FYSA2010 / K1 MUUNTAJA
|
|
- Armas Kivelä
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 FYSA2010 / K1 MUUNTAJA 1 Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen induktioon. Ensiökelassa kulkeva vaihtovirta luo muuttuvan magneettivuon rautasydämeen. Suurin osa siitä kulkee myös toisiokelan läpi ja indusoi sinne muuttuvan sähkömotorisen voiman. Muuntajilla pienennetään tai suurennetaan vaihtojännitettä (-virtaa). Muuntajia käytetäänkin etupäässä sähkövoimansiirrossa. Voima-asemilla vaihtojännite nostetaan suureksi voimansiirtoa varten ja sähköenergian käyttöpaikalla jännite lasketaan käyttäjälle sopivaksi. Muuntajia käytetään myös useissa sähkölaiteissa. Muuntajan toiminnasta löytyy tietoja oppikirjan ja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4]. Tässä työssä kootaan muuntaja rautasydämestä ja erilaisista keloista sekä tutkitaan muuntajaan liittyvien fysikaalisten lakien paikkaansa pitävyyttä. Työhön sisältyvät ennakkotehtävät löytyvät luvun 2 lopusta. Nämä tehtävät tulee olla tehtyinä ennen työvuorolle tuloa! 2 Teoriaa 2.1 Ideaalinen muuntaja Ideaaliselle muuntajalle voidaan olettaa, että kaikki magneettivoimaviivat kulkevat rautasydämen kautta, jolloin magneettivuo jokaisen silmukan läpi on sama niin ensiöpiirissä kuin toisiopiirissäkin. Tällöin ensiöpiirin magneettivuo on suoraan verrannollinen ensiökelan kierrosten lukumäärään N1. Sama pätee myös toisiopiirille. φ 1 = N 1 φ ja φ 2 = N 2 φ
2 2 Sähkömotorinen voima ensiö- ja toisiopiirille on E 1 = dφ 1 = N dφ dt 1 dt ja E 2 = dφ 2 = N dφ dt 2. dt Sähkömotoristen voimien lausekkeet yhdistämällä saadaan E 2 = N 2 N 1 E 1. (1) Muuntajan ensiö- ja toisiopuolen sähkömotoriset voimat suhtautuvat siis niin kuin ensiö- ja toisiokäämitysten johdinkierrosmäärät. Kelan ensiö- ja toisiopiiriin napajännitteet U1 ja U2 ovat suoraan verrannollisia magneettivuon muutosnopeuteen ja siten verrannolliset myös kelojen kierrosmäärään. Toisaalta indusoituneet jännitteet ovat kääntäen verrannollisia virtaan. N 1 N 2 = V 1 V 2 = I 2 I 1 (2) Ideaalisella muuntajalla ei myöskään ole tehohäviöitä. P 1 = E 1 I 1 = E 2 I 2 = P 2 (3) 2.2 Kuormittamaton muuntaja Kuormittamattomassa muuntajassa toisiopuolen virtapiiri on poikki, jolloin toisiovirta ja teho ovat nollia. Tällöin toisiokelalla ei ole ollenkaan magneettista vaikutusta, eikä sitä tarvitse huomioida. Kuormittamaton muuntaja supistuu siis rautasydämiseksi induktiokelaksi. Kun ensiöpuolen kelaan vaikuttaa vaihtovirtajännite U1, niin sen läpi kulkeva virta I0 on I 0 = U 1 ωl, (4) joka on jännitteestä U1 90 jäljessä. Jännite U1 kuluu kelassa syntyvän itseinduktion sähkömotorisen voiman E1 kumoamiseen. U1 ja E1 ovat siis yhtä suuret, mutta vastakkaiset. Siten yhtälö (4) voidaan kirjoittaa myös muodossa
3 3 E 1 = I 0 ωl. Sähkömotorinen voima on puolestaan virrasta I0 90 jäljessä, katso kuva 1. Koska muuntaja on oletettu häviöttömäksi, eikä toisiopuolella ole kuormitusta, ei se kuluta lainkaan tehoa. Tämän näkee kuvasta 1 siitä, että jännitteen U1 ja virran I0 välillä on 90 vaihesiirto. Teho P 0 = I 0 U 1 cos φ on silloin nolla ja virta I0 on ns. tyhjäkäyntivirtaa. Todellisuudessa tehohäviöitä synnyttävät muuntajan rautasydämessä pyörrevirrat sekä hystereesi (katso esim. [5]) ja käämitysten ohmiset vastukset. Tästä syystä virralla I0 täytyy olla myös jännitteen U1 suuntainen tehokomponentti I h (kuva 1.b), joten vaihesiirtokulma on pienempi kuin 90. Yleensä muuntajissa cos φ 0 0,1, mutta opetuskäyttöön tehdyissä se voi olla jonkin verran suurempikin. a) b) Kuva 1. Ensiöpuolen virran ja jännitteen vaihesiirto a) kuormittamattomassa ja häviöttömässä muuntajassa, b) kuormittamattomassa ja häviöllisessä muuntajassa. Tyhjäkäynnissä olevan muuntajan kuluttama teho on tällöin P 0 = P k0 + P r = U 1 I 0 cos φ 0, (5) missä Pk0 on käämeissä tapahtuva tyhjäkäynnin virtalämpö- eli kuormitushäviö ja Pr on rautasydämessä tapahtuva rautahäviö. Pk0 on hyvin pieni verrattuna Pr :ään, joten käytännössä P 0 P r. Kuormittamattomassa muuntajassa on kuitenkin varsin tarkasti U1 = E1. Toisiopuolen napajännite U2 on täsmälleen yhtä suuri kuin smv E2, koska virta- ja jännitehäviöt siellä ovat nollia. Tämän perusteella kuormittamattomalle muuntajalle pätee yhtälö
4 4 U 1 U 2 = N 1 N 2. (6) 2.3 Kuormitettu muuntaja Kun muuntajan toisiopuoli yhdistetään jollakin kuormalla suljetuksi virtapiiriksi, niin sähkömotorinen voima E2 saa aikaan virran I2. Tällöin myös toisiopuolen käämityksellä on oma magneettinen voimavaikutuksensa, joka täytyy jotenkin kumota. Tämä tapahtuu siten, että ensiöpuolelle syntyy lisävirta, joka kumoaa toisiovirran vaikutuksen. Ensiökelassa kulkee siis tyhjäkäyntivirran I0 ja lisävirran I 2 vektorisumma I1 (kuva 2). Lisävirta I 2 on vastakkaisessa vaiheessa toisiopuolen virtaan I2 nähden. Kuormitetun muuntajan tehohäviölähteet ovat samat kuin kuormittamattomankin muuntajan, mutta sen lisäksi virtalämpöhäviöitä syntyy myös toisiopuolen käämityksessä. Ääritapaus kuormitetun muuntajan tapauksessa on se, kun toisiokäämin päät on kytketty suoraan toisiinsa. Tällöin RL on nolla tai ainakin hyvin lähellä sitä. Tässä tilanteessa I2 on suurin mahdollinen, mikä johtaa siihen, että I 2 :n osuus ensiöpuolen virrasta on suurin mahdollinen. Täten muuntosuhde I 2 I 1 muuntosuhdetta, kun muuntaja on oikosuljettu. on lähimpänä teoreettista Yhtälön (3) mukaisesti ensiövirran muuntajaan syöttämä teho on yhtä suuri kuin toisiovirran muuntajasta ottama teho. Mutta tämä vastaa vain ideaalista tapausta. Kuva 2. Kuormitetun muuntajan ensiöpuolen virrat (tyhjäkäyntivirran suuruutta on tässä liioiteltu).
5 5 Todellisuudessa kuormitetun muuntajan ensiövirrasta ottama teho, eli ensiön pätöteho on P 1 = U 1 I 1 cosφ 1, (7) missä on U1:n ja I1:n välinen vaihe-ero ja toisiovirran muuntajasta ottama teho, eli toision pätöteho on P 2 = U 2 I 2 cosφ 2, (8) missä on U2:n ja I2:n välinen vaihe-ero. Tehohäviö Ph on tällöin P h = P 1 P 2 = P r + P k P 0 + P k, (9) missä Pk vastaa virtalämpö- eli kuormitushäviöitä. Kuvassa 3 on esitetty muuntajan virtojen ja jännitteiden vaihe-eroja kuvaava diagrammi. Ideaalisesti, mikäli toisiopuolella on vain ohminen kuorma ja muuntajan häviöt eivät häiritse, on vaihe-ero ensiön lisävirran I 2 ja jännitteen U1 välillä, ja myös toision virran ja jännitteen välillä, likimain nolla. Kuva 3. Muuntajan jännitteiden ja virtojen osoitindiagrammipiirros.
6 6 Ennakkotehtävät Tehtävä 1: Kuvassa 3 on esitetty muuntajan jännite- ja virtavektorit vaihekulmineen. Jos tiedetään valmiiksi I0, I1, niiden ja U1:n väliset vaihekulmat φ0 ja φ1 sekä U1:n sekä -U2:n välinen vaihekulma φu, kuinka näiden tietojen pohjalta voidaan johtaa I 2 :n arvo sekä I 2 :n ja U1:n välinen kulma θ? Entä φ2? Tehtävä 2: Tähän laboratoriotyöhön sisältyy paljon laskemista. Valmistele työtä varten taulukkolaskentaohjelma, jolla saat laskettua mittaamistasi aikaeroista Δt vaihe-erot φ0 ja φ1 ja edelleen näistä ja virroista I0 ja I1 kulman θ ja ensiöpuolen lisävirran I 2. 3 Mittauslaitteisto ja mittaukset Mittauksia varten on tarjolla levypakasta tehtyjä rautasydämiä (kuva 4) sekä erikokoisia keloja (60, 90 tai 180 kierrosta) muuntajan kokoamista varten. Vaihtojännite ensiöpiiriin saadaan (kelluvasta) signaaligeneraattorista. Ensiö- ja toisiopuolen virtaa sekä jännitettä mitataan sopivilla yleismittareilla tai oskilloskoopilla. Kuva 4: Kaksi erilaista muuntajakonstruktiota [6]. Molemmissa on irrallinen ies (sydämen yläosa). Vasemman puoleista sydäntä sanotaan U-malliseksi, ja oikean puoleista E-malliseksi.
7 7 Tehtävä 1: Muuntosuhteen tutkiminen Tässä osiossa mitataan kuormittamattoman muuntajan muuntosuhde kahdelle eri muuntajalle (U- ja E-sydän) taajuuden funktiona ensiökelan ja toisiokelan kierroslukumäärien funktiona Valitse ensiö- ja toisiopuolelle sopivat kelat ja kokoa piiri valmiiksi. Muista asettaa yleismittarit mittaamaan vaihtojännitettä. Tutki, kuinka ensiö- ja toisiopiirin jännitteistä johdetut muuntosuhteen arvot käyttäytyvät eri taajuusalueilla, ja vertaa niitä keloista johdettuun muuntosuhteeseen. Pitävätkö teoriaosassa johdetut kaavat paikkansa? Mittauksissa kannattaa käyttää melko pieniä taajuuksia ( Hz). Tehtävä 2: Oikosuljettu muuntaja Seuraavaksi muuntajasta tehdään kuormitettu sulkemalla toisiopiiri. Laadi kytkentä siten, että toisiopuolella on kuormana vain virtamittari. Tällöin RL on erittäin pieni ja muuntaja on käytännössä oikosuljettu. Mittaa sekä ensiö- että toisiopuolelta jännitteet ja virrat. Vertaa taas niistä saatuja muuntosuhteita kelojen kierroslukumäärien määräämiin teoreettisiin muuntosuhteisiin. Tehtävä 3: Kuormitetun muuntajan hyötysuhteen ja vaihesiirtojen mittaaminen Kytke ensiöpiiriin ja toisiopiiriin vastukset kuvan 5 mukaisesti. Laita toisiopuolen vastukseksi säätövastus ja ensiöpuolelle joko säätövastus tai kiinteä vastus (esim Ω molemmille). Mittaa edelleen virtaa ja jännitettä molemmilta puolilta. Kytke ensin toisiopiiri auki ja ota ylös kuormittamattoman muuntajan U1 ja I0. Kytke sitten toisiopiiri kiinni ja ota ylös kuormitetun piirin jännitteiden ja virtojen RMS-arvot. Pidä U1 samana, jotta virrat I1 ja I0 ovat vertailukelpoisia. Tee mittaukset kolmella eri taajuuden arvolla. Mittaa seuraavaksi oskilloskoopin avulla muuntajalle vaihesiirrot (U1,I0), (U1,I1) ja (U1,-U2) yhdellä edellisessä kohdassa käyttämälläsi taajuuden arvolla kuorman R2 funktiona. Tässä kannattaa käyttää digitaalista oskilloskooppia, sillä siinä voidaan asettaa kursorit oskilloskoopin näyttöön merkitsemään signaalien huippukohtia. Oskilloskooppi ilmoittaa kursoreiden aikaeron. Aloita mittaukset pienestä vastuksen R2
8 8 arvosta ja kasvata sitä, kunnes muuntaja toimii kuten kuormittamaton muuntaja (mistä sen näet?). Virran mittaaminen oskilloskoopilla ei onnistu suoraan. Vaihtovirtapiireissä, vastuksen yli kulkeva jännitehäviö on kuitenkin aina samassa vaiheessa virran kanssa. Näin ollen I1:n vaiheen saa selville ensiöpuolen pienen kuorman R1 avulla. U1 ja -U2 mitataan kelojen päistä (miksi U2, eikä U2?). Mittausasetelmat oskilloskooppimittauksia varten näkyy kuvissa 5 ja 6. Ole tarkka maapotentiaalien kanssa! Jaksonaika T on taajuuden f käänteisluku, eli T = f -1. Varmista jaksonaika kuitenkin vielä oskilloskoopin aika-asteikolta. Kaksoissädenäytöltä nähdään molemmat signaalit ja niiden välinen viive Δt. Signaalien välinen vaihe-ero on tällöin φ = 360º Δt. T Kuva 5. Vaihe-eron (U1,I1) mittaaminen. Kuva 6. Vaihe-eron (U1,-U2) mittaaminen.
9 9 4. Tulosten käsittely Kirjaa mittauksissa saadut tulokset erilliselle lomakkeelle. Tehtävän 1 ja 2 mittauksista kirjoitetaan sekä mitatut että teoreettisesti lasketut arvot ja vertaillaan tuloksia keskenään. Kuormitetun muuntajan tapauksessa laske suureet osoitindiagrammin piirtämistä varten (ks. ennakkotehtävät) ja piirrä diagrammit. Laske tehtävässä 3 vaaditut tehon arvot yhtälöiden (5), (7), (8) ja (9) mukaisesti. Mikä on tehon hyötysuhde P2 / P1 eri kuorman R2 arvoilla. Mitä voit sanoa Pr :n ja Pk :n osuuksista tehohäviöissä? Vertaa ensiöpuolen lisävirran I 2 :n arvoa virtaan I2. Mitä huomaat? Viitteet [1] H. D. Young and R. A. Freedman, University Physics with modern physics, 11 th edition, luku 31.6 (10 th edition, luku 32-7), Addison Wesley Longman, 2003 (2000). [2] H. C. Ohanian, Physics, 2 nd edition expanded, s , W. W. Norton & Company, New York, [3] J. Ahoranta, K. Lesch, L. Sundell, Yleisjakson sähkötekniikka, s , WSOY, Porvoo, [4] L. Aura, A. J. Tonteri, Teoreettinen sähkötekniikka ja sähkökoneiden perusteet, s , WSOY, Porvoo, [5] [6]
Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].
FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen
Muuntajat ja sähköturvallisuus
OAMK Tekniikan yksikkö LABORATORIOTYÖ 1 Muuntajat ja sähköturvallisuus 1.1 Teoriaa Muuntaja on vaihtosähkömuunnin, jossa energia siirtyy ensiokaamista toisiokäämiin magneettikentän välityksellä. Tavanomaisen
VAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
FYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
FYSP1082 / K4 HELMHOLTZIN KELAT
FYSP1082 / K4 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funktiona. Sähkömagnetismia ja
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Johdanto. 1 Teoriaa. 1.1 Sähkönjohtimen aiheuttama magneettikenttä
FYSP105 / K2 HELMHOLTZIN KELAT Johdanto Työssä mitataan ympyränmuotoisten johdinkelojen tuottamaa magneettikenttää kelojen läheisyydessä sekä sähkövirran että etäisyyden funtiona. Sähkömagnetismia ja työssä
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
TOROIDIN MAGNEETTIKENTTÄ
TOROIDIN MAGNEETTIKENTTÄ 1 Johdanto Suljettu virtasilmukka synnyttää ympärilleen magneettikentän. Kun virtasilmukoita liitetään peräkkäin yhteen, saadaan solenoidi ja solenoidista puolestaan toroidi, kun
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima
Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä
Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
Kuva 1. Vastus (R), kondensaattori (C) ja käämi (L). Sinimuotoinen vaihtojännite
TYÖ 54. VAIHE-EO JA ESONANSSI Tehtävä Välineet Taustatietoja Tehtävänä on mitata ja tutkia jännitteiden vaihe-eroa vaihtovirtapiirissä, jossa on kaksi vastusta, vastus ja käämi sekä vastus ja kondensaattori.
SMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen.
Oikeanlaisten virtapihtien valinta Aloita vastaamalla seuraaviin kysymyksiin löytääksesi oikeantyyppiset virtapihdit haluamaasi käyttökohteeseen. 1. Tuletko mittaamaan AC tai DC -virtaa? (DC -pihdit luokitellaan
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/
8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi
Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
Sinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla
LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään
VASTUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö ja magnetismiopin laboratoriotyöt VASTUSMTTAUKSA Työn tavoitteet Tässä työssä tutustut Ohmin lakiin ja joihinkin menetelmiin, joiden avulla vastusten resistansseja
FYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
SMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.
Lineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä
Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät
SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2017 Tämä luentomateriaali on pääosin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
FYSA220/K2 (FYS222/K2) Vaimeneva värähtely
FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien
RESISTANSSIMITTAUKSIA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 ESSTNSSMTTUKS 1 Työn tavoitteet Tässä työssä tutustut sähköisiin perusmittauksiin. Harjoittelet digitaalisen yleismittarin käyttöä
Magneettinen energia
Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.
Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin
1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
4. SÄHKÖMAGNEETTINEN INDUKTIO
4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ
ELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio
Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 6 Tavoitteet Sähkömagneettinen induktio Induktiokokeet Faradayn laki Lenzin laki Liikkeen tuottama smv Indusoituneet sähkökentät
14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
YLEISMITTAREIDEN KÄYTTÄMINEN
FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä
R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.
Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
SMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,
FYSA220/1 (FYS222/1) HALLIN ILMIÖ
FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys
SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.
FYSP1082/3 Vaihtovirtakomponentit
Sami Antero Yrjänheikki sami.a.yrjanheikki@student.jyu.fi 14.5.1999 FYSP1082/3 Vaihtovirtakomponentit Työ mitattu: 17.5.2019 Ohjaava assistentti: Artturi Pensasmaa Työ jätetty tarkastettavaksi: Abstract:
Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
Pinces AC-virtapihti ampèremetriques pour courant AC
Pinces AC-virtapihti ampèremetriques pour courant AC MN-sarja Serie MN-SARJA Nämä ergonomiset mini-pihdit ovat sunniteltu matalien ja keskisuurien virtojen mittaamiseen välillä 0,01 A ja 240 A AC. Leukojen
S Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT
TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan
Raportti 31.3.2009. Yksivaiheinen triac. xxxxxxx nimi nimi 0278116 Hans Baumgartner xxxxxxx nimi nimi
Raportti 31.3.29 Yksivaiheinen triac xxxxxxx nimi nimi 278116 Hans Baumgartner xxxxxxx nimi nimi 1 Sisältö KÄYTETYT MERKINNÄT JA LYHENTEET... 2 1. JOHDANTO... 3 2. KIRJALLISUUSTYÖ... 4 2.1 Triacin toimintaperiaate...
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S-55.103 SÄHKÖTKNKKA 7.5.004 Kimmo Silvonen Tentti: tehtävät 1,3,5,7,9 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Oletko muistanut vastata palautekyselyyn? Voit täyttää lomakkeen nyt.
Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I
Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä
OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ
FYSP110/K2 OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ 1 Johdanto Työn tarkoituksena on tutustua oskilloskoopin käyttöön perusteellisemmin ja soveltaa työssä Oskilloskoopin peruskäyttö hankittuja taitoja. Ko. työn
OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme
MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA
KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.
TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.
Sähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014
Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!
TEHTÄVÄT KYTKENTÄKAAVIO
TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.
Luku Ohmin laki
Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja
ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ
FYSP105 /1 ELEKTRONIN LIIKE MAGNEETTIKENTÄSSÄ 1 Johdanto Työssä tutkitaan elektronin liikettä homogeenisessa magneettikentässä ja määritetään elektronin ominaisvaraus e/m. Tulosten analyysissa tulee kiinnittää
SMG-2100: SÄHKÖTEKNIIKKA
SMG-: SÄHKÖTEKNIIKKA Passiiviset piirikomponentit vastus kondensaattori käämi Tarkoitus on yrittää ymmärtää passiivisten piirikomponenttien toiminnan taustalle olevat luonnonilmiöt. isäksi johdetaan näiden
Elektroniikan komponentit
Elektroniikan komponentit Elektroniikka ja sähköoppi Klas Granqvist Akun Tehdas / Oy Aku s Factory Ltd Elektroniikka Elektroniikan parissa käsitellään huomattavasti pienempiä ja heikompia järjestelmiä
S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010
1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
SÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015
SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
RATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
kipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
Sinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
Omnia AMMATTIOPISTO Pynnönen
MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen
SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite
2. Sähköisiä perusmittauksia. Yleismittari.
TURUN AMMATTKORKEAKOULU TYÖOHJE 1 TEKNKKA FYSKAN LABORATORO 2.0 2. Sähköisiä perusmittauksia. Yleismittari. 1. Työn tavoite Tutustutaan tärkeimpään sähköiseen perusmittavälineeseen, yleismittariin, suorittamalla
SMG-1100: PIIRIANALYYSI I. Verkkojen taajuusriippuvuus: suo(dat)timet
SMG-00: PIIRIANALYYSI I Verkkojen taajuusriippuvuus: suo(dat)timet alipäästösuodin ylipäästösuodin kaistanpäästösuodin kaistanestosuodin jännitevahvistus rajataajuus kaistanleveys resonanssi Suotimet:
Työn tavoitteita. 1 Teoriaa
FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Henrik Wallén Kevät 2018 Tämä luentomateriaali on suurelta osin Sami Kujalan ja Jari J. Hännisen tuottamaa Luentoviikko 7 Sähkömagneettinen induktio (YF 29) Induktiokokeet
TTY FYS-1010 Fysiikan työt I Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri Antti Vainionpää, S, 3. vsk.
TTY FYS-1010 Fysiikan työt I 25.1.2010 205348 Asser Lähdemäki, S, 3. vsk. AA 5.2 Vaihtosähköpiiri 205826 Antti Vainionpää, S, 3. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Vaihtosähköpiiri..................................
Sähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla
Chydenius Saku 8.9.2003 Ikävalko Asko ELEKTRONISET JÄRJESTELMÄT, LABORAATIO 1: Oskilloskoopin käyttö vaihtojännitteiden mittaamisessa ja Theveninin lähteen määritys yleismittarilla Työn valvoja: Pekka
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
6. Kertaustehtävien ratkaisut
Fotoni 7 6-6. Kertaustehtävien ratkaisut Luku. Oheisessa kuvassa on kompassineulan punainen pohjoisnapa osoittaa alaspäin. a) Mikä johtimen ympärille muodostuvan magneettikentän suunta? b) Mikä on johtimessa
Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä 0 jännitteen ja virran arvot ovat. 500t.
DEE- Piirianalyysi Harjoitus / viikko 4 Erään piirikomponentin napajännite on nolla, eikä sen läpi kulje virtaa ajanhetkellä jännitteen ja virran arvot ovat t Kun t, v te t 5t 8 V, i te t 5t 5 A, a) Määritä