2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

Koko: px
Aloita esitys sivulta:

Download "2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];"

Transkriptio

1 802656S ALGEBRALLISET LUVUT Harjoituksia Näytä, että (a) (b) (c) (d) (e) 2 1/2, 3 1/2, 2 1/3 ; 2 1/ /2 ; 2 1/ /2 ; e iπ/m, m Z \ {0}; sin(π/m), cos(π/m), tan(π/m), m Z \ {0}; ovat algebrallisia lukuja. 2. Olkoon K kokonaisalue ja P (x), Q(x) K[x]. (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi deg 0(x) Z, niin a) kohdan astekaava ei toimisi. 3. Näytä, että renkaat (a) (b) eivät ole kokonaisalueita. Z 10 ; Z 10 [x]; 4. Olkoon R kommutatiivinen ykkösellinen rengas. (a) Näytä, että yksikköjen joukko R = {u R u 1 R : uu 1 = 1} on ryhmä kertolaskun suhteen.

2 (b) Osoita, että relaatio a b u R : b = ua on ekvivalenssirelaatio. (c) Määrää [1] = {b 1 b R}. 5. Määrää (a) (b) (c) (d) (e) (f) Z 10; Z 10 [x] ; Z m, m Z m 2 ; Z m [x], m Z m 2 ; Z[i] ; Z 5 [ 2] ; 6. Olkoon D kokonaisalue. Näytä, että (a) (b) (c) 0 0; a a a D. 1 a a D. 7. Olkoon R = Z[ 5]. (a) Onko R kokonaisalue? V: On. (b) Määrää R:n yksikköryhmä R. V: {1, 1}. (c) Määrää lukujen 3 ja liitännäisalkiot. (d) Ovatko 3 ja jaottomia? V: Ovat. (e) Ovatko 3 ja 2+ 5 alkualkioita? (Tutki yhtälöä 3 3 = (2+ 5)(2 5).) Eivät. (f) Onko R UFD? V: Ei. (g) Onko R Eukleideen alue? V: Ei.

3 8. Tutki polynomien x 4 + x + 1, x jaottomuutta polynomirenkaassa K[x], kun (a) K = Q; V: Jaottomia. (b) K = R; Jakaantuvat 2. asteen tekijöihin/luennot osa I. (Edelleen x = (x 2 2x + 1)(x 2 + 2x + 1).) (c) K = C; Jakaantuvat 1. asteen tekijöihin/katso luennot. (d) K = Z 2 ; x 4 + x + 1 jaoton, x = (x + 1) 4 (e) K = Z 3. x 4 + x + 1 jaoton, x = (x 2 + x + 2)(x 2 + 2x + 2) 9. Määrää SY T (a(x), b(x)) polynomirenkaassa Q[x], kun (a) a(x) = x 4 + x + 1, b(x) = x 4 + 1; V: 1. (b) a(x) = x 4 2x 3 + 3x 2 2x + 1, b(x) = 4x 3 6x 2 + 6x 2. V: x 2 x + 1. Saadaan lisäksi tulos a(x) = (x 2 x + 1) 2 ja b(x) = (4x 2)(x 2 x + 1). 10. Tutki polynomin x 4 2x 3 + 3x 2 2x + 1 = (x 2 x + 1) 2 nollakohtien kertalukuja polynomirenkaassa K[x], kun (a) K = Q; V: m(α) = 0, kaikilla α Q. (b) K = R; V: m(α) = 0, kaikilla α R. (c) K = C; V: m( ) = m( ) = 2 (d) K = Z 2 ; V: m(α) = 0, kaikilla α Z 2. (e) K = Z 3. V: m(0) = m(1) = 0, m(2) = Jaa polynomit (a) x x + 125; V: Jaoton. (b) 6x 2 + 7x 5 = (2x 1)(3x + 5) (c) 6x 4 + 7x 3 + 5x 2 + 7x 5; Jaoton. (d) x 4 + 7; Jaoton/Eisenstein. (e) x = (x 2 2x + 2)(x 2 + 2x + 2) (f) x 5 + x + 1 = (x 2 + x + 1)(x 3 x 2 + 1) (g) x 5 x + 1; V: Jaoton. jaottomiin primitiivisiin tekijöihin polynomirenkaassa Z[x]. 12. Määrää polynomin a(x) ja sen derivaatan Da(x) syt(a(x), Da(x)) polynomirenkaassa Q[x], kun (a) a(x) = x 5 x 4 + 2x 3 2x 2 1;

