelo a 1, a 2, a 3,... jossa jokainen joukon A alkio esiintyy täsmälleen kerran. Tällöin f : N A, f (n) = a n+1 on bijektio.

Seuraus. Jos A ja B ovat numeroituvia joukkoja, niin niiden yhdiste A B on numeroituva. Todistus. Todistetaan väite siinä tapauksessa, että sekä A että B ovat äärettömiä. Muut tapaukset ovat samankaltaisia. Olkoon A:n alkiot lueteltuna a 1, a 2, a 3,... ja B:n alkiot lueteltuna b 1, b 2, b 3,... Poistamalla luettelosta a 1, b 1, a 2, b 2, a 3, b 3,... mahdolliset toistot saadaan lueteltua yhdisteen A B alkiot.

Induktiolla voidaan helposti todistaa, että jos A 1, A 2,..., A n ovat numeroituvia, niin yhdiste A 1 A 2 A n on myös numeroituva. Voidaan todistaa myös, että numeroituvien joukkojen ääretön, mutta numeroituva yhdiste i N A i on numeroituva. Tämän todistuksessa tarvitaan kuitenkin valinta-aksioomaa.

Lause 17. Kokonaislukujen joukko on numeroituva. Mahtavuus Todistus. Kirjoitamme joukkojen N ja Z alkiot vastaamaan toisiaan seuraavasti: N : 0, 1, 2, 3, 4,... Z : 0, 1, 1, 2, 2,... Tämän vastaavuuden määrittelee bijektio f : N Z: f (n) = { (n + 1)/2, kun n on pariton, n/2, kun n on parillinen.

Lause 18. Rationaalilukujen joukko on numeroituva. Todistus. Koska f : Q + Q, f (r) = r, on bijektio, riittää todistaa, että Q + on numeroituva. Tällöin myös Q = Q {0} Q + on numeroituvien joukkojen yhdisteenä numeroituva.

Tapa 1. Muodostamme seuraavan taulukon, jossa jokaisella Q + :n alkiolla on oma paikkansa (itse asiassa äärettömän monta paikkaa). 1 2 3 4 5 6... 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... 1/6 2/6 3/6 4/6 5/6 6/6............

Järjestämme taulukon luvut jonoon nuolten osoittamalla tavalla. Jos kohdattu luku on jo jonossa, niin sivuutamme sen. Saamme jonon 1, 2, 1 2, 1 3, 3, 4, 3 2, 2 3, 1 4, 1 5, 5, 6, 5 2, 4 3, 3 4, 2 5, 1 6,..., jossa jokainen Q + :n alkio esiintyy täsmälleen kerran. Siis Q + N.

Tapa 2. Voimme edetä myös seuraavien nuolten mukaan. Mahtavuus 1 2 3 4 5 6... 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... 1/6 2/6 3/6 4/6 5/6 6/6............

Tällöin saamme jonon 1, 1 2, 2, 1 3, 3, 1 4, 2 3, 3 2, 4, 1 5, 5, 1 6, 2 5, 3 4, 4 3, 5 2, 6,...

On olemassa myös ylinumeroituvia joukkoja, joiden mahtavuus on suurempi kuin joukon N mahtavuus. Lause 19. Reaalilukujen joukko on ylinumeroituva. Todistus. Riittää tarkastella väliä I = ]0, 1], sillä ]0, 1[ R. Itse asiassa ]0, 1] R.

Jokainen x ]0, 1] voidaan esittää desimaalikehitelmänä x = 0, a 1 a 2..., missä oikea puoli tarkoittaa lukua, jonka desimaalinumerot ovat a 1, a 2,.... Esimerkiksi 1/3 = 0, 333..., 1 = 0, 999..., 1/2 = 0, 5000... = 0, 4999.... Desimaalikehitelmä ei siis ole yksikäsitteinen päättyville desimaaliluvuille. Sovimme, että tällöin käytetään peräkkäisiin yhdeksikköihin päättyvää esitystä; siis 1/2 = 0, 4999..., 1/4 = 0, 24999....

Vastaoletus: I on numeroituva. Siis sen alkiot voidaan järjestää jonoon x 1, x 2,..., siis I = {x 1, x 2,...}. Ristiriita syntyy, kun löydämme sellaisen luvun x I, joka ei ole tässä jonossa. Muodostamme lukujen x 1, x 2,... desimaalikehitelmät

x 1 = 0, x 11 x 12 x 13..., x 2 = 0, x 21 x 22 x 23..., x 3 = 0, x 31 x 32 x 33...,. ja määrittelemme luvun y I niin, että sen desimaalikehitelmän 0, y 1 y 2... numerot ovat { 7, kun x kk 7, y k = 8, kun x kk = 7.

Lukujen y ja x 1 ensimmäiset desimaalit siis eroavat toisistaan, joten y x 1. Toisten desimaalien eroamisen perusteella y x 2, kolmansien y x 3 jne. Täten y ei voi olla joukon I = {x 1, x 2,...} mikään luku, ja näin olemme ristiriidassa sen kanssa, että y I.

Käyttämämme Cantorin diagonaalimenetelmä on hyödyllinen monissa ylinumeroituvuustodistuksissa. Kontinuumihypoteesin mukaan ei ole olemassa sellaista joukkoa, jonka mahtavuus on suurempi kuin joukon N mutta pienempi kuin joukon R. Voidaan todistaa, että kontinuumihypoteesi on riippumaton joukko-opin aksioomista. Edelleen voidaan todistaa, että joukon P(X ) mahtavuus on aina suurempi kuin joukon X. Täten äärettömiä mahtavuuksia on äärettömän monta.