MIKROTEORIA, HARJOITUS 7 MONOPOLI JA OLIGOPOLI
|
|
- Kalle Pesonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 MIKROTEORIA, HARJOIT 7 MONOPOLI JA OLIGOPOLI. Amerikkalainen lääkeehdas m lääkeä koimarkkinoilla ja Kanadassa paenin urvin. Yriksen markkinoiniosaso on arvioinu, eä kääneis-ksnäkärä ova p p = = 5 Kaikki uoee uoeaan samassa ehaassa, jossa kusannusfunkioksi muodosuu Kuljeuskusannuksilla ei ole käännössä miään merkisä. c =. a. Tullimääräkse kielävä lääkkeiden viennin maasa oiseen. Minkälaiseksi muodosuu hina ja mni kummassakin maassa? Kuinka suure ova lääkeehaan voio? b. Neikaupan leisä A:ssakin on mahdollisa osaa lääkeä Kanadan hinnalla. Kuinka suureksi lääkeehaan voio n muodosuu? a. Yriksen ulo Yhdsvalloisa: R = p = ja ulo Kanadasa: R = 5. Yriksen kokonaiskusannukse ova c + = +. Voio ova ulojen ja kusannusen erous eli, = Π R + R -c + = Voiojen maksimi lö osiaisderivaaojen nollakohdasa. Laskeaan siis osiaisderivaaojen nollakohda. Π,. = = 9 = = 45 Π,. = 5 = 4 = = Voiofunkio on kahden oisisaan riippumaoman alaspäinaukeavan paraabelin summa. Laskeu pisee ova kseisen paraabelien maksimi miksi?. Koska summan maksimi on aina pienempi ai häsuuri kuin maksimien summa, on löde pisepari mös voiofunkion maksimi. Mnejä vasaava hinna saadaan kääneisksnäkärisä. 45 = 45 = 55 p = 5 = 3. Lääkeehaan voio ova puolesaan Π45, = = = 85. b. Neikaupan johdosa hinojen ä molemmissa maissa olla sama. Merkiään ää heisä hinaa p :llä. Rakaisaan uusi kokonaiskääneisksnä. Kanadassa ksnä on aidosi posiiivinen niin kauan kuin päee > 5 p > p < 5. Tämän jälkeen kaikki ksnä on amerikkalaisen lääkkeenkääjien ksnää. Kun p < 5, lääkkeen kokonaisksnä on = + = p + 5 p = 5 p ja kääneisksnä näin ollen p p = 75 kun >5. Yriksen voio ova n ja
2 Π = p c = 75 = 65. Esiään derivaaan nollakohda: dπ d Π = 65 = = 65 > 5. Pise on maksimi, sillä = <. Yriksen d d 65 voio ova ällöin Π 65 = = 5. Tarkiseaan vielä, eei ris n haluaisi mdä korkealla hinnalla pelkäsään hdsvalain markkinoille. Jos <5, ksnään on pelkäsään hdsvalloissa, jolloin kääneisksnä on muooa p =. N voio ova Π = p c =, jonka maksimi lö a-kohdan nojalla piseesä =45. Voio ova ällöin Π 45 = = 5 < 5. Lääkeehaan kannaaa siis mdä määrä 65, jolloin sen voio ova 5.. Koimaisella monopoliriksellä on kaksi ehdasa, oinen Rajamäellä ja oinen Koskenkorvalla. Yrisen kusannukse ova TC R = R + 4 ja TC K = 6 K + 8. Tuoeen ksnä on p = 88-4, jossa = R + K. Mikä ova opimaalise uookse kummassakin ehaassa. Mikä on riksen voio ja mikä uoeen mnihina? Kusannusfunkio: TC R = R + 4 TC K = 6 K + 8 Rajakusannukse: MC R = 4 R MC K = 6 Tulofunkio: TR = p* = 88-4 Rajaulo koimarkkinoila: MR = 88-8 Opimissa riksen kannaaa uoaa juuri sen verran, eä molempien ehaiden viimeisesä uoeesa saau ulonlisäs on häsuuri kuin sen valmisamisesa aiheuunu kusannusen lisäs: MC R = MR = MC K MR = MC K 88-8 = 6 * =,5 MC R = MC K 4 R = 6 R * =,5 K * = - R =,5 -,5 = 8,75 p* = 88-4 = 47 Π* = TR - TC R R - TC K K = 88 R + K - 4 R + K - R K - 8 = 4,75 3 a. Olkoon uuuusuoeen ksnäkärä muooa Dp = p/ ja olkoon monopolin kusannusrakeneena c =. Rakaise monopolin ilanne ja piirrä kuva. b. Monopolin uoaman uoeen ksnä voimisuu dramaaisesi. Uusi ksnä on Dp = p. Kusannukse eivä muuu. Nouseeko uoeen hina ksnnän voimisuessa? a. Kääneisksnäkärä: p =- Tulofunkio: TR = p* = - Rajaulo:
3 TR = MR = - 4 Rajakusannukse: c =MC= =keskimääräise kusannukse Opimissa monopoli valisee uoeun määrän sien, eä MC = MR eli -4 =, misä seuraa, eä =5. Hina määrä ksnäkärälä: p5 = -*5 =. Monopolin voio ova n Π5 = TR5 - c5=5*p5-*5=5*-=5>. Monopoli uoaa siis lisuuria voioja ja oimina kannaaa Missä värien vasaavuude seuraava: phl MR MC Monopoli siis valisee määrän, joka on harmaan ja sinisen suoran riseksessä ja aseaa hinnaksi ää määrää vasaavan piseen oranssila suorala. b. Uusi kääneisksnäkärä: p = - Uusi ulofunkio: TR = p * = - Rajaulo: TR =MR = - N opimissa: MR = MC - = =, jolloin p = - = > AC eli uoano kannaaa edelleen ja monopoli nauii lisuuria voioja. Monopolin valisema hina on kuienkin sama kummassakin apauksessa.
4 4.
5 c Koko oimialan voio ova n Π, = P, + c, = a + c c. Nämä ova negaiivise ainakin kun a < eli kun > + a. Huomaaan lisäksi, eä Π, =, joen voiojen maksimi ei voi olla suoran = + a läpuolella eli joukossa {, R + : > + a}. Voio maksimoivien uoanomäärien löämiseksi riiää siis ukia pisee, joilla päee: + a, ja. Nämä muodosava - koordinaaisoon suljeun ja rajoieun kolmion piirrä aluea rajaava suora, jos e usko. Voiofunkiolla ä siis jakuvana funkiona olla maksimi ässä kompakissa kolmiossa. Maksimi voi löä joko kolmion sisäpiseisä ai sen reunala. Yllä on jo pääel, eä maksimi ei voi olla suoralla = + a voio ova uolla suoralla negaiivise, joen valisemalla uoannon asoksi molemmissa riksissä nolla pääsään parempaan ulokseen. Mahdollisiksi maksimipiseiksi jäävä siis kolmion sisäpisee, origo ja suora = ja =., Jos maksimi lö josain kolmion sisäpiseesä ä voiofunkion osiaisderivaaojen olla nolla uossa piseessä. Esiään osiaisderivaaojen nollakohda: o Π, = a + c c = a c = o Π, = a + c c = a c =
6 o a c o a c N päee, jos ja vain jos + =. Vasaavasi päee, jos ja vain jos + =. a c a c Täen, jos hälöparilla olisi rakaisu, ulisi päeä mös = c = c. N kuienkin c < c, joen koko asosa ei löd piseä, jossa molemma osiaisderivaaa olisiva nollia. Eriisesi ällaisa piseä ei löd kolmiosa, joka on kiinnosuksen koheenamme. Voion maksimin ä siis löä joko origosa ai jommala kummala suorisa = ai =. N kuienkin huomaaan, eä kun >, Π, = a c < a c = Π, sillä c < c. Miä ämä keroo? Tuoeaessa määrä oimialan voio ova aina suuremma, kun uoos uoeaan riksessä kuin miä ne olisiva, jos uoano apahuisi riksessä. Voion maksimi ei siis voi olla suoralla =, koska voio olisva aidosi suuremma, jos uoano siirreäisiin kokonaan riksesä rikseen. Olemme siis saanee rajaua ilaneen niin, eä voiojen maksimi ä olla joko origossa ai suoralla =. Esiään voiojen maksimi suorala =. N Π, = a c = + a c. ämä on alaspäin aukeava paraabeli, joen sillä on maksimi derivaaan nollakohdassa. Derivaaan nollakohdaksi saadaan dπ, a c = + a c = =. Voio ässä piseessä ova d a c a c a c a c Π, = + a c = >. Näin siksi, eä oleukse anava 4 a a a c c < < c < a c a c. Toisin sanoen Π, > = Π, ja voiojen a c maksimin ä siis löä piseesä,. Täen opimaalinen uoano kolluusiorakaisussa on a c k = ja ämä uoeaan kokonaisuudessaan riksessä. Tuoannon apahuminen riksessä ei sinänsä ole kovin lläävää, koska olisihan varsin erikoisa, jos kolluusio ilaneessa kannaaisi uoaa miään riksessä, jossa jokaisen uoeen uoaminen on kalliimpaa kuin riksessä. Mielenkiinoisa on, mien ris saaaisiin suosumaan kolluusioon. Jos vaihoehona on Cournokilpailu, jossa sillä on mahdollisa ansaia posiiivisia voioja, rikselle piäisi ilmeisesikin maksaa joakin uoamaa jäämisesä. N, jos haluaan verraa Courno- ja kolluusiorakaisuissa uoeuja määriä, nähdään, eä a c c a c 4a c c 3a + 3c a + c c c + c c c c k = = = > = >, a missä ensimmäinen epähälö seuraa oleuksesa > c a > c. Toisin sanoen saaiin, eä c k > eli Courno-kilpailussa markkinoille uoeu määrä on suurempi kuin kolluusiorakaisussa. Koska kääneisksnä on uoeun määrän suheen laskeva, ä, mös markkinahinnan olla Cournokilpailussa pienempi kuin kolluusiorakaisussa. Courno-kilapailu on siis kuluajien näkökulmasa mielekkäämpi kuin kolluusio. 5. Olkoon kahden samaa uoea uoavan riksen kusannusfunkio TC = 5 TC =.5 Tuoeen ksnä on p = -.5 = +
7 Yris valisee oiminasraegiakseen määräjohajuuden ja ris pääää seurailla. Laske markkinaasapaino Sackelberg sekä kummankin riksen voio. Rakaisaan akaapäin lähien. Esiään kullakin johajan määrällä seuraajan opimaalinen sraegia: max Π, = [ ] -.5 = Opimieho: Π, = = = Tää kusuaan seuraajan reakiofunkioksi. Seuraaja valisee kullakin johajan valinnalla aina äsä ehdosa saadun määrän. Johaja mmärää ämän ja maksimoi n voioaan anneuna seuraajan reakiofunkio: max Π, =[ ,5 ] - 5 = Opimieho: dπ, = = * = 8/3 = 93.3 ja sijoiamalla akaisin voiofunkioon d saadaan: Π * = Seuraaja: 8/3 = 5 -,5*8/3 = 8/3 = 6.7 ja näin ollen voiofunkiosa saadaan suoralla sijoiuksella Π * = 7.. Kokonaisuoano: * = + = 36/3 = Hina: p* = -.5* =-6= 4 6. Tarkasellaan risä, jolla on mahdollisuus invesoida uuden innovaaion ekemiseen. Invesoini maksaa C. Jos ris invesoi, se ekee innovaaion odennäköisdellä α. Jos ris ekee innovaaion, se voi paenoida sen. Siinä apauksessa se nauii monopolivoioa, niin kauan kun paeni on voimassa. Tällöin sen periodiainen kääneisksnäkärä on P = a jossa a > ja on uoannon määrä. Rajakusannus on nolla. Paeni on voimassa T periodia. Sen jälkeen, kun paeni ei ole enää voimassa, markkinoille ulee uusia riksiä sien, eä periodiainen voio on nolla. Tapahumien ajoius on seuraava: periodin alussa ris invesoi, ekee innovaaion odennäköisdellä α ja saa innovaaiolle paenin. Sen jälkeen aina periodin lopussa alkaen periodin lopusa periodin T loppuun asi ris saa ko. periodin voion. a. Mikä on riksen periodiainen voio silloin, kun se on monopoliasemassa? b. Oleeaan, eä korkoaso on r. Mikä on innovoineen riksen voiojen nkarvo anneuna, eä innovaaio on paenoiu? c. Mikä on eho sille, kannaaako riksen maksaa innovoiniin liivä kusannus? a. Koska riksen rajakusannukse ova nolla, jos riksen kusannusfunkio on jakuva ja derivoiuva, ä sen olla vakiofunkio: c ' = c' d = d + F c = F, missä F on reaalinen vakio kiineä kusannukse. Jos ris innovoi ja pääsee monopoliasemaan on sen periodiainen voio ällöin Π = P c = a F. Yris maksimoi voionsa. Voion a maksimi lö derivaaan nollakohdasa eli Π ' = a = =. Tämä odella on maksimi a a a a sillä Π' ' = <. N riksen voio ova Π = F = F. Joa ris odella 4 4 haluaa edes monopoliasemaan ämän ä olla posiiivinen. Muuen se pärjää paremmin ädellisen kilpailun markkinoilla ansaisemassa nollavoioja.