4 (b) a(x) = x 4 2x 3 + 3x 2 2x + 1. V: syt(a(x), Da(x)) = x 2 x + 1, joten polynomilla a(x) on neliötekijä. Mitä huomaat? 13. Olkoon D kokonaisalue. Osoita, että D[x] = D. 14. Olkoon K kunta, p(x) K[x] ja deg p(x) 1. Osoita, että n K (p(x)) deg p(x). 15. Näytä, että (a) 1 + x + x x 10 J Q[x] ; (b) 7 + 7x 14x 3 + 2x 5 J Q[x] ; (c) 2 14x 2 + 7x 4 + 7x 5 J Q[x] ; (d) 2 14(x 1) 2 + 7(x 1) 4 + 7(x 1) 5 J Q[x]. 16. Olkoon Näytä, että x 2 + bx + c = (x α)(x β) Q[x]. (a) α 2 + β 2 Q; (b) α 3 + 2αβ + β 3 Q. 17. Määrää luvun (a) 2 + 3; (b) 2 1/ /3 ; minimipolynomi. 18. Onko α = kokonainen algebrallinen luku? V: EI, koska M α (x) = x Tutki lukujen (a) e; (b) π; (c) iπ; (d) e + i; (e) i2 1/3 ; algebrallisuutta kuntien Q, R ja C suhteen. (tiedetään, että e ja π ovat transkendenttisia Q:n yli.) 20. Tutki lukujen

5 (a) π; (b) π; (c) π 2 ; algebrallisuutta kuntien Q, Q( π) ja Q( π) suhteen. 21. Olkoon K lukukunta ja σ : K C monomorfia. Osoita, että (a) σ(a) = a a Q. (b) σ(aα + bβ) = aσ(α) + bσ(β), a, b Q, α, β K. (c) σ(p(β)) = p(σ(β)) β K, p(x) Q[x]. 22. Määrää algebrallisten lukujen (a) α = 2 + 3; V: Write α 1 = 2 + 3, α 2 = 2 3, α 3 = 2 3, α 4 = 2 + 3, then M αi (x) = (x α 1 )(x α 2 )(x α 3 )(x α 4 ) = x 4 10x is irreducible giving deg Q α = 4 and on the other hand M α (x) = x 4 s 1 = x 3 + s 2 x 2 s 3 x + s 4 = x 4 10x implying s 1 = α 1 + α 2 + α 3 + α 4 = 0, s 2 = α 1 α 2 + α 1 α 3 + α 1 α 4 + α 2 α 3 + α 2 α 4 + α 3 α 4 = 10, s 3 = α 1 α 2 α 3 + α 1 α 2 α 4 + α 2 α 3 α 4 = 0, s 4 = α 1 α 2 α 3 α 4 = 1. (b) α = 2 1/ /3 ; V: M α (x) = x 9 15x 6 87x 3 125, deg Q α = 9. Optional/EI vaadita. (c) α = 2 + 3; V: M α (x) = x 4 4x 2 + 1, deg Q α = 4. asteet ja liittoluvut kunnan Q suhteen sekä määrää vastaavien peruspolynomien arvot. s k (σ 1 (α), σ 2 (α),...), k = 1, 2,..., 23. Määrää algebrallisten kuntalaajennusten Q, α, β dimensiot ja kannat kunnan Q suhteen, kun (a) α = 2, β = 3; V: It is proved in Example 33 (lecture notes: small font version) that 3 / Q( 2). Next Q, 2, 3 = Q( 2), 3 = Q( 2)( 3) meaning that first we extend Q by 2 to Q( 2). Then we extend Q( 2) by 3 resulting Q( 2)( 3). By Theorem 42: Q( 2) = Q[ 2] = Q 1 + Q 2 := M. Q( 2)( 3) = M 1 + M 3 = Q 1 + Q 2 + Q 3 + Q 6 = 1, 2, 3, 6 Q the linear hull/verho over Q generated by the base {1, 2, 3, 6}.

