RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

Samankaltaiset tiedostot
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite

SMG-2100: SÄHKÖTEKNIIKKA

Kondensaattori ja vastus piirissä (RC-piiri)

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

SMG-1100: PIIRIANALYYSI I

Kondensaattori ja vastus piirissä (RC-piiri)

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

SMG-2100: SÄHKÖTEKNIIKKA

FYS206/5 Vaihtovirtakomponentit

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014

Pynnönen Opiskelija: Tarkastaja: Arvio:

Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014

IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

6. Kertaustehtävien ratkaisut

SMG-2100: SÄHKÖTEKNIIKKA

Sähkömagnetismi. s. 24. t syyskuuta :01. FY7 Sivu 1

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.

FYSP1082/3 Vaihtovirtakomponentit

RCL-vihtovirtapiiri: resonanssi

Luku 7 Lenzin laki kertoo induktioilmiön suunnan

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Coulombin laki. Sähkökentän E voimakkuus E = F q

1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla

DEE Sähkötekniikan perusteet

3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.

DEE Sähkötekniikan perusteet

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä

Fysiikka 7 muistiinpanot

Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla

Elektroniikan perusteet, Radioamatööritutkintokoulutus

Aktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen

7. Resistanssi ja Ohmin laki

TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.

Sähkövirran määrittelylausekkeesta

kipinäpurkauksena, josta salama on esimerkki.

ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.

VIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;

Fysiikka 7. Sähkövaraukset. Varaukset. Kondensaattori. Sähkökenttä. Sähkö-opin pikakertaus. Sähkömagnetismi

Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Työ h. SÄHKÖVIRRAN ETENEMINEN

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

MICRO-CAP: in lisäominaisuuksia

DEE Sähkötekniikan perusteet

Luku 13. Vaihtovirrat Sinimuotoinen vaihtojännite

Taitaja2007/Elektroniikka

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Van der Polin yhtälö

RESISTANSSIMITTAUKSIA

FYSA2010 / K1 MUUNTAJA

VASTUSMITTAUKSIA. 1 Työn tavoitteet

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

Lineaarialgebra MATH.1040 / Piirianalyysiä 2

SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet

YLEISMITTAREIDEN KÄYTTÄMINEN

SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit

Luento 2. DEE Piirianalyysi Risto Mikkonen

SMG-1100: PIIRIANALYYSI I

l s, c p T = l v = l l s c p. Z L + Z 0

SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1

SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Passiiviset piirikomponentit. 1 DEE Piirianalyysi Risto Mikkonen

Elektroniikan kaavoja 1 Elektroniikan Perusteet I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X

RATKAISUT: 19. Magneettikenttä

Luku Ohmin laki

S Piirianalyysi 1 2. välikoe

Induktiivisuus WURTH ELEKTRONIK. Induktiivisuuden ABC

- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

SATE1040 Piirianalyysi IB kevät /6 Laskuharjoitus 5: Symmetrinen 3-vaihejärjestelmä

TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT

TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.

Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I

Vaihtovirtatutoriaalien kehittäminen ja tehtävätyyppien hyödyntäminen oppimateriaalissa

TEHTÄVÄT KYTKENTÄKAAVIO

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

RATKAISUT: 17. Tasavirtapiirit

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Kapasitiivinen ja induktiivinen kytkeytyminen

Luento 2. 1 DEE Piirianalyysi Risto Mikkonen

Magneettinen energia

Van der Polin yhtälö. virtap6.nb 1

Kondensaattori ja vastus piirissä (RC)

Transkriptio:

Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa yhtä paljon lämpöä kuin kyseinen vaihtovirta samassa ajassa. b) Kondensaattorin ja ideaalisen käämin vaihtovirtaa rajoittavaa ominaisuutta kuvaavasta suureesta käytetään nimitystä reaktanssi, joka on komponentin jännitehäviön ja sähkövirran tehollisten arvojen suhde reaktanssi ω.. deaalisen käämin induktiivinen c) Kondensaattorin vaihtovirtaa rajoittava ominaisuus on kapasitiivinen reaktanssi. ω d) Vastuksen, käämin ja kondensaattorin muodostamassa virtapiirissä vaihtovirtaa rajoittava ominaisuus on, jossa on tehollinen jännitehäviö ja on tehollinen sähkövirta. R-piirin impedanssi on R + ( ω ) ω R on virtapiirin resistanssi, e) Vaihe-ero φ lasketaan yhtälöstä tanϕ, jossa ω on induktiivinen R reaktanssi ja on kapasitiivinen reaktanssi. ω f) Resonanssitaajuus on sen vaihtojännitteen taajuus, jolla vaihtovirtapiiriin saadaan suurin vaihtovirta. Resonanssitaajuus on R-piirin ominaistaajuus. Resonanssitilanteessa virtapiirin reaktanssi on nolla, joten sähkövirran ja jännitehäviön välinen vaihe-ero on nolla. Ne ovat siis samassa vaiheessa. R-piirin resonanssitaajuus on f0, jossa on virtapiirin induktanssi ja on virtapiirin kapasitanssi.. Kiukaan teho on P 500W, sähköverkon tehollinen jännite 30 V ja taajuus f 50 Hz Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi a) Vastuksen sähköteho lasketaan yhtälöllä P, joten sähkövirta vastuksessa on P 500W 0,8696 A 0,9 A. 30 V b) Sinimuotoisen vaihtojännitteen tehollisen arvon ja huippuarvon välillä on yhteys uˆ, josta jännitehäviön huippuarvo on uˆ 30 V 35, 69 V 35 V. c) Sinimuotoisen vaihtovirran tehollisen ja huippuarvon välillä on yhteys iˆ, josta sähkövirran huippuarvo on iˆ 0,8696 A 5,379 A 5, 4 A. Vastaus: a) Tehollinen sähkövirta on 0,9 A. b) Jännitehäviön huippuarvo on 35 V. c) Sähkövirran huippuarvo on 5,4 A..3 a) uetaan jännitteen kuvaajasta huippuarvo u ˆ 35 V ja lasketaan tehollinen jännite uˆ 35 V 4,7487 V 5 V. b) uetaan sähkövirran kuvaajasta huippuarvo i ˆ 5 ma ja lasketaan tehollinen sähkövirta iˆ 5 ma 88,3883 ma 88 ma. c) Kuviossa jännite tapahtuu ensin, se on sähkövirran edellä. Sähkövirran ja jännitteen aikaero on Δ t, 67 ms ja jaksonaika on T 0 ms. Vaihe-eroksi saadaan Δt, 67 ms ϕ 0, 54646 rad 30. T 0 ms d) Jännite on sähkövirran edellä. Sähkövirta jää jälkeen, koska induktioilmiö hidastaa sähkövirran muutoksia. Positiivinen vaihe-ero johtuu laitteen induktanssista. e) Vaihtovirran teho on P ˆ cosϕ ui ˆ cosϕ 35 V 5 ma cos30 3,789 W 3,8 W. Vastaus: a) Jännitteen huippuarvo on 35 V ja tehollinen arvo 5 V. b) Sähkövirran huippuarvo on 5 ma ja tehollinen arvo 88 ma. Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 3(0) RATKAST. Vaihtovirtapiiri ja resonanssi c) Jännitteen ja sähkövirran välinen vaihe-ero on 30 d) Vaihe-ero johtuu induktanssista. e) aitteen kuluttama keskiteho on 3,8 W..4 Käämin induktanssi on, mh ja resistanssi R 9,73 Ω, tehollinen jännite,3 V ja taajuus f 55 Hz. a) asketaan ensin impedanssi R + ( ω) R + ( π f) (9,73 Ω ) + ( 55 Hz, 0 H) 3 38, 049 Ω 38, Ω. Tehollinen virta on nyt lausekkeen mukaan,3 V 38, 049 Ω 0,58369 A 0,584 A. b) Virran ja jännitteen välinen vaihe-ero saadaan lausekkeesta ω f tanϕ R R R 9,73 Ω 3, 7970, 3 55 Hz, 0 H josta vaihe-ero ϕ 75,454 75,. Vastaus: a) Tehollinen sähkövirta on 0,584 A. b) Virran ja jännitteen välinen vaihe-ero on 75,..5 a) Kun käämin resistanssi on pieni R 0 Ω, niin käämin impedanssi on likimain käämin reaktanssi R ( ω) 0 ( π f) f + +. Toisaalta impedanssi on. Saadaan siis π f, josta ratkaistaan induktanssi f. Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 4(0) RATKAST. Vaihtovirtapiiri ja resonanssi nduktanssi saadaan selville mittaamalla käämin päiden välinen jännitehäviö käämin sähkövirta. Jännitelähteen taajuus tunnetaan. ja Mittausta varten tarvitaan jännitemittari ja virtamittari, johtimia ja tietenkin tutkittava pieniresistanssinen käämi. b) R-piirin impedanssi on R + ( ). R-piirin sähkövirta on suurin, kun piirin impedanssi on pienin. Tämä tapahtuu resonanssitaajuudella f0. Tällöin ja R + R. min 0 Resonanssitaajuudella piirin sähkövirta on suurin,max R. Mittaus voidaan suorittaa siten, että pidetään jännitelähteen napajännitettä vakiona ja muutetaan sen taajuutta. Seurataan sähkövirtaa virtamittarista. Etsitään taajuus, jolla sähkövirta saa maksimiarvon. Tämä taajuus on resonanssitaajuus f. 0 Mittausta varten tarvitaan jännitelähde, jonka taajuutta voidaan muuttaa. isäksi tarvitaan virtamittari ja tietenkin komponentit ja johtimet. min.6 Jännite on 30 V, taajuus f 50 Hz, kondensaattorin kapasitanssi on 9 650 0 F ja vastuksen resistanssi on 50 a) asketaan kapasitiivinen reaktanssi ω f 50 Hz 650 0 F 99,508 Ω 900 Ω. 9 R Ω. Virtapiirin vastus rajoittaa vaihtovirran kulkua enemmän kuin kondensaattori, koska R >. b) Vaihtovirtapiirin impedanssi on R + ( ) R + ( ) ω f (50 Ω ) + ( ) 50 Hz 650 0 F 963,80 Ω 960 Ω. 9 c) Sähkövirran ja jännitteen välinen vaihe-ero on 99,508Ω tanϕ 0,8574, R 50Ω joten vaihe-ero ϕ 40,6068 40,6. Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 5(0) RATKAST. Vaihtovirtapiiri ja resonanssi Koska vaihe-ero on negatiivinen, sähkövirta on kondensaattorin jännitehäviötä edellä. d) Sähkövirran tehollinen arvo saadaan lausekkeesta, josta 30 V 963,80 ΩΩ 0, 077603 A 77, 6 ma. Vastaus: a) Virtapiirin vastus rajoittaa vaihtovirran kulkua enemmän kuin kondensaattori. b) Virtapiirin impedanssi on 960 Ω. c) Sähkövirran ja jännitteen välinen vaihe-ero on 40,6. Sähkövirta on edellä. d) Sähkövirran tehollinen arvo on 0,776 ma..7 Kondensaattorin kapasitanssi on 6 0 F, käämin induktanssi 3 35 0 H ja kondensaattori on ladattu jännitteeseen u ˆ 30 V. a) Sähkövirta värähtelypiirissä on suurimmillaan, kun kaikki energia on käämin magneettikentän energiana E ˆ M i. Energian säilymisen perusteella i Ratkaistaan tästä sähkövirta iˆ uˆ 6 0 F 3 35 0 H ˆ uˆ. ˆ i uˆ 30V,936A,9A. b) Virtapiirin värähtelytaajuus on f 9,35 Hz 3 6 35 0 H 0 F ja jaksonaika T 0,0088 s 0,8 ms. f 9,35 s (Sähkövirran yhtälö on,9 A sin(580,6 /s t)) Vastaus: a) Suurin sähkövirta on,9 A. Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 6(0) RATKAST. Vaihtovirtapiiri ja resonanssi.8 a) Kuva esittää vastuksen sähkövirtaa, koska vastuksen sähkövirta ei riipu taajuudesta. Kuva esittää käämin sähkövirtaa, koska käämin sähkövirta on kääntäen verrannollinen virtapiirin taajuuteen. Käämin reaktanssi ω f, joten sähkövirta. f f Taajuuden kasvaessa sähkövirta pienenee. Kuva 3 esittää kondensaattorin sähkövirtaa, koska kondensaattorin sähkövirta on suoraan verrannollinen virtapiirin taajuuteen. Kondensaattorin reaktanssi Taajuuden kasvaessa sähkövirta kasvaa. f, joten sähkövirta f f. b) Vastuksen resistanssi on 7,5 V R 7,5 Ω., 0 A Käämin induktanssi on f 7,5 V 60 Hz,0 A 3 7,4604 0 H 7,5 mh. Kondensaattorin kapasitanssi on, 0 A f 30 Hz 7, 5 V 5 6,635 0 F 66 μf. c) Kuvaajasta saadaan max, 0 A. Tämä sähkövirta R-piirissä saavutetaan resonanssitaajuudella, jolloin 0. Tällöin f 0, f josta saadaan resonanssitaajuus f 0 π 6,73 Hz 6 Hz. 3 5 7, 4604 0 H 6,635 0 F c) ( f) kuvaaja voidaan hahmotella, kun tiedetään, että resonanssitaajuudella f 0 6 Hz saadaan suurin sähkövirta max, 0 A. Vastaus: b) Resistanssi on 7,5 Ω, induktanssi on 7,5 mh ja kapasitanssi on 66 μf. Huom. Oheinen kuvaaja on piirretty Excel-ohjelmalla. Kuvaajan piirtämistä varten on laskettu sähkövirran arvoja muutamilla taajuuden arvoilla. Koevastauksessa Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 7(0) RATKAST. Vaihtovirtapiiri ja resonanssi hahmotelman ei tarvitse olla näin tarkasti oikea. Oleellista on, että käyrän huippu on resonanssitaajuuden kohdalla. Sähkövirta R + ( π f ) f 7,5 V (7, 5 Ω ) + ( f 7, 4604 0 H ) f 6,635 0 F 3 5 f (Hz) (A) 5 0,07884 50 0,6 75 0,546 00 0,360 50 0,645 00 0,9439 6 50 0,963 300 0,7777 35 0,6908 350 0,677 375 0,557 400 0,500 450 0,497 500 0,3733.9 a) asketaan ensin virtapiirin impedanssi R + ( ) R + ( ) ω f (50 Ω ) + ( ) 50Hz 3, 0 F 6 005, 9646 Ω, 0 k Ω. Virtapiirin tehollinen sähkövirta on 30 V 005, 9646 Ω 0, 8636 A 0,3 A. Kondensaattorin kapasitiivinen reaktanssi saadaan lausekkeesta ω f π 6 50Hz 3, 0 F 994,784 Ω 0,99 k Ω. Vastuksen päiden välinen tehollinen jännite on Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 8(0) RATKAST. Vaihtovirtapiiri ja resonanssi R, R 50 Ω 0,8636 A 34,954 V 34 V. b) Teho voidaan laskea kahdella tavalla. Vain vastuskomponentit tuottavat lämpöenergiaa. Tapa : Joulen lain avulla P R 50 Ω (0,3 A) 7,935 W 7,9 W. Tapa : Vaihtovirran tehon kaavalla P cos ϕ. asketaan vaihe-ero tanϕ ω R R 6 50,0Hz 3, 0 F 6, 63456, 50 Ω josta vaihe-ero ϕ 8, 446. Teho on P cos ϕ 30 V 0, 3 A cos(8, 446 ) 7,8879 W 7,9 W Vastaus: a) Vastuksen päiden välinen tehollinen jännite on 34 V. b) R-piirin teho on 7,9 W. Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 9(0) RATKAST. Vaihtovirtapiiri ja resonanssi.0 a) Vaihtovirtapiirin jännite vaihtelee sinimuotoisesti. Kondensaattorin latautuessa sen jännite kasvaa ja purkautuessa sen jännite pienenee. Kondensaattorin latautuessa sähkölähteen energiaa siirtyy kondensaattorin sähkökentän energiaksi. Seuraavan neljännesjakson aikana kondensaattori luovuttaa sähkökenttään varastoituneen energian takaisin sähkölähteeseen. Energian nettosiirtymä on nolla jokaisen puolijakson aikana. b) Sähköverkon jännite on 30 V ja taajuus f 50 Hz sekä lämpölevyn teho alussa P 80 W ja lopussa P P, kysytään kondensaattorin kapasitanssia?. Tehonkulutus vastuksen muodostamassa virtapiirissä P R, josta resistanssi R (30 V) R 93,88889 Ω P 80 W R-piirin impedanssi on R + ( ) R + ( ) ω f ja sähkövirta. Tehonkulutus vastuksen ja kondensaattorin muodostamassa virtapiirissä P R R evyn tehonkulutus pienennetään puoleen lisäämällä virtapiiriin kondensaattori Tekijät ja WSOY Oppimateriaalit Oy, 007

Physica 9. painos 0(0) RATKAST. Vaihtovirtapiiri ja resonanssi P P R R, josta ratkaistaan impedanssi R. Sijoitetaan R + ( ) f ja ratkaistaan kapasitanssi R + ( ) R f R f R π f 94 Ω 50 Hz As V 5,08 0 μf Vastaus: b) Kondensaattorin kapasitanssi on μf. Tekijät ja WSOY Oppimateriaalit Oy, 007