Ch12 Kokeita spin-1/2 systeemillä. Yksinkertaisia mittauksia usean vuorovaikuttamattoman spin-1/2 ytimen systeemillä



Samankaltaiset tiedostot
Ch4 NMR Spectrometer

Ch2 Magnetism. Ydinmagnetismin perusominaisuuksia.

Ch10 Spin-1/2 systeemi. Spin-1/2 kvanttimekaniikkaa

SEISOVA AALTOLIIKE 1. TEORIAA

Spektri- ja signaalianalysaattorit

Luku 15: Magneettinen resonanssi

SIGNAALITEORIAN KERTAUSTA 1

Kvanttimekaniikan tulkinta

761359A Spektroskooppiset menetelmät NMR-SPEKTROSKOPIA

Ensimmäisen asteen polynomifunktio

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Tuomo Saloheimo SYVENTÄVÄÄ MAGNEETTIKUVAUKSEN FYSIIKKAA JA LAITEOPPIA

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

23 VALON POLARISAATIO 23.1 Johdanto Valon polarisointi ja polarisaation havaitseminen

1 Vastaa seuraaviin. b) Taajuusvasteen

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

S OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

Nimi: Muiden ryhmäläisten nimet:

Ch9 Sisäiset Spinvuorovaikutukset. Molekyylin sisäisten spinvuorovaikutusten tarkempaa pohdiskelua

Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ

Mekaniikan jatkokurssi Fys102

Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Tietoliikennesignaalit & spektri

FYS206/5 Vaihtovirtakomponentit

766334A Ydin- ja hiukkasfysiikka

Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Mekaniikan jatkokurssi Fys102

Sinin muotoinen signaali

KJR-C1001: Statiikka L2 Luento : voiman momentti ja voimasysteemit

Leikepaksuus magneettikuvauksen laadunvalvonnassa. Kandidaatintyö

Signaalit ja järjestelmät aika- ja taajuusalueissa

ẋ(t) = s x (t) + f x y(t) u x x(t) ẏ(t) = s y (t) + f y x(t) u y y(t),

VEKTORIT paikkavektori OA

Mekaniikan jatkokurssi Fys102

Liike pyörivällä maapallolla

Numeeriset menetelmät

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Mekaniikan jatkokurssi Fys102

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

RATKAISUT: 19. Magneettikenttä

MEI Kontinuumimekaniikka

Experiment Finnish (Finland) Hyppivät helmet - Faasimuutosten ja epätasapainotilojen mekaaninen malli (10 pistettä)

Lineaarikuvauksen R n R m matriisi

VAIHTOVIRTAPIIRI. 1 Työn tavoitteet

MAB3 - Harjoitustehtävien ratkaisut:

Sampomuunnos, kallistuneen lähettimen vaikutuksen poistaminen Matti Oksama

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

Tyyppi metalli puu lasi työ I II III

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Lyhyt, kevät 2016 Osa A

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.

S Magneettikuvauksen sovellukset Viikkoharjoitukset

4.1 Kaksi pistettä määrää suoran

Projektisuunnitelma ja johdanto AS Automaatio- ja systeemitekniikan projektityöt Paula Sirén

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Radioaktiivisen säteilyn läpitunkevuus. Gammasäteilty.

Kotitehtävät 1-6: Vastauksia

Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!

Visibiliteetti ja kohteen kirkkausjakauma

Matematiikan tukikurssi

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan

Ei-inertiaaliset koordinaatistot

MAB3 - Harjoitustehtävien ratkaisut:

Fysiikka 7. Sähkömagnetismi

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V

2.1 Ääni aaltoliikkeenä

Ongelmia mittauksissa Ulkoiset häiriöt

RCL-vihtovirtapiiri: resonanssi

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

Mekaniikan jatkokurssi Fys102

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

2.3 Voiman jakaminen komponentteihin

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

A B = 100, A = B = 0. D = 1.2. Ce (1.2 D. C (t D) 0, t < 0. t D. )} = Ae πjf D F{Π( t D )} = ADe πjf D sinc(df)

Infarktialueen määrittäminen T 1ρ -, T RAFF - ja T 2 -relaksaatiomenetelmillä sekä gadolinium-myöhäistehostuman avulla

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)

KESTOMAGNEETTI VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jani Vitikka p87434 Hannu Tiitinen p Dynaaminen kenttäteoria SATE2010

Transkriptio:

Ch Kokeita spin-/ systeemillä Yksinkertaisia mittauksia usean vuorovaikuttamattoman spin-/ ytimen systeemillä

Palautuminen inversiosta: T -mitttaus Seuraavassa tarkastellaan mittausta jolla määrätään pitkittäinen relaksaatioaika T Mittauksessa käytetään kahta pulssia kuvan esittämällä aikajanalla. ( ) τ : Miitaan signaali s t kullekin signaalia s ( τ ), t. Data muodostaa D-matriisin. n arvolle ja merkitään tätä D Eri τ : n arvoon liittyvien mittausten välillä pidetään riittävän pitkä tauko τ jotta systeemi ehtii relaksoitua termiseen tasapainoon wait

T -mittaus jatkuu Pulssin kehittyminen mittaussekvenssin aikana: Eq ˆ ˆ ρ ˆ = ˆ ρ = + BI ( π ) ˆ ρ ˆ ˆ = BI τ ˆ ρ ˆ 3 = + B - ( π / ) z z - τ / T ( e ) Iˆ ( ) ( ) ˆ - τ / T ˆ / / B( - ) ˆ ρ = Rˆ π ρ Rˆ π = e Iˆ z 4 3 y - τ / T ( ) ( ) { } ( ) ( ) ( ) Jos φ = ja resonanssi offset = Ω niin signaali on s τ, t = a τ ep iω λ t rec Populaatiot ja koherenssit inversion-recovery sekvenssissä missä amplitudi a τ = iρ = B - e, huom λ = / T

T -mittaus jatkuu Oletetaan seuraavaksi, että näytteessä on useita osasysteemeitä (eri isotooppeja eri isotopomeerejä tai staattinen kenttä epähomogeeninen. { } ( τ, ) = j ( τ ) ep ( Ω j λ j ) s t a i t missä a j ( ) ( - τ / T ) τ = B - e j j j ja T on osasysteemin j spin-hila relaksaatioaika. Data matriisi Fourier muunnetaan: iωt ( τ, Ω ) = ( τ, ) = j ( τ ) L( Ω; Ω j, λ j ) S s t e dt a j Huippuamplitudin muutos τ:n funktiona Data matriisin s ( τ ),t reaaliosa

T voidaan määrätä kokeellisesti mitatuista huippuamplitudeista a ( ) ( τ ) T -mittaus jatkuu ( τ ) piirtämällä log a a τ:n funktiona ja fittaamalla tämä sopivan suoran avulla, jolloin suoran kulmakerroin on /T Joukko inversio-recovery spektrejä

T -mittaus Vaikka T = / λ on kääntäen verrannollinen absorptiopiikin leveyteen ei kokeellinen sen kokeellinen määrittäminen ole helppoa epähomogeenisestä levenemisestä johtuen. T määräytyy homogeenisen leveyden perusteella eli mikroskooppisten kenttäfluktuaatioiden mukaan. Epähomogeenisella levenemisellä tarkoitetaan muita efektejä jotka leventävät spektriviivaa kuten makroskooppisia kentän vaihteluita näytteen alueella. Spinkaikumenetelmä mahdollistaa näiden levenemismekaanismien erottamisen toistaan. Epähomogeninen leveneminen aiheuttaa eritaajuisten signaalien summautumisen. Signaalit interferoivat siten, että vaimeneminen nopeutuu.

Spinkaiku-menetelmä Spinkaikumenetelmässä vaimenemisen epähomogeeninen komponetti voidaan kääntää toisella rf-pulssilla. Tämä mahdollistaa T :n mittauksen myös epähomogeenisessa kentässä. Mittauksesa pulsien väliaika on aina sama kuin aika. pulssin jälkeen ennen mittauksen aloittamista. Tarkastellaan aluksia yhtä spinsysteemiä ˆ ρ ˆ ˆ = + BI ˆ ρ ( π / ) ˆ = BIˆ z y Seuraavassa jätetään tiheysmatriisin diagonaalitermit pois sillä toinen rf-pulssi ei muuta niitä koherensseiksi.

Spinkaiku-menetelmäjatkuu Pulssien välinen aikakehitys ˆ ρ ˆ = BI y +.. τ ˆ ˆ ˆ ρ 3 = B I y cosω τ + I sin Ω τ e λτ / Spektraalidata matriisi S spinkaiku mittauksessa ( τ, Ω) Huojunta pulssien välisenä aikana

Spinkaiku-menetelmäjatkuu Toisen pulssin aikainen kehitys / ˆ ˆ ˆ λτ ρ 3 = B I y cos τ I sin τ e.. Ω + Ω + π y / ˆ ˆ ˆ λτ ρ 4 = B I y cosω τ I sin Ω τ e +.. ( pois jätettyjä populaatiotermejä) Magnetisaation rotaatio π y pulssin aikana

Spinkaiku-menetelmäjatkuu Toisen pulssin jälkeen, ennen mittauksen aloittamista odotetaan jakso τ /. Tänä aikana magnetoituma kiertyy kulman Ω τ. Lopputuloksena pulssi on mittauksen alkaessa ˆ ˆ ρ 5 = BI ye λτ +.. NMR spektrin amplitudimaksimi on a / T ( τ ) = Be τ Mittauksen alkaessa signaali on riippumaton resonanssioffsetista ja siksi myös magneettikentän epähomogeenisuudesta. Signaaliamplitudin riippuvuus ajasta τ spinkaikumittauksessa

Spinkaiku-menetelmäjatkuu Menetelmän idea on siinä, että pulssin kehittyminen pulssijonon toisella puoliskolla vastaa epähomogeenisen vaimenemiskomponentin suunnan muutosta. Π y pulssi aiheuttaa epähomogeenisten signaalikomponettien vahvistavan intereferenssin. Nykyinen pulsseihin perustuva NMR-spektroskopia Perustuu pitkälti Erwin Hahnin 95 tekemään havaintoon spinkaiusta.

Spinkaiku-menetelmäjatkuu Kentän voimakkuuden vaihtelu aiheuttaa sen että magnetisaatiovektori kiertyy näytteen eri alueissa siaitsevissa osasysteemeissä eri nopeudella. Allaoleva kuva havinnollistaa aikakehitystä ensimmäisen (π/) pulssin jälkeen. Heti pulssin päätyttyä kaikki osamagnetisaatiot ovat -akselin suuntaisia. Ne kuitenkin huojuvat eri nopeudella ja näin jakauma levenee pulssien välisenä aikana τ/! Ilmiötä kutsutaan vaiheistuksen menetykseksi (dephasing) se heikentää keskimääräistä magnetisaatiota (myös relaksaatio heikentää sitä)

Spinkaiku-menetelmäjatkuu Seuraavaksi magnetisaation suunta vaihdetaan päinvastaiseksi π y pulsilla ks kuva.5. Tällöin hitaimmat komponentit tulevat etummaisiksi ja päinvastoin Huojuntanopeudet ovat kullakin magnetisaatiokomponentilla samat kuin ennen nopeimmin kiertyvät alkavat saavuttaa hitaimpia ja kaikki osamagnetisaatiot kohtaavat hetkellä τ/ π y pulssin npäättymisestä lukien ja ovat silloin kaikki y suuntaisia. Vaihekoherenssin uudelleen muodostuminen. Jotta koherenssi olisi täydellinen paikalliset kentät eivät saa muuttua pulssisekvenssin aikana. Huom. Pulssit ovat hyvin nopeita niiden aikana ei tapahdu dephasingiä!

Spinkaiku-menetelmäjatkuu Spinnien epätäydellinen uudellenvaiheistus voi olla merkki paitsi magneettikentän muuttumisesta pulssien aikana myös spinnien virtaamisesta alueesta toiseen näin spinkaiulla voidaan tutkia diffuusiota näytteessä. Relaksaatioajan T määrittäminen perustuu siihen, että hetkellä 5 signaalin vaimeneminen sen alkuperäisestä arvosta aiheutuu ainoastaan poikittaisesta relaksaatiosta: Hetkellä 5 kaikkien osasysteemien signaaliamplitudi on a - / T ( τ ) = Be τ

Koherenssiin perustuva tulkinta Spinkaikua voidaan tarkastella myös yksittäisten spinien koherenssien aikakehityksen avulla. Tämä on parempi lähestymistapa korkean spinluvun ytimille. Koherenssit (tiheysmatriisin vastaavat ei diagonaalikomponentit kiertyvät toisikseen π y pulsissa. Koherenssien aikakäyttäytyminen voidaan muodostaa tiheysmatriisin aikakäyttäytymisestä ks sicut 3-3.

Koherenssiin perustuva tulkintajatkuu π/ pulssi muuttaa termisen jakauman ρ koherenssiksi ( ρ ei tuota mittausvaiheeseen ρ osuutta joka voitaisiin mitata) 5 Ajatuksena on seurata pulssisekvenssin aikana vain sitä keherenssikomponenttia joka tuottaa mittauksen alkaessa ρ + 3 + 4 + 3 5 4 5 + ( i ) { } ρ = ρ ep Ω λ τ / ( i ) { } ρ = ρ ep + Ω λ τ / { } ρ = ρ ep λτ Koherenssin muuttumista sekvenssissä voidaan kuvata tällä diagrammilla. Vain se koherenssipolku joka johtaa lopussa mitattavaan signaaliin on esitetty. + koherenssin ja siis mitattavan signaalin. Koherenssin kehitys on siis ρ = ρ

Spinlukitus T ρ mittaus Spinlukitusmenetelmässä magnetisaation suunta lukitaan johonkin suuntaan R-framessa π Magnetisaatio kierretään ensin / pulsilla -akselin suuntaan. Sen jälkeen rf-pulssin vaihe asetetaan nollaksi φ = jolloin pyörivässä koordinaatistossa rf-kenttä on -akselin suuntainen. Jos kenttä on tarpeeksi voimakas se estää spinien huojunnan - ts spinien sanotaan olevan lukitun. Ajan τ kuluttua lukituskenttä poistetaan jolloin huojuva magnetisaatio muodostaa NMR signaalin. Lukittu magnetisaatio kuolee eksponentiaalisesti ja voidaan mitata varioimalla aikaa τ näin mitataan spin-hila relaksaatioaika R-framissä T ρ

Gradientti kaiku Spin-kaiku saadaan aikaan myös kääntämällä kenttägradientin suunta. Aluksi luodaan (π/) pulsilla poikittainen magnetisaatio ja kytketään kenttägradientti z-suuntaan. Hetken päästä gradientin suunta vaihdetaan. Spinkaiku muodostuu kun gradientin aikaintegraali on nolla. Jos gradientti on z-akselin suuntaan z-akselilla eri alueissa olvat spinit huojuvat eri nopeudella.

Gradienttikaiku Kun gradientin suunta vaihdetaan, spinien huojunnan nopeuderot vaihtavat merkkinsä. Kun integroitu kokonaisvaaikutus (gradientin itseisarvo kertaa aika) on sama kuin edellisellä gradienttipulsilla palataan alkutilanteesen ja spinosasysteemien magnetisaatiot ovat jälleen samansuuntaiset Gradienttikaiku ei eliminoi kemiallisten siirtymien ja lokaalisten kenttäfluktuaatioiden aiheuttamaa epävaiheistusta. Gradienttipulssien päätyttyä osamagnetisaatiot ovat samansuuntaiset, mutta kemiallisesta siirtymästä johtuen magnetisaatiolla on vaihesiirto vrt kuvia 3 ja 4. Gradientin kääntäminen ei vaikuta kemialliseen siirtymään.

Kuvantaminen - leikemittaus Gradientilla ja rf pulssilla voidaan valita spektriin kapea kaista tai viipale näytettä - ainoastaan resonanssi taajuuden omaavat ytimet muodostavat signaalin. Pulssisekvenssi eroaa gradienttikausta siinä, että gradientti kytketään ennen rf-pulssia joka ajoitetaan positiivisen gradienttipulssin puoliväliin. Rf-pulssi ei ole suorakaide vaan tasainen aaltopaketti. Negatiivinen gradienttipulssi on kestoltaan puolet positiivisesta.

( ) Kuvantaminen - leikemittaus jatkuu Vain ne ytimet joiden Larmor taajuus vastaa rf-pulssin taajuutta ( π ) näkevät tarkalleen / pulssin. Kuitenkin myös spinit joilla on resonanssioffset reagoivat pulssiin Ω δ z = γ G δ z z Offresonanssipulssi muodostaa yhä magnetisaation ellei resonanssioffset ole paljon suurempi kuin nutaatiotaajuus ω Efektiivisesti resonanssiehdon rajoittama viipale on paksuudeltaan ω / γ G. Heikko Rf-kenttä ja suuri kenttägradientti mahdollistavat hyvän erotuskyvyn (ohuen mitattavan viipaleen). nut nut z

( π ) Kuvantaminen - leikemittaus jatkuu Kuvanmuodostuksen kannalta myös poikittaisen magnetisaation vaihetekijä on merkityksellinen. Niille ytimille jotka ovat tarkalleen resonansissa magnetisaatio on / pulssin jälkeen tarkalleen -y suuntainen. Niille ytimille joiden resonanssioffset on nollasta poikkeava muodostuu resonanssioffsetista riippuva ylimääräinen vaihekulma (.8.5). Voidaan osoittaa, että muodostunut vaihekulma on sama kuin silloin jos rf-pulssi olisi hyvin lyhyt ja viittaisi pulssin keskikohdan aikaan jonka jälkeen huojunta tapahtuu kenttä gradientin läsnäollessa. Tänä puolen gradienttipulssin aikana muodostunut huojunnan vaihe-ero kompensoidaan käänteisellä gradienttipulssilla.

MRI-kuvausmenetelmä lyhyt esitysjtk Tarkastellaan kuvan muodostamista ohuessa sauvassa olevasta vesimolekyylijakaumasta. Kenttä on z-suuntainen, mutta gradientti - suuntainen: B ( B G ) = + Larmor-taajuus on paikkariippuva ( ) ( ) ( ) Resonanssioffset paikkariippuva ( ) ( ) z ω = γ B + G = ω γ G Ω = ω ω = γ G e ref Ohuessa sauvassa joka on kohtisuorassa kenttää vastaan on pari vesimolekyylitihentymää Mittausmenetelmässä on olennaista Larmor-taajuuden yksinkertainen riippuvuus paikkakoordinaatista, jolloin tietyllä Larmor taajuudella havaittavan NMR-signaali voidaan helposti yhdistää -koordinaatin arvoon.

MRI-kuvausmenetelmä lyhyt esitysjtk Larmortaajuuden ja paikan välille saadaan siis seuraava yhteys Ω Ω = γ G Ω = γ G Ω NMR-signaalin intensiteetti on verrannollinen kullakin resonanssitaajuudella huojuvien spinien lukumäärään S ( Ω ) d ( Ω ) D jakaumalle -suuntainen gradientti ei anna enempää kuin projektion spintiheydestä

MRI-kuvausmenetelmä lyhyt esitysjtk Tarkastellaan kuvan muodostamista oheisesta D-leikkeestä allaolevalla pulssisekvenssillä. ( B G ) ( B G y y) ( π ) Alussa ajetun / pulssin jälkeen systeemi kehittyy gradientissa G B z (jakson t aikana) hetkellä t implementoidaan y-gradientti B = + = + e e z (jakson t aikana)

MRI-kuvausmenetelmä lyhyt esitysjtk Mittaus suoritetaan siten, että kullakin t ( π ) ( ) arvolla mitataan signaali s t,t Jakson t aikana Larmorfrekvenssi on Jakson t aikana Larmorfrekvenssi on Ensimmäisen / pulssin jälkeen pisteessä,y ( ( ) ) Ω Ω ( ) ( ) = γ G = γ G y ρ ˆ ˆ = BI y Tässä pisteessä mittauksessa havaittava ρ koherenssi on ρ = B 4i ρ = { } 3 Bep i Ω λ t missä λ /T 4i tiheysmatriisi on jakson t aikana huojunta tapahtuu taajuudella Ω y ( )

MRI-kuvausmenetelmä lyhyt esitysjtk Jakson t aikana huojunta jatkuu taajuudella ( ( ) ) ( ) ( ) ( ) ρ = { } 4 Bep iω λ t + iω λ t 4i Kukin D-leikkeen piste, y muodostaa siis osasysteemin, jonka vaste on tämän yhtälön mukainen. Kukin näistä osasignaaleista ( ), Ω ( ) muodostaa kuvapisteen D Fourier muunnoksessa siten, että signaalin intensiteetti taajuustason pisteessä Ω edustaa spinien tiheyttä pisteessä,y. NMR-osasignaali on vastaavasti ( ) ( ) ( λ ) ( ( ) λ ) { } s t, t ep iω t + iω t ja sen Fourier muunnoksessa havaitaan resonanssi taajuuksilla S ( ), Ω ( ) ( λ ) ( Ω Ω y) L Ω Ω Ω ( ) λ Ω ( ), ;,, ;,,, Ω Ω

MRI-kuvausmenetelmä lyhyt esitysjtk Kuvattavan leikkeen eri pisteet,y kuvautuvat Fourier muunnoksessa eri taajuus avaruuden pisteeksi Ω, Ω. Tietyn taajuustason pisteen intensiteetti määräytyy sen mukaan kuinka monta spinia on vastaavassa lekepisteessä,y: ( Ω Ω ) ( Ω Ω ) S, d, missä Ω Ω = = γ G Ω ja Ω γ G Intensiteettiin perustuva korkeuskartta leikkeestä.

MRI-kuvausmenetelmä lyhyt esitysjtk 3D-kuvan muodostaminen perustuu kolmen kenttägradientin ja vastaavan 3D Fourier muunnoksen hyödyntämiseen.