6 Thus dim Q Q, 2, 3 = 4 = [Q( 2, 3) : Q] rank of the extension/laajennuksen aste. (b) α = 2 1/5, β = 0; (c) α = 2 + 3, β = 0; 24. Määrää algebrallisten kuntalaajennusten K, α, β, γ dimensiot ja kannat kunnan K suhteen, kun (a) α = 3, β = 5, γ = 15, K = Q; V: K, α, β, γ = Q, 3, 5, 15 = Q, 3, 5 (= Q, 3, 15 ), because 15 Q, 3, 5 (and 5 Q, 3, 15 ). dim Q Q, 3, 5 = 4. Q, 3, 5 = Q( 3)( 5) Q( 3) = Q 1 + Q 3 := M. Q( 3)( 5) = M 1 + M 5 = Q 1 + Q 3 + Q 5 + Q 15 = 1, 3, 5, 15 Q the linear hull over Q generated by the base {1, 3, 5, 15}. (b) α = 3, β = 5, γ = 0, K = Q( 15); (c) α = 3, β = 5, γ = 7, K = Q; (d) α = 3, β = 5, γ = 0, K = Q( 7); 25. Esitä kunnat K, α, β, γ (a) α = 3, β = 5, γ = 15, K = Q; (b) α = 3, β = 5, γ = 0, K = Q( 15); (c) α = 3, β = 5, γ = 7, K = Q; (d) α = 3, β = 5, γ = 0, K = Q( 7); muodossa Q(τ). 26. Olkoon deg Q α = n. Määrää lukukunta K = Q(α) muodossa kun Q + Qα Qα n 1, (a) α = 0; V: Because deg Q α = 2, therefore Q(α) = Q[α] = Q + Qα. (b) α 2 3 = 0; (c) α 2 + α + 1 = 0; (d) α 2 + 2α + 1 = 0; V: Because deg Q α = 1, therefore Q(α) = Q[α] = Q. (e) α 4 10α = 0. V: Because deg Q α = 4, therefore Q(α) = Q[α] = Q + Qα + Qα 2 + Qα 3.

7 Näytä vielä, että α 3 7 Q + Qα α 5 Qαn 1 + α + 2 mikäli lauseke on määritelty. a) α 2 = 1, α 3 = α,..., joten α3 7 = α 7 = 1 α+7 α 5 +α+2 2α+2 2 α2 +6α 7 = 3α = 1 α Olkoon K = Q(τ) lukukunta ja [K : Q] = m. Osoita, että (a) N(αβ) = N(α)N(β); (b) T (rα + sβ) = rt (α) + st (β); (c) N(r) = r m, T (r) = mr; kaikilla α, β K, r, s Q. 28. Osoita, että α / K = Q(τ), kun (a) α = 3 1/2 ja τ = 2 1/2 ; V: Example 33 (small font version). (α+7)(α 1) α 2 1 = (b) α = 3 1/2 ja τ = 2 1/3 ; V: deg Q α = 2 and [Q(τ) : Q] = 3. Use then Theorem 42 C(small font version). (c) α = 3 1/2 ja τ = 2 1/4 ; (d) α = 3 1/3 ja τ = 2 1/3 ; (e) α = 3 1/3 ja τ = 2 1/4 ; (f) α = 3 1/4 ja τ = 2 1/6 ; Vihje: Käytä jälkifunktiota ja tai dimensiotuloksia. 29. Olkoon n Z 2. Osoita, että 2 1/n + 3 1/n / Q. V: Numerically 3 < 2 1/ /2 < 4 and 2 < 2 1/n + 3 1/n < 3 for all n 3. Then proceed as in Example 37 (small font version). 30. Olkoon K = Q( d). Määrää renkaiden Z[ d] ja Z K kannat Z:n suhteen tapauksissa (a) d = 1; (b) d = 2; (c) d = 3; V: Z[ 3] = Z 1 + Z 3, thus base is {1, 3}. From the lectures Z Q( 3) = Z 1 + Z , thus base is {1, }. (d) d = 4; (e) d = 5.

8 Käytä luentojen Lausetta Olkoon K = Q( d). Määrää yksikköryhmät Z K tapauksissa (a) d = 1; (b) d = 2; (c) d = 3; (d) d = Olkoon K = Q( d). Osoita, että Z K on Eukleideen alue, kun (a) d = 1; (b) d = 2; (c) d = Olkoon K = Q( d). Osoita, että Z K ei ole Eukleideen alue=ed, kun (a) d = 5, esimerkiksi tutkimalla identiteettiä 3 3 = (2 + 5)(2 5). V: From the lectures we know that Z Q( 5) = Z + Z 5. Show then that the elements 3, 2 + 5, 2 5 Z K are irreducible: If e.g = βγ, β, γ Z K, then 9 = N(2 + 5) = N(β)N(γ). Consider the cases N(β) = 1, 3, 9. If N(β) = 1, then β Z K (is a unit) implying is irreducible; If N(β) = 3, β = a + b 5, then a 2 + 5b 2 = 3, a contradiction. If N(β) = 9, then γ Z K. Hence Z Q( 5) is not a UFD and can not therefore be an ED. 34. Määrää kaikki Gaussin kokonaislukujen renkaan Z[i] alkualkiot eli Gaussin alkuluvut π = a + ib Z[i], joille pätee (a) N(π) 13, 0 b a. V: 3, 1 + i, 2 + i and 3 + 2i because N(1 + i) = 2 P, then 1 + i P Z[i]. Similarly 2 + i, 3 + 2i P Z[i]. (b) N(π) 13. Piirrä kuva Gaussin tasoon. 35. Ratkaise Diofantoksen yhtälö y = x (a) Näytä, että 1 + i 1 i; V: 1 i = ( i)(1 + i). (b) Näytä, että 2 + i 1 + 2i; V: Determine all the conjugates of 2 + i. (c) Muodosta alkioiden 6 ja 10 alkutekijäkehitelmät; V: 6 = (1 + i)(1 i)3, 10 = (1 + i)(1 i)(2 + i)(2 i). Gaussin kokonaislukujen renkaassa Z[i].

802656S ALGEBRALLISET LUVUT OSA II ALGEBRAIC NUMBERS PART II

802656S ALGEBRALLISET LUVUT OSA II ALGEBRAIC NUMBERS PART II 802656S ALGEBRALLISET LUVUT OSA II ALGEBRAIC NUMBERS PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 802656S ALGEBRALLISET YLIOPISTO LUVUT

Lisätiedot

ALGEBRALLISET LUVUT S. Tapani Matala-aho

ALGEBRALLISET LUVUT S. Tapani Matala-aho ALGEBRALLISET LUVUT 802656S Tapani Matala-aho 24. huhtikuuta 2014 Sisältö 1 Johdanto 4 1.1 Algebralliset luvut........................ 5 2 Perusteita 6 3 Renkaat ja kunnat 7 3.1 Kokonaisalue, Integral

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat 0-10

pdfmark=/pages, Raw=/Rotate 90 1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat 0-10 pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-8 3 Renkaat ja kunnat 0-10 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field..................

Lisätiedot

1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain...

1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain... Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-9 3 Renkaat ja kunnat 0-11 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field.................. 0-13 4 Jaollisuus

Lisätiedot

1 Johdanto Algebralliset luvut Perusteita 5. 3 Renkaat ja kunnat Kokonaisalue, Integral Domain Kunta, Field...

1 Johdanto Algebralliset luvut Perusteita 5. 3 Renkaat ja kunnat Kokonaisalue, Integral Domain Kunta, Field... Sisältö 1 Johdanto 3 1.1 Algebralliset luvut.......................... 4 2 Perusteita 5 3 Renkaat ja kunnat 6 3.1 Kokonaisalue, Integral Domain................... 7 3.2 Kunta, Field.............................

Lisätiedot

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28 TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS

Lisätiedot

802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I

802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I 802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 802656S ALGEBRALLISET YLIOPISTO LUVUT

Lisätiedot

802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Sisältö 1 ABSTRACT 4 2 INTRODUCTION/JOHDANTO 4 2.1 Kurssikuvaus.............................

Lisätiedot

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II

800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II 800323A KUNTALAAJENNUKSET OSA II FIELD EXTENSIONS PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2018 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 800323A KUNTALAAJENNUKSET YLIOPISTO OSA

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita 802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

11. Jaollisuudesta. Lemma Oletetaan, että a, b R. 11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia/Exercises 2017 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

802645S LUKUTEORIA A (5op) Tapani Matala-aho

802645S LUKUTEORIA A (5op) Tapani Matala-aho 802645S LUKUTEORIA A (5op) Tapani Matala-aho 25. lokakuuta 2015 Sisältö 1 Johdanto 3 2 Valittuja kaavoja 4 3 Valittuja jaollisuuden tuloksia 4 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 3 Valittuja jaollisuuden tuloksia Renkaan yksikköryhmä Eräs kongruenssiryhmä 0-17

pdfmark=/pages, Raw=/Rotate 90 3 Valittuja jaollisuuden tuloksia Renkaan yksikköryhmä Eräs kongruenssiryhmä 0-17 pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-3 2 Valittuja kaavoja 0-5 3 Valittuja jaollisuuden tuloksia 0-7 4 Renkaan yksikköryhmä 0-9 5 Eulerin funktio 0-11 6 Euler-Fermat 0-16 7 Eräs kongruenssiryhmä

Lisätiedot

802645S LUKUTEORIA A (5op) Tapani Matala-aho

802645S LUKUTEORIA A (5op) Tapani Matala-aho 802645S LUKUTEORIA A (5op) Tapani Matala-aho 27. helmikuuta 2013 Sisältö 1 Johdanto 3 2 Merkintöjä 4 3 Valittuja jaollisuuden tuloksia 5 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat 10 7

Lisätiedot

Algebrallisista ja transkendenttisista luvuista

Algebrallisista ja transkendenttisista luvuista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Leo Majaranta Algebrallisista ja transkendenttisista luvuista Informaatiotieteiden yksikkö Matematiikka Toukokuu 2011 2 Tampereen yliopisto Informaatiotieteiden

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

800323A KUNTALAAJENNUKSET OSA I FIELD EXTENSIONS PART I

800323A KUNTALAAJENNUKSET OSA I FIELD EXTENSIONS PART I 800323A KUNTALAAJENNUKSET OSA I FIELD EXTENSIONS PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2018 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 800323A KUNTALAAJENNUKSET YLIOPISTO OSA

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

Aritmetiikan peruslause algebrallisten kokonaislukujen renkaissa

Aritmetiikan peruslause algebrallisten kokonaislukujen renkaissa Aritmetiikan peruslause algebrallisten kokonaislukujen renkaissa Pro gradu -tutkielma Itä-Suomen yliopisto Yliopistonkatu 2, 80101 Joensuu Fysiikan ja matematiikan laitos Tuomas Manninen, 243034 11. joulukuuta

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta

Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta Teppo Lahti Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä

Lisätiedot

The Viking Battle - Part Version: Finnish

The Viking Battle - Part Version: Finnish The Viking Battle - Part 1 015 Version: Finnish Tehtävä 1 Olkoon kokonaisluku, ja olkoon A n joukko A n = { n k k Z, 0 k < n}. Selvitä suurin kokonaisluku M n, jota ei voi kirjoittaa yhden tai useamman

Lisätiedot

11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita.

11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita. 11. Jaollisuudesta Kuntalaajennosten yhteydessään käytetään usein apuna jaottomia polynomeja. Tarkastellaan seuraavaksi hieman jaollisuuskäsitettä yleensä ja todistetaan joitain kriteerejä erityisesti

Lisätiedot

ei ole muita välikuntia.

ei ole muita välikuntia. ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat. JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla

Lisätiedot

Seuraavana tavoitteena on osoittaa, että binääristen neliömuotojen ekvivalenssiluokat

Seuraavana tavoitteena on osoittaa, että binääristen neliömuotojen ekvivalenssiluokat 3.3 Luokkaryhmä Seuraavana tavoitteena on osoittaa, että binääristen neliömuotojen ekvivalenssiluokat muodostavat ryhmän. Määritelmä 3.39. Määritellään operaatio kahden samaa diksriminanttia olevan binäärisen

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K,

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K, 1 Ryhmät Olkoot S on joukko ja X S. Jos kuvaus : S S S, (x, y) x y toteuttaa ehdon x y X kaikilla x, y X, niin sanotaan, että binäärinen operaatio on suljettu joukon X suhteen. Määritelmä 1. Olkoot G joukko

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Transkendenttiluvuista

Transkendenttiluvuista Transkendenttiluvuista Juuso Mattila Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 205 2 TIIVISTELMÄ JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos

Lisätiedot

Äärelliset kunnat ja polynomien jako alkutekijöihin

Äärelliset kunnat ja polynomien jako alkutekijöihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

800323A KUNTALAAJENNUKSET OSA I FIELD EXTENSIONS PART I

800323A KUNTALAAJENNUKSET OSA I FIELD EXTENSIONS PART I 800323A KUNTALAAJENNUKSET OSA I FIELD EXTENSIONS PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2018 1 Contents 1 ABSTRACT 4 2 INTRODUCTION/JOHDANTO 4 2.1 Kurssikuvaus/Course overview..................

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

802655S KETJUMURTOLUVUT OSA II CONTINUED FRACTIONS PART II

802655S KETJUMURTOLUVUT OSA II CONTINUED FRACTIONS PART II 802655S KETJUMURTOLUVUT OSA II CONTINUED FRACTIONS PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO KEVÄT 2017 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 802655S KETJUMURTOLUVUT YLIOPISTO OSA

Lisätiedot

Algebra 2. Syksy Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto

Algebra 2. Syksy Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Algebra 2 Syksy 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á ÂÓ ÒØÓ Ð Ö Ý ØĐ ÐĐÓØ 1. Koulualgebrasta algebraan Koulun matematiikan opetuksen suurimpia abstraktiohyppäyksiä on

Lisätiedot

LUKUTEORIA I. Tapani Matala-aho

LUKUTEORIA I. Tapani Matala-aho LUKUTEORIA I Tapani Matala-aho 19. helmikuuta 2009 Sisältö 1 Johdanto 5 2 Merkintöjä 6 2.1 Lukujoukot.............................. 6 2.2 Porrasfunktiot............................. 8 3 Kokonaislukurengas

Lisätiedot

Gaussin kokonaisluvuista

Gaussin kokonaisluvuista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Elina Holopainen Gaussin kokonaisluvuista Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

KETJUMURTOLUVUT. Tapani Matala-aho

KETJUMURTOLUVUT. Tapani Matala-aho KETJUMURTOLUVUT Tapani Matala-aho 5. helmikuuta 0 Sisältö Johdanto 3 Jakoalgoritmi, kantaesitys 4. Jakoalgoritmi............................. 4. Kantakehitelmät........................... 4.. Kokonaisluvun

Lisätiedot

Diofantoksen yhtälöistä ja Gaussin luvuista

Diofantoksen yhtälöistä ja Gaussin luvuista Diofantoksen yhtälöistä ja Gaussin luvuista Pro Gradu-tutkielma Tero Syrjä Matematiikan laitos Oulun yliopisto Kevät 2015 Sisältö 1 Johdanto 2 2 Perusteet 4 3 Lineaarinen Diofantoksen yhtälö 10 4 Pythagoraan

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

2 Funktion derivaatta

2 Funktion derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88

1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88 Sisältö 1 Kertausta algebran kurssilta 1 2 Lisää polynomeista 10 3 Kertausta Q:n konstruktiosta; jakokunta 20 4 Kuntalaajennukset 27 5 Kuntalaajennuksen aste 49 6 Harppi-viivoitin-konstruktiot 64 7 Galois

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tytti Käyhkö. Neliökunnat

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tytti Käyhkö. Neliökunnat TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tytti Käyhkö Neliökunnat Informaatiotieteiden yksikkö Matematiikka Marraskuu 016 Tampereen yliopisto Informaatiotieteiden yksikkö KÄYHKÖ, TYTTI: Neliökunnat Pro

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

Catalanin yhtälön ratkaisut pienillä, parittomilla alkulukupotensseilla

Catalanin yhtälön ratkaisut pienillä, parittomilla alkulukupotensseilla Catalanin yhtälön ratkaisut ienillä, arittomilla alkulukuotensseilla Neea Paloärvi Pro gradu -tutkielma Toukokuu 2016 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Matematiikan

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 2 Jakoalgoritmi, kantaesitys Jakoalgoritmi Kantakehitelmät

pdfmark=/pages, Raw=/Rotate 90 2 Jakoalgoritmi, kantaesitys Jakoalgoritmi Kantakehitelmät pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-1 2 Jakoalgoritmi, kantaesitys 0-3 2.1 Jakoalgoritmi.................. 0-3 2.2 Kantakehitelmät................ 0-3 2.2.1 Kokonaisluvun b-kantakehitelmä.....

Lisätiedot

15. Laajennosten väliset homomorfismit

15. Laajennosten väliset homomorfismit 15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti

Lisätiedot

Galois'n teoria polynomien ratkeavuudesta. Wille Lehtomäki

Galois'n teoria polynomien ratkeavuudesta. Wille Lehtomäki Galois'n teoria polynomien ratkeavuudesta Wille Lehtomäki HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen

Lisätiedot

Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria

Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Sampo

Lisätiedot

Lineaarinen toisen kertaluvun yhtälö

Lineaarinen toisen kertaluvun yhtälö Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y

Lisätiedot

Algebran jatkokurssin demo 1,

Algebran jatkokurssin demo 1, Algebran jatkokurssin demo 1, 23.1.2014 0. Tätä nollatehtävää ei käsitellä demoissa, vaan jätetään jokaisen oman harrastuneisuuden varaan käydä läpi nämä kuviot, jotka ovat lähestulkoon identtisiä LAG:n

Lisätiedot

Teemu Ojansivu Polynomien resultanteista

Teemu Ojansivu Polynomien resultanteista PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

1. Jakokunta. b + c d

1. Jakokunta. b + c d ÁÁÁ ÃÙÒØ Ø ÓÖ 1. Jakokunta Kunnan alirenkaat ovat aina kokonaisalueita. Tämä herättää luonnollisen kysymyksen, karakterisoiko tämä ominaisuus kokonaisalueet eli onko jokainen kokonaisalue jonkin kunnan

Lisätiedot

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla Lukijalle Matematiikan opetuksessa käsiteltävä aines voidaan järjestää ainakin seuraavien kolmen periaatteen mukaan: matematiikan historiallinen kehitysjärjestys, matematiikan looginen esitysjärjestys

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot