a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

Samankaltaiset tiedostot
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

a b 1 c b n c n

HN = {hn h H, n N} on G:n aliryhmä.

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

Esko Turunen MAT Algebra1(s)

Algebra I, harjoitus 5,

2017 = = = = = = 26 1

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

(xa) = (x) (a) = (x)0 = 0

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.

4. Ryhmien sisäinen rakenne

Algebra I, Harjoitus 6, , Ratkaisut

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

Algebra I, harjoitus 8,

6. Tekijäryhmät ja aliryhmät

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

Liite 2. Ryhmien ja kuntien perusteet

Äärellisesti generoitujen Abelin ryhmien peruslause

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

H = H(12) = {id, (12)},

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Esko Turunen Luku 3. Ryhmät

Peruskäsitteet. 0. Kertausta

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

MAT Algebra I (s) periodilla IV 2012 Esko Turunen

Jäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

a ord 13 (a)

Matematiikan tukikurssi, kurssikerta 2

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

Tekijäryhmät ja homomorsmit

Sylowin lauseet äärellisten ryhmien luokittelussa

Algebra II. Syksy 2004 Pentti Haukkanen

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

LUKUTEORIA A. Harjoitustehtäviä, kevät (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

LUKUTEORIA johdantoa

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Kertausta: avaruuden R n vektoreiden pistetulo

1 Lineaariavaruus eli Vektoriavaruus

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Matematiikan tukikurssi

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Koodausteoria, Kesä 2014

Lineaarialgebra ja matriisilaskenta I

Polynomien suurin yhteinen tekijä ja kongruenssi

1 Algebralliset perusteet

802320A LINEAARIALGEBRA OSA I

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Kertausta: avaruuden R n vektoreiden pistetulo

Lineaarialgebra ja matriisilaskenta I

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

MS-A0402 Diskreetin matematiikan perusteet

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

9 Matriisit. 9.1 Matriisien laskutoimituksia

Todistusmenetelmiä Miksi pitää todistaa?

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

Koodausteoria, Kesä 2014

Toispuoleiset raja-arvot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Transversaalit ja hajoamisaliryhmät

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

Johdatus matemaattiseen päättelyyn

Miten osoitetaan joukot samoiksi?

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n :

Transkriptio:

Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a b c) 2a 4b ab = 7ab Ratkaisu a: Renkaan laskutoimituksen osittelulain (R4) nojalla saadaan a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Ratkaisu b: Lauseen 3.16 nojalla renkaassa pätee, että a( b) = (ab). (R4) nojalla (a+b+1)(a b) = (a+b+1)(a)+(a+b+1)( b) = a 2 +ba+a+(a ( b))+b ( b)+1 ( b)) ja lauseen 3.16 nojalla pätee edelleen, että a 2 + ba + a + a( b) + b( b) + 1( b) = a 2 + ba + a ab b 2 b Kuitenkin jos rengas ei ole vaidannainen niin löydetään alkiot a ja b R, jolle pätee ab ba, tällöin a 2 + a + (ba ab) b 2 b a 2 b 2 + a b, koska ba ab 0. Yhtälö ei siis päde mielivaltaiselle renkaalle, mutta se pätee vaihdannaiselle renkaalle. Ratkaisu c: Yhteenlasku on ryhmälaskutoimitus ja siinä (ab) 1 = ab, joten 2a(4b) ab = 8ab ab = 7ab + (ab + ( ab)) = 7ab + e = 7ab Siten yhtälö pätee mielivaltaiselle renkaalle. Tehtävä 2. Totea, että 42Z on ryhmän 7Z normaali aliryhmä. Määritä sitten tekijäryhmän 7Z/42Z alkiot ja yhteenlaskutaulu. Vertaa yhteenlaskutaulua ryhmän Z 6 yhteenlaskutauluun. 1

Ratkaisu: 7Z =... 7, 0, 7, 14, 21, 28, 35, 42, 49... 42Z =... 42, 0, 42, 84... Tiedetään, että 7Z ja 42Z ovat ryhmiä. Koska 42Z 7Z, niin ryhmä 42Z on ryhmän 7Z aliryhmä. Edelleen tiedetään, että vaihdannaisen ryhmän kaikki aliryhmät ovat vaihdannaisia, joten 7Z on vaihdannaisen ryhmän Z aliryhmänä vaihdannainen. Edelleen vaihdannaisen ryhmän kaikki aliryhmät ovat normaaleja, joten 42Z on normaali ryhmässä 7Z. Jos ryhmän 7Z alkio on jaollinen luvulla 42 niin sen sivuluokka on [0]. Kun jaetaan g 7Z luvulla 42, niin jakojäännös kuuluu joukkoon {0, 7, 14, 21, 28, 35, }, ja muut sivuluokat löydetään jakojäännösten avulla.. 7Z/42Z = [0], [7], [14], [21], [28], [35]. Laskutoimitustaulu näyttää seuraavanlaiselta: + [0] [7] [14] [21] [28] [35] [0] [0] [7] [14] [21] [28] [35] [7] [7] [14] [21] [28] [35] [0] [14] [14] [21] [28] [35] [0] [7] [21] [21] [28] [35] [0] [7] [14] [28] [28] [35] [0] [7] [14] [21] [35] [35] [0] [7] [14] [21] [28] Ryhmän Z 6 laskutoimitustaulu näyttää seuraavanlaiselta: + [0] 6 [1] 6 [2] 6 [3] 6 [4] 6 [5] 6 [0] 6 [0] [1] [2] [3] [4] [5] [1] 6 [1] [2] [3] [4] [5] [0] [2] 6 [2] [3] [4] [5] [0] [1] [3] 6 [3] [4] [5] [0] [1] [2] [4] 6 [4] [5] [0] [1] [2] [3] [5] 6 [5] [0] [1] [2] [3] [4] Kummassakin ryhmässä on 6 alkiota, ja laskutoimitustaulut vastaavat toisiaan, kun samaistetaan [0] 6 = [0], [1] 6 = [7], [2] 6 = [14], [3] 6 = [21], [4] 6 = [28], [5] 6 = [35]. Tehtävä 3. a) Olkoon G ryhmä ja N sen normaali aliryhmä. Osoita, että tekijäryhmän 2

G/N alkiolle gn pätee (gn) k = g k N kaikilla k Z. b) Tarkastellaan ryhmän (Z 20, +) aliryhmää N = [4] 20. Mikä on tekijäryhmän Z 20 /N kertaluku? Mitkä ovat alkioiden [1] 20 + N, [2] 20 + N ja [3] 20 + N kertaluvut? Käytä hyväksesi a)-kohtaa. Ratkaisu a: G on ryhmä, ja N on sen normaali aliryhmä, joten laskutoimitus saadaan määriteltyä sivuluokkien joukossa seuraavasti: g 1 N g 2 N = g 1 g 2 N. Todistetaan väite ensin tapauksessa k 0 Tällöin saadaan induktiolla, että gn gn = g gn = g 2 N, gn g 2 N = g g 2 N = g 3 N,... gn g k 1 N = g g k 1 N = g k N, kaikilla k 0. Olkoon sitten k < 0. Ensinnäkin (gn) 1 = g 1 N, sillä tekijäryhmän laskusääntöjen nojalla gng 1 N = gg 1 N = N = g 1 gn = g 1 NgN, joten g 1 N on käänteisalkion määritelmän nojalla alkion gn käänteisalkio (gn) 1. Toiseksi G on ryhmä, joten g 1 G kaikilla g G. Kolmanneksi todetaan, että kun k < 0 niin k > 0, jolloin ensimmäisen kohdalla pätee (g 1 ) k N = g k N, ja saadaan (gn) k = (gn) ( 1) ( k) = ((gn) 1 ) k = (g 1 N) k = (g 1 ) k N = g k N. Ratkaisu b: Etsitään sitten ryhmän [4 20 ] alkiot: Virittäjän moninkerrat kuuluvat (G1):n nojalla ryhmään [4 20 ], joten [0 20 ], [4 20 ], [8 20 ], [12 20 ], [16 20 ] [4 20 ], koska [20 20 ] = [0 20 ], ja [ 4 20 ] = [ 4 + 20 20 ] = [16 20 ]... päätellään, että ryhmään ei voi kuulua muita alkioita. Langrangen lauseesta saadaan, että aliryhmän kertaluku jakaa ryhmän kertaluvun, ja osamäärästä saadaan sivuluokkien lukumäärä, joka on tekijäryhmän kertaluku: 3

Z 20 = 20 ja [4 20 ] = 5, joten Z 20 [4 20 ] = 20 5 = 4. Etsitään alkioiden [1] 20 + N, [2] 20 + N ja [3] 20 + N kertaluvut k [1], k [2], k [3] : Lagrangen lauseen nojalla alkioiden kertaluvut jakavat ryhmän kertaluvun, tässä tapauksessa luvun 4, joten kaikkien alkioden kertaluvut löytyvät joukosta {1, 2, 4}, ja tiedetään lisäksi, että ainoastaan [0] 20 + N kertaluku on 1. Saadaan joten k [1] 2, ja siten k [1] = 4. 2([1] 20 + N) = (2[1] 20 + N) = [2] 20 + N N, 2([2] 20 + N) = (2[2] 20 + N) = [4] 20 + N = N, koska [4] 20 + N N, ja siten k [2] = 2. 2([3] 20 + N) = (2[3] 20 + N) = [6] 20 + N = [2] 20 + N N joten k [1] 2, ja siten k [1] = 4. Tehtävä 4. Ovatko seuraavat aliryhmät normaaleja? Jos aliryhmä on normaali, määritä vastaava tekijäryhmä ja sen kertotaulu. a) Ryhmän S 24 aliryhmä {(1), (123), (132)}. b) Ryhmän H = {1, 1, i, i, j, j, k, k} aliryhmä [1] = {1, 1}. Ryhmän H kertotaulu on annettu alla. 1 1 i i j j k k 1 1 1 i i j j k k 1 1 1 i i j j k k i i i 1 1 k k j j i i i 1 1 k k j j j j j k k 1 1 i i j j j k k 1 1 i i k k k j j i i 1 1 k k k j j i i 1 1 4

Ratkaisu a: Osoitetaan vastaesimerkillä, että aliryhmä ei voi olla normaali. Valitaan (34) S 24, ja lasketaan vasen sivuluokka (34){(1), (123), (132)} = {(34), (124), (143)}. Toisaalta (123)(34) = (341), joten (341) {(1), (123), (132)}(34), mutta (341) / (34){(1), (123), (132)} Aliryhmän oikeat ja vasemmat sivuluokat eivät ole samat, joten aliryhmä {(1), (123), (132)} ei voi olla normaali ryhmässä S 24 Ratkaisu b: + 1 1 i i j j k k 1 1 1 i i j j k k 1 1 1 i i j j k k i i i 1 1 k k j j i i i 1 1 k k j j j j j k k 1 1 i i j j j k k 1 1 i i k k k j j i i 1 1 k k k j j i i 1 1 Yritetään laskea aliryhmän {1, 1} sivuluokat. Huomataan, että seuraavat sivuluokat muodostavat ryhmän H osituksen: [1] = {1, 1} = 1{1, 1} = { 1, 1} [i] = {i, i} = i{1, 1} = {1, 1}i = i{1, 1} = {1, 1} i [j] = {j, j} = j{1, 1} = {1, 1}j = j{1, 1} = { 1, 1} j [k] = {k, k} = k{1, 1} = {1, 1}k = k{1, 1} = { 1, 1} k Oikeat ja vasemmat sivuluokat ovat samat, koska ylläolevasta sivuluokkien esityksestä nähdään, että kaikilla h H pätee h{1, 1} = {1, 1}h. Tästä päätellään, että aliryhmä {1, 1} on normaali. Laskutoimitustaulusta nähdään, että ryhmän H laskutoimitus periytyy hyvinmääritellysti sivuluokkien joukkoon. Tämä johtuu aliryhmän {1, 1} normaaliudesta. Saadaan seuraava laskutoimitustaulu: [1] [i] [j] [k] [1] [1] [i] [j] [k] [i] [i] [1] [k] [j] [j] [j] [k] [1] [i] [k] [k] [j] [i] [1] 5

Huom.Laskutoimitustaulusta nähdään myös, että tekijäryhmän laskutoimitus on vaihdannainen. Tehtävä 5. Olkoon G syklinen ryhmä, jonka virittää alkio g. Oletetaan, että N on ryhmän G normaali aliryhmä. Osoita, että jokainen ryhmän G/N alkio on muotoa (gn) k, missä k Z. Osoita, että syklisten ryhmien tekijäryhmät ovat syklisiä. Ratkaisu: Olkoon h G, koska G on syklien niin h = g k, jollakin k Z. Tekijäryhmän mielivaltaiselle alkiolle hn, saadaan esitys hn = g k N, jollakin k Z. Tehtävän. 2 nojalla puolestaan pätee g k N = (gn) k, jollakin k Z. Tekijäryhmä G/N on alkion (gn) virittämä, koska jokainen ryhmän alkio voidaan esittää sen moninkertana (gn) k. Yhden alkion virittämä ryhmä on syklinen. Tehtävä 6. a)osoita, että joukko I = {[0] 12, [4] 12, [8] 12 } on renkaan Z 12 ideaali. b)määritä tekijärenkaan Z 12 /I laskutoimitustaulut. Osoita, että mikä tahansa renkaan Z n yhteenlaskualiryhmä on ideaali. Ratkaisu a: Ensinnäkin I = {[0] 12, [4] 12, [8] 12 } = [4], joten I on ryhmän Z 12 aliryhmä, ja siten joukolla I on ominaisuus (IK1). Tarkastellaan sitten ehtoa (IK2): Laskutoimitustaulusta nähdään, että ra I kaikilla r Z 12, a I. Renkaan Z 12 vaihdannaisuuden nojalla tällöin pätee, että ar I kaikilla r Z 12, a I. Siten joukolla on ominaisuus (IK2), joten I on ideaali. + [0] 12 [4] 12 [8] 12 [0] 12 [0] 12 [0] 12 [0] 12 [1] 12 [0] 12 [4] 12 [8] 12 [2] 12 [0] 12 [8] 12 [4] 12 [3] 12 [0] 12 [0] 12 [0] 12 [4] 12 [0] 12 [4] 12 [8] 12 [5] 12 [0] 12 [8] 12 [4] 12 [6] 12 [0] 12 [0] 12 [0] 12 [7] 12 [0] 12 [4] 12 [8] 12 [8] 12 [0] 12 [8] 12 [4] 12 [9] 12 [0] 12 [0] 12 [0] 12 [10] 12 [0] 12 [4] 12 [8] 12 [11] 12 [0] 12 [8] 12 [4] 12 6

Ratkaisu b: Osoitetaan, että renkaan Z n ideaalit ovat täsmälleen sen aliryhmät. Ideaalin määritelmän nojalla ideaali on additiivinen aliryhmä, joten riittää näyttää, että jokainen aliryhmä on ideaali. Renkaan Z n mielivaltainen aliryhmä on syklinen, ja siten muotoa [k] n, missä k on luvun n tekijä. Sykliset ryhmät ovat vaihdannaisia, joten niillä on ominaisuus (IK1).Lisäksi pätee [j] n [k] n = [jk] n = j[k] n [k] n, kaikilla [j] n Z n, joten aliryhmillä on ominaisuus (IK2). Koska aliryhmillä on ominaisuudet (IK1) ja (IK2), ne ovat määritelmän nojalla ideaaleja. Määritetään tekijärengas, eli sivuluokkien [k] + I joukko. Koska [k] + I = [j] + I [k] [j] I [k j] I niin Lagrangen lauseesta seuraa, että G I on löydetty kaikki sivuluokat. Saadaan Z 12 /I = {I, [1] + I, [2] + I, [3] + I}. = 4, joten löytämällä 4 sivuluokkaa Tekijärenkaan kertolasku on määritelty kaavalla (a + I) (b + I) = ab + I. Saadaan laskutoimitustaulut: + 0 1 2 3 0 0 1 2 3 1 1 2 3 0 2 2 3 0 1 3 3 0 1 2 0 1 2 3 0 0 0 0 0 1 0 1 2 3 2 0 2 0 2 3 0 3 2 1 + I 1 + I 2 + I 3 + I I I 1 + I 2 + I 3 + I 1 + I 1 + I 2 + I 3 + I I 2 + I 2 + I 3 + I I 1 + I 3 + I 3 + I I 1 + I 2 + I I 1 + I 2 + I 3 + I I I I I I 1 + I I 1 + I 2 + I 3 + I 2 + I I 2 + I I 2 + I 3 + I I 3 + I 2 + I 1 + I 7