Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
|
|
- Onni Nurmi
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
2 Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan yhtä atomia ja sen naapureita. Mikä on jousivakio?
3 Hilavärähtelyt
4 Harmooninen oskillaattori Liikeyhtälö: Ratkaisu: M d x dt x cos x t A t missä harmoonisen värähtelyn kulmataajuus on M Suuret jousivakiot ja pienet etäisyydet tuottavat korkeita taajuuksia.
5 Värähdysamplitudin arviointi Klassisen ekvipartitioteoreema-mallin mukaan värähtelijän kokonaisenergia 1 1 E Mv x on yhtä suuri kuin k B T (kaksi vapausastetta). Kun liikeenergia on nolla, 1 xmax kbt xmax kt B Tämän suuruusluokka on muutama prosentti atomien välisestä etäisyydestä.
6 Monimutkaisempia malleja (1D) Ääretön ketju (yksi atomi/yksikkökoppi) Ääretön ketju (kaksi atomia/yksikkökoppi) Äärellinen ketju
7 Ääretön 1-dimensioinen ketju Liikeyhtälö, atomi n: Tasapainoetäisyys a dun M u u u u dt dun n1 n n1 M u u u dt n n1 n1 n Ratkaisuyrite: u t ue n i kant
8 Sijoitus liikeyhtälöön: dun ikant M M ue dt ika ikant ikant ika ikant ue e ue ue e M M ka i ka ka i ka cos sin cos sin e ika 1 cos e ika ka Tämä on siis voimassa millä tahansa amplitudin u arvolla.
9 Tällä on ratkaisu vain, kun 1 coska ka k sin M M Koska cos cos sin 1 sin, niin saadaan k ka sin ka sin M M Yleisesti ω riippuu k:sta. ω(k) on nimeltään dispersiorelaatio.
10 Ratkaisu Dispersiorelaatio Ääniaalto u t ue n i kant k sin M ka Seisova aalto k ak k M
11 Yleinen 1D-aalto Vaihenopeus ja ryhmänopeus Määritellään vaihenopeus ryhmänopeus Samat, jos
12 Esimerkkejä dispersiorelaatioista Värähtelyt 1D-ketjussa ka k sin M Kvanttimekaaninen partikkeli k
13 Valo tyhjössä Esimerkkejä dispersiorelaatioista Dispersiorelaatio on lineaarinen. Valon nopeus c ei riipu taajuudesta. Valo materiassa k
14 Esimerkkejä dispersiorelaatioista Lineaarinen dispersio k -dispersio k k Sinimuotoinen dispersio k
15 1 5 Ratkaisu Dispersiorelaatio Seisova aalto Ääniaalto
16 Dispersiorelaatio on periodinen ja periodi on yksi käänteishilavektori!
17 Jos k muutetaan yhdellä käänteishilavektorilla, atomien liike säilyy samana.
18 Ensimmäinen Brillouinin vyöhyke Ensimmäinen Brillouinin vyöhyke on k-avaruuden osa, joka on lähempänä tiettyä käänteishilan pistettä kuin mitään muuta käänteishilan pistettä (Wigner-Seitz koppi k-avaruudessa).
19 Ensimmäinen Brillouinin vyöhyke
20 Ensimmäinen Brillouinin vyöhyke
21 Reaaliavaruus Ensimmäinen Brillouinin vyöhyke Käänteisavaruus
22 Kaksiatominen kanta Liikeyhtälöt: Hilaperiodi b dun M u v v dt Ratkaisuyrite: n M vn un 1 un 1 n n n1 u t ue n i kbnt dv Kaksi lineaarista yhtälöä, kaksi tuntematonta (amplitudit u ja v). dt v t ve n i kbnt
23 Sijoitus liikeyhtälöihin: ikb M1u u v e v ikb M v v u e u Saadaan yhtälöpari: ikb 1 M u 1 e v 0 ikb 1 e u M v 0
24 Tällä on ei-triviaali ratkaisu vain, kun kerroinmatriisin determinantti on nolla: ikb M 1 1 e 0 ikb 1 e M Koska ikb ikb M 1 M e e ikb ikb M M M M 4 1 e 1 e e e kb cos 4sin ikb ikb kb :lle saadaan toisen asteen yhtälö kb M1M M1 M 4 sin 0
25 Toisen asteen yhtälö sievennettynä on kb M1M M1 M 4 sin kb sin 0 M1 M M1M joten saadaan kaksi ratkaisua kaikilla k:n arvoilla: kb M M M M M M sin
26 Kaksihaarainen dispersiorelaatio kb M M M M M M sin
27 Fononimoodit Poikittaiset moodit: TA = transverse acoustic TO = transverse optical Pitkittäiset moodit: LA = longitudinal acoustic LO = longitudinal optical
28 Äärellisen pituinen ketju Mitkä ovat reunaehdot? Kuinka ketjun päät käsitellään? Pituus l, kiinnitetyt päätyatomit Ratkaisut ovat seisovia aaltoja.
29 Periodiset reunaehdot Max Born - Theodore von Karman (191) N 1 Ketju, jossa N atomia: u nn u n Äärellinen ketju, jolla ei ole päätyä!
30 Periodiset reunaehdot Samalla tavalla päästään 3D-materiaalien pinnoista eroon (!). Jos kidettä siirretään L:n verran, kaiken täytyy säilyä samana.
31 Periodiset reunaehdot Ketju, jossa N atomia: u nn u Aalto on sama N yksikköä edempänä: e e ikan ikna e 1 n ika nn Tämä rajoittaa k:n arvoja: kna m k a m N N erilaista mahdollista värähtelymoodia (m=0...n-1).
32 Hila ilman kantaa, 10 yksikkökoppia k m a N N atomia antaa N värähtelyn normaalimoodia. Pitkille ketjuille pisteet ovat hyvin tiheässä.
33 1 atomi / yksikkökoppi, N yksikkökoppia => N vapausastetta Reunaehdot k m a N k-pisteiden lkm N x 1 moodia ominaisarvojen lkm per k-piste atomia / yksikkökoppi, N yksikkökoppia => xn vapausastetta k-pisteiden lkm N x moodia ominaisarvojen lkm per k-piste
34 Kvantisoidut värähtelyt Käsitellään kiteen atomeja kvanttimekaanisina harmonisina värähtelijöinä, joilla on ym. taajuudet.
35 Yksi harmooninen oskillaattori: kvanttimekaanien malli Energiatasot kvantittuneet ja tasavälein: 1 En n M
36 Aaltofunktiot: image source: wikimedia, author AllenMcC.
37 Pitkä ketju: kvanttimalli Koska k-arvot ovat kvantittuneet, k voidaan ymmärtää myös kvanttiluvuksi Näitä eksitaatioita kutsutaan fononeiksi. Dispersiota kutsutaan yleisesti fononien dispersiokäyräksi.
38 Fononit <-> Fotonit Vahva analogia: bosonisia eksitaatioita Molempia kuvaa kvanttimekaaninen harmooninen oskillaattori Aaltohiukkasdualismi
39 3D kiinteät aineet 1D Kuutiollinen kide, jonka hilavakio on a, kiteen sivun pituus L ja N yksikkökoppia joka suunnassa 3D Monta indeksiä, esim. liikeyhtälöstä M x m j n i n i m j m j Ratkaisujen lkm: 3 x atomeja per yksikkökoppi x yksikkökoppien lkm Ratkaisujen lkm per k-piste 1BZ:ssa: 3 x atomeja per yksikkökoppi x 0
40 Ensimmäinen Brillouinin vyöhyke Reaaliavaruus Käänteisavaruus
41 Fononit yhdessä dimensiossa haara Fononit 3D:ssä: 3D aaltovektori haara
42 Fononit 3D-kiteessä: alumiini Kokeellinen dispersiorelaatio epäelastisesta röntgensironnasta / neutronisironnasta.
43 Fononit 3D-kiteessä: alumiini
44 Fononit 3D-kiteessä: timantti Epäelastisesta röntgensironnasta / neutronisironnasta. Akustinen ja optinen haara erottuvat.
Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1
Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni
Luento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
Luento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
Luento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu
Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta
Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA
KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r
dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
Luento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa
12. Eristeet Vapaa atomi
12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa
S Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
12. Eristeet Vapaa atomi. Muodostuva sähköinen dipolimomentti on p =! " 0 E loc (12.4)
12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa
Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.
Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun. Lähd etään hakem aan ratkaisua y htälöistä (2 ) ja (3 ), kuten T E M -siirtolinjojen y htey d essä. N y t aaltoputkien tapauksessa z-kom
Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),
Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien
Useita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
Luento 15: Mekaaniset aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus
SEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
Liikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
Kidehilan perusominaisuudet
Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla
Kidehilan perusominaisuudet
Kidehilan perusominaisuudet Kiteen muodostaa hila (usein kutsutaan Bravaisin hilaksi) ja yhdestä tai useammasta atomista muodostuva kanta(klusteri). Kantaklusteri toistuu kiteessä hilan määräämällä tavalla
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
PHYS-C0240 Materiaalifysiikka kevät 2017
PHYS-C0240 Materiaalifysiikka kevät 2017 Prof. Martti Puska Emppu Salonen Ville Vierimaa Janika Tang Luennot 9 ja 10: Sironta kiteistä torstait 13.4. ja 20.4.2017 Aiheet Braggin sirontaehto Lauen sirontaehto
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
Luento 14: Periodinen liike, osa 2
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi F ~ µ ~F t F ~ d ~F r m~g Ajankohtaista Poimintoja palautekyselystä Oli mukava luento. Mukavaa että luennoitsija mahdollisti
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
Luento 18: Kertausluento
Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot Luennon sisältö Värähdysliike Harmoninen värähtely
YLEINEN AALTOLIIKEOPPI
YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
sillä hilassa vaikuttava periodinen potentiaali vaihtelee väleillä, jotka ovat pieniä verrattuna aaltopaketin
Semiklassinen elektronidynamiikka Blochin teoria osoittaa, että metallikiteissä elektronit eivät siroa ioneista (kuten Druden malli olettaa). Metallit eivät kuitenkaan ole täydellisiä johteita, sillä mikään
Osallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
Luento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
Johdatusta moniskaalamallinnukseen. malleissa on usein pieniä/suuria parametreja. rajaprosessi voi johtaa laadullisesti erilaiseen rajayhtälöön
Johdatusta moniskaalamallinnukseen malleissa on usein pieniä/suuria parametreja rajaprosessi voi johtaa laadullisesti erilaiseen rajayhtälöön ratkaisussa useampi pituusskaala epäsäännölliset häiriöt monen
S Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
SIGNAALITEORIAN KERTAUSTA 1
SIGNAALITEORIAN KERTAUSTA 1 1 (26) Fourier-muunnos ja jatkuva spektri Spektri taajuuden funktiona on kompleksiarvoinen funktio, jonka esittäminen graafisesti edellyttää 3D-kuvaajan piirtämisen. Yleensä
Aaltoputket ja resonanssikaviteetit
Luku 13 Aaltoputket ja resonanssikaviteetit Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla. Äärettömän hyvän johteen sisällä ei ole sähkökenttää,
Esimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
Luento 3. Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria
Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Luento 3 Millerin indeksit Kidevirheet Röntgendiffraktio Elastisuusteoria Kidesuunnat Kidesuuntien määrittäminen kuutiollisessa
Aaltoputket ja resonanssikaviteetit
Luku 12 Aaltoputket ja resonanssikaviteetit Tässä luvussa tutustutaan ohjattuun aaltoliikkeeseen. Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla.
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
Onteloresonaattorit. Onteloresonaattori saadaan aikaan, kun metallisen aaltop utken molemmat suljetaan metalliseinällä ja sen
Onteloresonaattori saadaan aikaan, kun metallisen aaltop utken molemmat suljetaan metalliseinällä ja sen sisään sy ötetään teh oa. a b d syöttö Oikealle etenev ä aalto h eijastuu p utken lop p up äästä,
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Voima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
9 VALOAALTOJEN SUPERPOSITIO
09 9 VALOAALTOJEN SUPERPOSITIO Edellisissä kappaleissa olemme tutkineet valon heijastumista peileissä ja taittumista linsseissä geometrisen optiikan approksimaation avulla Approksimaatiossa valon aaltoluonnetta
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
S , Fysiikka III (S) I välikoe Malliratkaisut
S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli
Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
Kvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Vapaat tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 6. Mikro- ja nanotekniikan laitos
Vapaat tilat Harris luku 6 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Potentiaaliaskel Potentiaalivalli ja tunneloituminen Aaltopaketti ja aineaallon eteneminen Potentiaaliaskel
KIINTEÄN AINEEN FYSIIKKA
KIINTEÄN AINEEN FYSIIKKA 766330a-01 Fysiikan laitos Oulun yliopisto 2016 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/766330a-01 Verkkosivulta löytyy luentomateriaali (tämä moniste),
ELEC-A4130 Sähkö ja magnetismi (5 op)
ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen
BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi,
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11
S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia
Luento 14: Ääniaallot ja kuulo
Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan
2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).
2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
Mekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
KIINTEÄN AINEEN FYSIIKKA a a a. Erkki Thuneberg
KIINTÄN AINN FYSIIKKA 763343a 766330a-01 763333a rkki Thuneberg Fysiikan laitos Oulun yliopisto 2017 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/763343a Verkkosivulta löytyy luentomateriaali
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
KIINTEÄN AINEEN FYSIIKKA a a a. Erkki Thuneberg
KIINTÄN AINN FYSIIKKA 763343a 766330a-01 763333a rkki Thuneberg Fysiikan laitos Oulun yliopisto 2018 Järjestelyjä Kurssin verkkosivu on https://www.oulu.fi/tf/kaf/index.html Verkkosivulta löytyy luentomateriaali
Aineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
KIINTEÄN AINEEN FYSIIKKA A. Erkki Thuneberg
KIINTÄN AINN FYSIIKKA 763333A rkki Thuneberg Fysiikan laitos Oulun yliopisto 2014 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/763333a Verkkosivulta tai löytyy luentomateriaali
Radioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
10. Toisen kertaluvun lineaariset differentiaaliyhtälöt
37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen
3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.
3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.
1 PERUSKÄSITTEITÄ 1.1 AALTOJEN TYYPIT
1 1 PERUSKÄSITTEITÄ Luonto on täynnä aaltoja. Aaltoliikettä voi syntyä kimmoisissa systeemeissä, jotka poikkeutettuna tasapainotilastaan pyrkivät palaamaan siihen takaisin. Aalto etenee, kun poikkeama
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
Kvanttimekaniikkaa yhdessä ulottuvuudessa
Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet
Luento 14: Ääniaallot ja kuulo
Luento 14: Ääniaallot ja kuulo Pikajohdanto elastisuusteoriaan Ääniaallot Luennon sisältö Pikajohdanto elastisuusteoriaan Ääniaallot Miksi pikajohdanto? Osa ääniaaltojen käsittelystä perustuu elastisuusteoriaan
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Ääni, akustiikka. 1 Johdanto. 2.2 Energia ja vaimeneminen (1) 2 Värähtelevät järjestelmät
Ääni, akustiikka Lähdemateriaali: Rossing. (1990). The science of sound. Luvut 2-4, 23. Sisältö: 1. Johdanto 2. Värähtelevät järjestelmät 3. Aallot 4. Resonanssi 5. Huoneakustiikka 1 Johdanto Akustiikka
2. kierros. 2. Lähipäivä
2. kierros 2. Lähipäivä Viikon aihe Vahvistimet, kohina, lineaarisuus Siirtofunktiot, tilaesitys Tavoitteet: tietää Yhden navan vasteen ekvivalentti kohinakaistaleveys Vastuksen terminen kohina Termit
Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,