MS-A0401 Diskreetin matematiikan perusteet

Koko: px
Aloita esitys sivulta:

Download "MS-A0401 Diskreetin matematiikan perusteet"

Transkriptio

1 MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto

2 Relaatiot

3 Relaatio Määritelmä 1 Relaatio joukosta A joukkoon B on mikä tahansa joukko R A B. Joukko A on relaation R lähtöjoukko, joukko B sen maalijoukko. Jos A = B, sanotaan, että R on relaatio joukossa A. Huomautus Määritelmää yllä kutsutaan usein myös binääriseksi relaatioksi. (Vastaavasti voidaan määritellä n-paikkainen relaatio joukkojen A 1,..., A n välillä joukon A 1... A n osajoukkona.) Sovelluksia mm. Relaatiotietokannat, ohjelmointikielten kääntäjät. 1 / 35 R. Kangaslampi MS-A0401

4 Relaatio Esimerkki 2 Olkoon A = {1, 2, 3, 4}. Määritellään relaatio R joukossa A säännöllä R = {(a, b) : a on b:n tekijä}. Tällöin R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. Huom: Yllä jaollisuutta (a, b) R on tapana merkitä a b. Yleisestikin relaatioon pyritään liittämään sopiva symboli (esim., =,, ) ja merkitsemään vastaavasti. Merkitsemme tällä kurssilla yleistä relaatiota a b emmekä arb kuten lähteissä. 2 / 35 R. Kangaslampi MS-A0401

5 Relaatio suunnattuna verkkona Esimerkki 3 Olkoon A = {0, 1, 2}, B = {a, b} ja R = {(0, a), (0, b), (1, a), (2, b)}. Tällöin relaatio R voidaan esittää suunnattuna verkkona kuten alla: a b Kysymys Jos A = m ja B = n, montako relaatiota on olemassa joukosta A joukkoon B? (Vastaus: 2 mn.) 3 / 35 R. Kangaslampi MS-A0401

6 Relaatioiden luokittelua Määritelmä 4 Relaatio joukossa A (merkitään ) on refleksiivinen, jos x A : x x symmetrinen, jos x, y A : x y y x transitiivinen, jos x, y, z A : (x y ja y z) x z antisymmetrinen, jos x, y A : (x y ja y x) x = y. Esimerkki 5 Joukon Z relaatio = on refleksiivinen, symmetrinen, transitiivinen ja antisymmetrinen. Joukon N relaatio (jaollisuus) on antisymmetrinen, refleksiivinen ja transitiivinen. 4 / 35 R. Kangaslampi MS-A0401

7 Ekvivalenssirelaatio Määritelmä 6 Jos relaatio on refleksiivinen, symmetrinen ja transitiivinen, sitä kutsutaan ekvivalenssirelaatioksi tai lyhyesti ekvivalenssiksi. Esimerkki 7 C-ohjelmointikielen kääntäjä tarkistaa muuttujien nimistä vain kahdeksan ensimmäistä merkkiä ja mikäli ne ovat samoja, katsoo muuttujat samoiksi. (Lähde: Rosen.) Määritellään äärellisten merkkijonojen joukossa relaatio R asettamalla (x, y) R, jos x = y tai jos x:n ja y:n kahdeksan ensimmäistä merkkiä ovat samat. Tällöin R on ekvivalenssi. 5 / 35 R. Kangaslampi MS-A0401

8 Ekvivalenssirelaatio Ekvivalenssirelaatio ilmaisee yleistä samuutta. Riippuu tilanteesta, millä kriteereillä samuus määritellään, mutta jokainen ekvivalenssirelaatio jakaa joukkonsa samojen alkioiden muodostamiin ekvivalenssiluokkiin: Määritelmä 8 Olkoon R ekvivalenssirelaatio joukossa A (merkitään ). Alkion a A ekvivalenssiluokka on joukko [a] = {x A : a x}. 6 / 35 R. Kangaslampi MS-A0401