8 b. Tulevaisuueen sijoiuvan ulovirran nkarvon voi johaa esimerkiksi seuraavasi: Tulovirran nkarvo vasaa sellaisa summaa, jonka ris voisi oaa velkaa nollannen periodin alussa ja maksaa pois periodin T- loppuun menessä kerneillä voioilla ja niiden korkouooilla periodin T- lopussa. Olkoon V ämä velka. Velka +r-keraisuu jokaisessa periodissa, joen periodin T- loppuun mennessä velkaa on heensä + r T V euroa periodeia heensä T kpl. Vasaavasi nollannen periodin voio vasaavasi ehivä periodin T- loppuun mennessä + r T -keraisua voio uli vasa nollannen periodin lopussa, joen se ei kasva nollannella periodilla korkoa. Edelleen ensimmäisen periodin voio + r T -keraisuva jne. N jos merkiään π :llä :nnen periodin voioja, voiojen heen laskeu arvo periodin T- lopussa on näin ollen + r T π + + r T π r π juuri alussa oeun velan maksuun, jos = + r T T T + r T + r π = + r π = + r T T T + r V V = T π. Tämä riiää π + r a päee, eä monopoliasemassa π = F {,..., T }. Siispä voiovirran nkarvo on 4 T a 4 F V =. Periodin T- jälkeisilä periodeila ris saa nollavoioja, joen niiden nkarvo + r on selväsikin nolla. c. Yriksen on järkevää ajaella maksimoivan voiojen odousarvon nkarvoa oleaen, eä ris on riskineuraali. Innovoiniin liivä invesoini ehdään periodin alussa, joen sen nkarvo on C. Kun huomioidaan innovoinnin kusannus, onnisuneesi innovoineen riksen neovoiojen nkarvo on T a F siis VI = 4 C. Jos ris riää innovoida, mua epäonnisuu, maksaa se invesoinnin C + r ja jää ädellisen kilpailun markkinoille, missä se ansaisee nollavoioja. Tällöin sen voiojen nkarvo on V E = C = C. Tädellisen kilpailun markkinoilla ris, joka ei riä innovoida saa varmasi jokaisessa periodissa nollavoioja. Täen sen voiovirran nkarvo on V k =. N riskineuraali ris riää innovoida, jos ja vain jos sen innovoinnisa saama ulovirran nkarvon odousarvo on suurempi ai häsuuri kuin innovoimaa jäämisesä saaavien ulojen nkarvo αv + α V V α T C α I a + r T 4 F α C + αc α a E k 4 F C + α C T a 4 F + r + r eli, jos ja vain jos innovoinnin kusannus on pienempi ai häsuuri kuin innovoineen riksen monopolivoio keraa odennäköiss onnisua innovoinnissa.. N
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä
b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus
Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa
2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23
LISÄTEHTÄVÄT. Maemaainen malli ja funkio 9. a) f (-) = - (-) + = - + = -6 b) f (-) = (-) - (-) + = - (-8) + = 8 + 8 + = 80. a) f ( ) = + f ( ) = 0 + = 0 ( ) = ± = ± = ai = Vasaus: = - ai = b) + = + = 0
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa
Rakennusosien rakennusfysikaalinen toiminta Ralf Lindberg Professori, Tampereen teknillinen yliopisto ralf.lindberg@tut.fi
Rakennusosien rakennusfysikaalinen oimina Ralf Lindber Professori, Tampereen eknillinen yliopiso ralf.lindber@u.fi Rakenneosien rakennusfysikaalisen oiminnan ymmärämiseksi on välämäönä piirää kolme eri
5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
A-osio. Ei laskinta! Valitse seuraavista kolmesta tehtävästä vain kaksi joihin vastaat!
MAA Koe 7..03 A-osio. Ei laskina! Valise seuraavisa kolmesa ehäväsä vain kaksi joihin vasaa! A. a) Mikä on funkion f(x) määrieljoukko, jos f( x) x b) Muua ulomuooon: 4a 8a 4 A. a) Rakaise hälö: x 4x b)
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
Dynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia
6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön
9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.
9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd
PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa
Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
Toistoleuanvedon kilpailusäännöt
1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse
( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
2. Suoraviivainen liike
. Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus
Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.
5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama
Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista
Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
Tasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
1 Excel-sovelluksen ohje
1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen
TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
NPV. Laskukaavojen sparrauspaketti tenttiä varten (päivitetty ) Nettonykyarvo (NPV) - kirjan sivu 927
Laskukaavojen sparrauspakei eniä varen (päiviey 16.11.2016) Neonykyarvo (NPV) - kirjan sivu 927 Invesoinnin uoo ja pääoman uoo (ROI ja ROA) s. 926 Asiakkaan elinkaariarvo (CLV) s. 931 Hinnoielu s. 666
Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
4. www-harjoitusten mallivastaukset 2017
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
ETERAN TyEL:n MUKAISEN VAKUUTUKSEN ERITYISPERUSTEET
TRAN TyL:n MUKASN AKUUTUKSN RTYSPRUSTT Tässä peruseessa kaikki suuree koskea eraa, ellei oisin ole määriely. Tässä peruseessa käyey lyhenee: LL Lyhyaikaisissa yösuheissa oleien yönekijäin eläkelaki TaL
VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
Konvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
Systeemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen
Tiedonhakumenetelmät Tiedonhakumenetelmät Helsingin yliopisto / TKTL. H.Laine 1. Todennäköisyyspohjainen rankkaus
Tieonhakumeneelmä Helsingin yliopiso / TKTL.4.04 Toennäköisyyeen perusuva rankkaus Tieonhakumeneelmä Toennäköisyyspohjainen rankkaus Dokumenien haussa ongelmana on löyää käyäjän kyselynä ilmaiseman ieoarpeen
VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS. JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Katsaus kirjallisuuteen
VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 445 JULKISEN TALOUDEN PITKÄN AIKAVÄLIN LASKENTAMALLIT Kasaus kirjallisuueen Juho Kosiainen Valion aloudellinen ukimuskeskus Governmen Insiue for Economic
Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (
TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin
Luento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
Luento 7 Järjestelmien ylläpito
Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan
ÅLANDSBANKEN DEBENTUURILAINA 2/2010 LOPULLISET EHDOT
ÅLANDSBANKEN DEBENTUURILAINA 2/200 LOPULLISET EHDOT Ålandsbanken Debenuurilaina 2/200 (ISIN: FI400003875) lopullise ehdo on 9. heinäkuua 200 vahviseu seuraavasi: - Lainan pääoma 9 980 000 euroa Maarianhamina
f x dx y dy t dt f x y t dx dy dt O , (4b) . (4c) f f x = ja x (4d)
Tehävä 1. Oleeaan, eä on käössä jakuva kuva, jossa (,, ) keroo harmaasävn arvon paikassa (, ) ajanhekenä. Dnaaminen kuva voidaan esiää Talor sarjana: d d d d d d O ( +, +, + ) = (,, ) + + + + ( ). (4a)
Ilmavirransäädin. Mitat
Ilmairransäädin Mia (MF, MP, ON, MOD, KNX) Ød nom (MF-D, MP-D, ON-D, MOD-D, KNX-D) Tuoekuaus on ilmairasäädin pyöreälle kanaalle. Se koosuu sääöpellisä ja miaaasa oimilaieesa ja siä oidaan ohjaa huonesääimen
joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
Tietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
Ratkaisu. Virittäviä puita on kahdeksan erilaista, kun solmut pidetään nimettyinä. Esitetään aluksi verkko kaaviona:
Diskreei maemaiikka, sks 00 Harjoius 0, rakaisuisa. Esi viriävä puu suunaamaomalle verkolle G = (X, E, Ψ), kun X := {,,, }, E := { {, }, {, }, {, }, {, }, {, }}, ja Ψ on ieninen kuvaus. Rakaisu. Viriäviä
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
JLP:n käyttämättömät mahdollisuudet. Juha Lappi
JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p
Kuntaeläkkeiden rahoitus ja kunnalliset palvelut
Kunaeläkkeiden rahoius ja kunnallise palvelu I LA Rapori LA Repors 30.1.2013 No 4 Kunaeläkkeiden rahoius ja kunnallise palvelu Jukka Lassila * Niku Määänen ** armo Valkonen *** * LA linkeinoelämän ukimuslaios,
Diskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
Lineaaristen järjestelmien teoriaa II
Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä
KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
6 Integraali ja derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 6 Inegrli j deriv 6. Inegrli ylärjns funkion. Olkoon Määriä kun () [, ], (b) ], 3]., kun [, ],, kun ], 3]. f() d, [, 3],. Osoi, eä jos funkio f on Riemnn-inegroiuv
Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu
Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova
Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla
BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen
Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihtelu Suomessa vuosina 1776 2005
Kokonaishedelmällisyyden sekä hedelmällisyyden keski-iän vaihelu Suomessa vuosina 1776 2005 Heli Elina Haapalainen (157 095) 26.11.2007 Joensuun Yliopiso Maemaais- luonnonieeiden iedekuna Tieojenkäsielyieeen
OSINKOJEN JA PÄÄOMAVOITTOJEN VEROTUKSEN VAIKUTUKSET OSAKKEEN ARVOON
AMPN YLIOPISO Kauppaieeien laios OSINKOJN JA PÄÄOMAVOIOJN VOUKSN VAIKUUKS OSAKKN AVOON Laskenaoimi Seminaariukielma Helmikuu 2004 Ohjaaja: Ismo Vuorinen apani Höök 3 SISÄLLYS JOHDANO... 4. ukielman ausaa...4.2
KOMISSION KERTOMUS. Suomi. Perussopimuksen 126 artiklan 3 kohdan nojalla laadittu kertomus
EUROOPAN KOMISSIO Bryssel 27.2.205 COM(205) 4 final KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan nojalla laadiu keromus FI FI KOMISSION KERTOMUS Suomi Perussopimuksen 26 ariklan 3 kohdan
( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
Lisäpainoleuanvedon kilpailusäännöt
1.0 Yleisä Lisäpainoleuanvedossa kilpailija suoriaa hden leuanvedon mahdollisimman suurella lisäpainolla. Kilpailijalla on käössään kolme kilpailusuoriusa sekä voiajalla mahdollinen limääräinen SE-ris.
MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014
MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
Mittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
TU Kansantaloustieteen perusteet Syksy 2016
TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä
MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010
MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,
Toistoleuanvedon kilpailusäännöt
1.0 Yleisä Toisoleuanvedossa kilpailija suoriaa häjaksoisesi mahdollisimman mona leuanveoa omalla kehonpainollaan. Kilpailijalla on käössään ksi kilpailusuorius sekä asauloksen sauessa mahdollise uusinakierrokse
käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät
n u m o a u L akirj i as a j a a i p p u a k s i ä ö i i h Vä aikei amm käsieiä Asiakirjaselviys Vaaimuksenmukaisuusodisus/-vakuus Saaeasiakirja Luomun merkinnä Asiakirjaselviys Pakollinen asiakirja Tällä
Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet
Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa
Tervehdys Naantalin Musiikkiopistosta
Läheäjä: Huhala Sauli [mailo:sauli.huhala@naanali.fi] Läheey: 19. helmikuua 2018 12:20 Vasaanoaja: Leppänen Jorma Tervehdys Naanalin Musiikkiopisosa Kävin kasomassa ko.ilan, joka on varmasi hyvä kaikkien
12 Oligopoli ja monopolistinen kilpailu
12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä
Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M
Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa
KOMISSION VALMISTELUASIAKIRJA
EUROOPAN UNIONIN NEUVOSTO Bryssel, 23. oukokuua 2007 (24.05) (OR. en) Toimielinen välinen asia: 2006/0039 (CNS) 9851/07 ADD 2 N 239 RESPR 5 CADREN 32 LISÄYS 2 I/A KOHTAA KOSKEVAAN ILMOITUKSEEN Läheäjä:
Öljyn hinnan ja Yhdysvaltojen dollarin riippuvuussuhde
Öljyn hinnan ja Yhdysvalojen dollarin riippuvuussuhde Kansanalousiede Pro gradu -ukielma Talousieeiden laios Tampereen yliopiso Toukokuu 2010 Jari Hännikäinen TIIVISTLMÄ Tampereen yliopiso Talousieeiden
POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muistio 2/15
POHJOINEN SOTE JA TUOTTAMISEN RAKENTEET Muisio 2/15 20.8.15 IKÄIHMISTEN PALVELUJEN RYHMÄ Aika 20.8.2015 klo 9-11.30 Paikka Läsnä Kokkolan kaupunginalo, kokoushuone Minerva Maija Juola, pj, Kokkola Vuokko
Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015
Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen
3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
KOE 2 Ympäristöekonomia
Helingin yliopio Valinakoe.5. Maaalou-meäieeellinen iedekuna KOE Ympäriöekonomia Sekä A- eä B-oioa ulee aada vähinään 5 pieä. Mikäli A-oion piemäärä on vähemmän kuin 5 pieä B-oio jäeään arvoelemaa. B-OSIO
Suomen kalamarkkinoiden analyysi yhteisintegraatiomenetelmällä
KALA- JA RIISTARAPORTTEJA nro 374 Jukka Laiinen Jari Seälä Kaija Saarni Suomen kalamarkkinoiden analyysi yheisinegraaiomeneelmällä Helsinki 006 Julkaisija Riisa- ja kalaalouden ukimuslaios KUVAILULEHTI
LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20
LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön
Luento 2. Järjestelmät aika-alueessa Konvoluutio-integraali. tietoverkkotekniikan laitos
Lueno 2 Järjeselmä aika-alueessa Konvoluuio-inegraali Lueno 2 Lueno 2 Järjeselmä aika alueessa; Konvoluuio inegraali 2.1 Järjeselmien perusominaisuude Oppenheim 1.5. 1.6 Muisillise ja muisioma järjeselmä
SATE1050 Piirianalyysi II syksy 2016 kevät / 6 Laskuharjoitus 10 / Kaksiporttien ABCD-parametrit ja siirtojohdot aikatasossa
SATE050 Piirianalyysi II syksy 06 kevä 07 / 6 Tehävä. Määriä alla olevassa kuvassa esieylle piirille kejumariisi sekä sen avulla syööpiseimpedanssi Z(s), un kuormana on resisanssi k. i () L i () u () C
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
Taloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
4. www-harjoitusten mallivastaukset 2016
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
Lineaaristen järjestelmien teoriaa
Lineaarisen järjeselmien eoriaa Saavueavuus, ohjaavuus Tarkkailavuus, havaiavuus Klassisen mekaniikan sabiilisuus vs. syseemiekninen sabiilisuusuus Tilaesimoini Kalman-suodin Mielenkiinoisia kysymyksiä
Tekes tänään (ja huomenna?) Pekka Kahri Palvelujohtaja, Tekes Fortune seminaari 21.8.2013
Tekes änään (ja huomenna?) Pekka Kahri Palvelujohaja, Tekes Forune seminaari 21.8.2013 Rahoiamme sellaisen innovaaioiden kehiämisä, joka ähäävä kasvun ja uuden liikeoiminnan luomiseen Yriysen kehiysprojeki
1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1
KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,
TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset
TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste
Lyhyiden ja pitkien korkojen tilastollinen vaihtelu
Lyhyiden ja pikien korkojen ilasollinen vaihelu Tomi Pekka Juhani Marikainen Joensuun Yliopiso Maemaais-luonnonieeellinen iedekuna / Tieojenkäsielyieeen ja ilasoieeen laios / Tilasoiede Pro Gradu -ukielma
Hoivapalvelut ja eläkemenot vuoteen 2050
VATT-TUTKIMUKSIA 94 VATT-RESEARCH REPORTS Pekka Parkkinen Hoivapalvelu ja eläkemeno vuoeen 25 Valion aloudellinen ukimuskeskus Governmen Insiue for Economic Research Helsinki 22 ISBN 951-561-425-2 ISSN
Laskelmia verotuksen painopisteen muuttamisen vaikutuksista dynaamisessa yleisen tasapainon mallissa
Laskelmia verouksen painopiseen muuamisen vaikuuksisa dynaamisessa yleisen asapainon mallissa Juha Kilponen ja Jouko Vilmunen TTässä arikkelissa esieään laskelmia siiä, mien verouksen painopiseen siiräminen
338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA
VATT-KESKUSTELUALOITTEITA VATT DISCUSSION PAPERS 338 LASKELMIA YRITYS- JA PÄÄOMAVERO- UUDISTUKSESTA Harri Hieala Seppo Kari Timo Rauhanen Hanna Ulvinen Valion aloudellinen ukimuskeskus Governmen Insiue
Integrointi ja sovellukset
Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,
ZELIO Time Sarja RE7 Elektroniset aikareleet
Zelio Time -aikarelee ZELIO Time Sarja RE7 Elekronise aikarelee Valinaopas 00 Valinaopas 00 Zelio Time RE 7 -aikarelee Valinaopas Sovellukse Elekronise aikarelee mahdollisava yksinkeraisen auomaisoiujen
SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA
SUOMEN PANKIN KANSANTALOUSOSASTON TYÖPAPEREITA 10.10.2004 1/2004 Hannes Kaadu Kuluajahinainflaaion miaaminen Yhdysvalloissa 2 Kuluajahinainflaaion miaaminen Yhdysvalloissa Kansanalousosason yöpapereia