9 Ekvivalenssirelaatio Pätee Jos joukossa A on annettu ekvivalenssi, niin sen ekvivalenssiluokat jakavat A:n erillisiin osiin. Toisin sanoen kaikille a, b A pätee joko [a] = [b] tai [a] [b] =. Tarkemmin: Book of Proof, 11.2 & 11.3, erityisesti kuva sivulla 184. (Moduloluvut ovat neljännen viikon asiaa.) 7 / 35 R. Kangaslampi MS-A0401

10 Järjestysrelaatio Vastaavasti määritellään yleinen järjestyksen käsite relaationa, joka on antisymmetrinen ja transitiivinen. Esimerkki 9 Vaatteiden pukemisjärjestys on osittainen järjestys (eng. partial order; poset = partially ordered set): tietyt vaatekappaleet kannattaa pukea ennen toisiaan, mutta ei ole yhtä yksiselitteistä järjestystä. (Kuva taululla.) 8 / 35 R. Kangaslampi MS-A0401

11 Funktiot

12 Funktio Määritelmä 10 Funktio joukosta A joukkoon B on relaatio f joukosta A joukkoon B siten, että kullekin lähtöjoukon alkiolle a löytyy täsmälleen yksi maalijoukon alkio b, jolle (a, b) f. Esimerkki 11 lähtöjoukko maalijoukko lähtöjoukko maalijoukko 9 / 35 R. Kangaslampi MS-A0401

13 Funktio Huomioita Funktio siis rajoittaa relaatiota kahdella tavalla: 1) kaikkien lähtöjoukon alkioiden on oltava relaatiossa jonkun maalijoukon alkion kanssa, 2) maalijoukon alkio on yksikäsitteinen. Tapana on funktion tapauksessa merkitä f (a) = b eikä (a, b) f. Funktiota f joukosta A joukkoon B merkitään lyhyesti f : A B. 10 / 35 R. Kangaslampi MS-A0401

14 Funktio Huomioita (jatkuu) Määritelmä tarkasti: a A, b, c B : ( f (a) = b ja f (a) = c ) b = c. Joskus funktiolle ei tarvita kirjainta; voidaan esimerkiksi ilmaista reaaliluvun korottaminen neliöön funktiona R R, x x 2. (Tässä f (a) = b on korvattu ilmaisulla a b.) Tarkemmin: Book of Proof, / 35 R. Kangaslampi MS-A0401

15 Funktio Esimerkki 12 Funktion f = {(x, 4x + 5) : x Z} Z Z määrittelyjoukko (domain) on Z maalijoukko (codomain) on Z arvojoukko (range) on {4x + 5 : x Z} = {..., 7, 3, 1, 5, 9,...} Esimerkki 13 Lukujono on funktio N R. Algoritmien nopeuksien vertailukohteena käytetään lukujonoja muotoja f (n) = log k n, f (n) = n k ja f (n) = k n (jollekin k N) sekä näiden yhdistelmiä. 12 / 35 R. Kangaslampi MS-A0401

16 Injektio, surjektio, bijektio Määritelmä 14 Funktio f : A B on injektio (tai yksi-yhteen ), jos x, y A : x y f (x) f (y) surjektio (tai peittävä ), jos b B a A : f (a) = b bijektio, jos se on sekä injektio että surjektio. Esimerkki 15 injektio surjektio bijektio 13 / 35 R. Kangaslampi MS-A0401

17 Injektio, surjektio, bijektio Esimerkki 16 Onko kuvaus f : Z Z Z, f (n) = (2n, n + 3), bijektio? Kuvaus on injektio, jos f (n) = f (m) = m = n. Nyt: f (n) = f (m) = (2n, n + 3) = (2m, m + 3) = (2n = 2m) (n + 3 = m + 3) = (n = m) (n = m) = n = m eli kuvaus todellakin on injektio. Kuvaus on surjektio, jos kaikilla (x, y) Z Z on olemassa n Z siten, että f (n) = (x, y), eli että (2n, n + 3) = (x, y). Tämä ei ole totta: esimerkiksi jos (x, y) = (2, 5), pitäisi olla samanaikaisesti 2n = 2 ja n + 3 = 5 eli n = 1 ja n = 2. Kuvaus siis ei ole bijektio. 14 / 35 R. Kangaslampi MS-A0401

18 Injektio, surjektio, bijektio Bijektiiviset funktiot voidaan kääntää: Määritelmä 17 Bijektiivisen funktion f : A B käänteisfunktio on funktio g : B A, missä g(b) on se yksikäsitteinen luku a, jolle f (a) = b. Huomioita Voidaan osoittaa, että käänteisfunktio on yksikäsitteinen (ts. jos g ja h ovat f :n käänteisfunktioita, niin g = h). Funktion f käänteisfunktiota merkitään f 1. Merkintää f 1 käytetään eri tarkoituksessa alkukuvan käsitteen yhteydessä, tästä lisää hetken kuluttua. 15 / 35 R. Kangaslampi MS-A0401

19 Injektio, surjektio, bijektio Määritelmä 18 Bijektiivistä funktiota A A (oletetaan A < ), kutsutaan joukon A permutaatioksi. Esimerkki 19 Olkoon A = {1, 2, 3}. Määritellään permutaatio f : A A asettamalla ( f (1) ) = 3, f (2) = 2, f (3) = 1. Tiiviimmin matriisina: f =. Nyt f 1 = f / 35 R. Kangaslampi MS-A0401

20 Yhdistetty funktio Määritelmä 20 Funktioiden f : A B ja g : B C yhdistetty funktio on g f : A C, (g f )(x) = g ( f (x) ). Huomioita Määritelmässä f :n maalijoukko = g:n lähtöjoukko. Määritelmä toimii myös, kun f :n maalijoukko g:n lähtöjoukko. Yhdistäminen ei ole vaihdannainen (eng. commutative): yleensä g f f g. Yhdistäminen on liitännäinen (eng. associative): f (g h) = (f g) h. Tarkemmin: Book of Proof, luku / 35 R. Kangaslampi MS-A0401

21 Yhdistetty funktio Esimerkki 21 Määritellään ( joukon ) {1, 2, ( 3} permutaatiot ) f = ja g =. Tällöin ( ) ( ) g f = ja f g = / 35 R. Kangaslampi MS-A0401

22 Kuva ja alkukuva Tilanteessa f (a) = b sanotaan, että b on a:n kuva ja a on b:n alkukuva. (Funktiota kutsutaan joskus nimellä kuvaus.) Sama terminologia on voimassa yleisemmin joukoille: Määritelmä 22 Olkoon f : X Y. Joukon A X kuva on joukko {f (a) : a A} Y. Joukon B Y alkukuva on joukko {x X : f (x) B} X. Joukon A kuvaa merkitään f (A) ja joukon B alkukuvaa merkitään f 1 (B). 19 / 35 R. Kangaslampi MS-A0401

23 Kuva ja alkukuva Huomioita Kuva ja alkukuva ovat aina hyvin määriteltyjä. Erityisesti alkukuva f 1 (B) on aina olemassa, vaikka f ei olisi bijektio. Kuvan ja alkukuvan määritelmät toimivat myös relaatiolle. Itse asiassa mikä tahansa relaatio voidaan kääntää (ks. BoP luku 12.5), mutta funktion käänteisrelaatio ei ole funktio ellei alkuperäinen funktio ole bijektio. Tarkemmin: Book of Proof, luku / 35 R. Kangaslampi MS-A0401

24 Funktiot ja joukko-operaatiot Lause 23 Kaikille funktioille f ja kaikille lähtö- tai maalijoukon osajoukoille A, B pätee: A B f (A) f (B) A B f 1 (A) f 1 (B) f (A B) = f (A) f (B) f 1 (A B) = f 1 (A) f 1 (B) f 1 (A B) = f 1 (A) f 1 (B) f 1 (A \ B) = f 1 (A) \ f 1 (B). Siis: Alkukuva säilyttää kaikki joukko-operaatiot, mutta kuva vain yhdisteen ja osajoukkouden. 21 / 35 R. Kangaslampi MS-A0401

25 Funktiot ja joukko-operaatiot Erityisesti siis lauseen kaksi viimeistä eivät yleisesti päde kuvajoukoille, kuten vastaesimerkit etsimällä huomaamme: Esimerkki 24 (Tehtävä) Etsi sellainen esimerkkifunktio ja joukot, joille f (A B) f (A) f (B) f (A \ B) f (A) \ f (B). Ensimmäiseen kohtaan sopii vastaesimerkiksi tilanne, jossa A B on tyhjä joukko, mutta f (A) f (B) ei, ja toiseen vastaavasti tilanne, jossa f (A) \ f (B) on tyhjä joukko, mutta f (A \ B) ei ole. 22 / 35 R. Kangaslampi MS-A0401

26 Joukon mahtavuus Määritelmä 25 Kaksi joukkoa A ja B ovat yhtä mahtavia, jos on olemassa bijektio A B. Tällöin merkitään A = B. Huomioita A = n tarkoittaa, että on olemassa bijektio A {1, 2,..., n}. Joukko A on äärellinen jos on olemassa n N siten, että A = n. Jos joukko ei ole äärellinen, se on ääretön. Määritelmässä joukkojen A ja B ei tarvitse olla äärellisiä. Joukko A on numeroituva (eli numeroituvasti ääretön) jos A = N ja ylinumeroituva jos A > N. 23 / 35 R. Kangaslampi MS-A0401

27 Joukon mahtavuus Esimerkki 26 Pätee N = Z = Q R. Joukot N, Z ja Q ovat siis numeroituvia ja R on ylinumeroituva. Todistus: N = Z. Koska funktio f : N Z, missä f (0) = 0, f (2k 1) = k ja f (2k) = k kun k 1, on bijektio, niin joukot ovat yhtä mahtavia. 24 / 35 R. Kangaslampi MS-A0401

28 Joukon mahtavuus Todistus: N = Q. N = Q, koska voimme järjestää murtoluvut jonoon, ja siis konstruoida bijektion, seuraavalla tavalla: Hypäten jo listalla olevien lukujen yli saamme seuraavan bijektion: f (0) = 0, f (1) = 1, f (2) = 2, f (3) = 1, f (4) = 1 2, f (5) = 2, f (6) = 3, f (7) = 4, f (8) = 3, f (9) = 1 2, f (10) = 1 3, f (11) = 3, f (12) = 4, f (13) = 5, / 35 R. Kangaslampi MS-A0401

29 Joukon mahtavuus Todistus: Q R. Todistus on harjoitustehtävänä. 26 / 35 R. Kangaslampi MS-A0401

30 Lukujonojen kasvunopeuksista Lukujono on funktio N R. Esimerkki 27 Funktio f (n) = n antaa lukujonon 0,1,2,3,4,... Funktio g(n) = n 3 antaa lukujonon 0,1,8,27,... Tarkastellaan lukujonoja ja niiden kasvunopeuksia hieman tarkemmin, tavoitteena saada keinoja arvioida laskenta-algoritmien nopeuksia. 27 / 35 R. Kangaslampi MS-A0401

31 Lukujonojen kasvunopeuksista Määritelmä 28 Lukujono f : N R on kasvava, jos pätee kaikille n, m N. Esimerkki 29 n m f (n) f (m) Jonot f (n) = 1, f (n) = log n, f (n) = n, f (n) = n log n, f (n) = n 2, f (n) = 2 n ja f (n) = n! ovat kasvavia. Tarkistetaan esimerkkinä f (n) = n 2 : Olkoon n m eli n m 0. Halutaan f (n) f (m) eli n 2 m 2 eli n 2 m 2 0 eli (n m)(n + m) 0. Tämä pätee, koska lähtökohtana oli n m eli n m / 35 R. Kangaslampi MS-A0401

32 Lukujonojen kasvunopeuksista Määritelmä 30 Lukujono f : N R kasvaa rajatta, jos M N n 0 N : n n 0 f (n) M. (1) Lukua M tulee ajatella suurena ylärajaehdokkaana. Implikaatio 1 ilmaisee, että f (n) saavuttaa minkä tahansa rajan M, kunhan n kasvaa tarpeeksi suureksi. Esimerkki 31 Osoitetaan, että lukujono f (n) = n 2 kasvaa rajatta: Olkoon M N. Halutaan löytää n 0 N siten, että n n 0 n M. Koska n M n 2 M (f on kasvava), niin luvuksi n 0 kelpaa mikä tahansa luonnollinen luku, joka on suurempi tai yhtä suuri kuin M. 29 / 35 R. Kangaslampi MS-A0401

33 Lukujonojen kasvunopeuksista Huom: Rajattoman kasvun määritelmä ei edellytä, että lukujono on kasvava. Lukujono voi heilahdella ja kasvaa keskimäärin. Esimerkiksi f (n) = n + n sin(n) ei ole kasvava, mutta kasvaa rajatta / 35 R. Kangaslampi MS-A0401

34 Lukujonojen kasvunopeuksista Määritelmä 32 Olkoot f (n) ja g(n) kaksi lukujonoa. Sanotaan, että f :n asymptoottinen kasvunopeus on enintään suuruusluokkaa g, jos on olemassa vakiot C N ja n 0 N siten, että n n 0 f (n) Cg(n). Toisin sanoen f (n) ei suurilla n voi kasvaa nopeammin kuin vakio kertaa g(n). Tätä merkitään myös f (n) = O(g(n)). Vastaavia asymptoottisia suuruusluokkamerkintöjä on useita, mutta tämä iso-o ( big-o, ordo-notaatio) lienee yleisin. 31 / 35 R. Kangaslampi MS-A0401

35 Lukujonojen kasvunopeuksista Esimerkki 33 Jonon f (n) = n 2 + n asymptoottinen kasvunopeus on enintään suuruusluokkaa n 2, koska n 2 + n n 2 + n 2 = 2n 2 kaikilla n N. Määritelmän 32 vakioksi C voidaan siis ottaa luku 2 ja luvuksi n 0 voidaan ottaa luku 0 (mitkä tahansa suuremmatkin kelpaavat). Esimerkki 34 Ilmaisu f (n) = O(1) tarkoittaa, että jono f on rajoitettu. 32 / 35 R. Kangaslampi MS-A0401

36 Lukujonojen kasvunopeuksista Saman ongelman ratkaisuun on usein olemassa monia algoritmeja, joiden nopeus voi vaihdella huomattavasti. Algoritmin aikavaativuus on O(f (n)), jos algoritmin ajankäyttö kasvaa korkeintaan samassa suhteessa kuin funktio f (n), kun muuttuja n kuvaa tiedon määrää. Algoritmin suoritus vie siis aikaa korkeintaan k f (n) jollain vakiolla k, kun n on riittävän suuri. Esimerkki 35 Algoritmien nopeuksien vertailukohteena käytetään usein lukujonoja muotoja f (n) = log k n, f (n) = n k ja f (n) = k n (jollekin k N) sekä näiden yhdistelmiä. 33 / 35 R. Kangaslampi MS-A0401

37 Lukujonojen kasvunopeuksista Käsiteltävän tiedon määrän kaksinkertaistuessa (eli n 2n) vakioaikaisen algoritmin O(1) nopeus ei muutu, logaritminen algoritmi O(log n) tarvitsee yhden lisäaskeleen, lineaarinen algoritmi O(n) tarvitsee kaksinkertaisen ajan, neliöllinen algoritmi O(n 2 ) tarvitsee nelinkertaisen ajan, kuutiollinen algoritmi O(n 3 ) tarvitsee kahdeksankertaisen ajan, O(n k )-aikainen algoritmi tarvitsee 2 k -kertaisen ajan, eksponentiaalisen algoritmin O(k n ) ajankäyttö kasvaa räjähdysmäisesti. 34 / 35 R. Kangaslampi MS-A0401

38 Lukujonojen kasvunopeuksista Esimerkki 36 Mikä on seuraavan algoritmin aikavaativuus? long kertoma (int n) (1) { long k; (2) int i; (3) k = 1; (4) for (i=2; i<=n; i=i+1) (5) { k=k*i; } (6) return (k); (7) } Vast: O(n). (Kukin rivi suoritetaan vakioajassa, toisto riveillä 4-5 suoritetaan n 1 kertaa.) 35 / 35 R. Kangaslampi MS-A0401

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus diskreettiin matematiikkaan Harjoitus 1, Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 10

Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 10 Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 10 Tuntitehtävät 17-18 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 21-22 loppuviikon harjoituksissa. Kotitehtävät 19-20 tarkastetaan loppuviikon

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 3: Funktiot 4.3 Funktiot Olkoot A ja B joukkoja. Funktio joukosta A joukkoon B on sääntö, joka liittää yksikäsitteisesti määrätyn

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 12. maaliskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä30.

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä0. ym.,

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 0 Joukko-oppi ja logiikka Todistukset logiikassa Predikaattilogiikka Induktioperiaate Relaatiot

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 8. syyskuuta 016 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Yhteenveto30.

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2017-2018 Yhteenveto Yleistä kurssista Kurssin laajuus 5 op Luentoja 30h Harjoituksia 21h Itsenäistä työskentelyä n. 80h 811120P Diskreetit rakenteet, Yhteenveto 2 Kurssin

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 8. syyskuuta 06 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Yhteenveto8.

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry. Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }. Esimerkki. Olkoon R = {(1, 1), (1, 2), (2, 1), (3, 1)}.

Lisätiedot

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry. Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on yr 1 x xry. Siis R 1 = { (y, x) Y X (x, y) R }. Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Hieman joukko-oppia. A X(A a A b A a b).

Hieman joukko-oppia. A X(A a A b A a b). Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Funktioista. Esimerkki 1

Funktioista. Esimerkki 1 Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

1 Joukkojen mahtavuuksista

1 Joukkojen mahtavuuksista 1 Joukkojen mahtavuuksista Joukon alkiomäärän eli kardinaliteetin käsite voi tuntua itsestään selvältä asialta. Näinhän aika pitkälle onkin, mikäli pitäydytään naiivissa äärettömyyden tulkinnassa; joukko

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39

Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39 Diskreetin matematiikan perusteet Laskuharjoitus 3 / vko 39 Tuntitehtävät 21-22 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 25-26 loppuviikon harjoituksissa. Kotitehtävät 23-24 tarkastetaan loppuviikon

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet Vektoriavaruus

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Esko Turunen Luku 9. Logiikan algebralisointi

Esko Turunen Luku 9. Logiikan algebralisointi Logiikan algebralisointi Tässä viimeisessä luvussa osoitamme, miten algebran peruskäsitteitä käytetään logiikan tutkimuksessa. Käsittelemme vain klassista lauselogiikkaa ja sen suhdetta Boolen algebraan,

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 2 ratkaisut Tehtävä 1 Olkoon X = {a, b, c} kolmen alkion joukko. a) Mikä on joukon X eri laskutoimitusten lukumäärä? b) Kuinka moni näistä laskutoimituksista on

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot