Menetelmä useasti yhdistettyjen asyklisten uskomusverkkojen tiedon päivittämiseen
|
|
- Pentti Nieminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mt Optimointiopin seminri syksy 1999 Refertti Mitri Kitti Menetelmä sesti yhistettyjen syklisten skomserkkojen tieon päiittämiseen Lähe: Finn Verner Jensen Kristin G. Olesen Stig Kjer nersen; n lger of yesin elief Unierses for Knowlege-se Systems Networks Vol
2 1 Johnto Uskomserkot oit oll rkenteeltn yhesti yhistettyjä ti sesti yhistettyjä riippen siitä onko khen solmn älillä yksi i sempi polk. Lisäksi erkoss oi oll syklejä ti erkko oi oll syklinen. Finn Verner Jensen Kristin G. Olesen j Stig Kjer nersen esittäät rtikkelissn "n lger of yesin elief Unierses for Knowlege-se Systems" menetelmän sesti yhistettyjen syklisten kslisten skomserkkojen yes-erkkojen tieon päiittämiseen. Menetelmä perst toissijisen rkenteen moostmiseen lkperäisestä skomserkost j tieon päiittämiseen käyttäen pn st rkennett. 2 Uskomserkon esitys skomsniersmit Uskomserkko esitetään jokkon solmj joien älillä on snnttj kri. Solmt kt stnnismttji j kret kslisi riippksi rt. toennäköisyysriipps. Kikki stnnismttjt oletetn nyt iskreeteiksi eli kllkin solmll on äärellinen määrä mhollisi tiloj. Knkin solmn tiloille oin määrittää eholliset toennäköisyyet solmn nhempien tilojen shteen. Uskomsniersmi U on jokko solmj ti ojektej { } joill on list tiloist joille on määritelty jotkin skomkset. Uniersmin solmjen eri tilojen skomkset ktn skomstlss jonk lkiot ot ei-negtiiis relilkj jotk siis oin sklt toennäköisyyksiksi. Uskomsniersmin kkin ojekti oi oll in yhessä tilss j tätä til koske informtio on epärm. Epärmtt systeemin tilst ktn skomstlll. rtikkeliss ei skomsniersmin määritelmässä minit mikä on skomsniersmin yhteys skomserkkoon. Uskomserkosthn oin moost seit skomsniersmeit j niien systeemeitä. Kitenkin rtikkeliss oletetn että in kn jostkin skomserkost on moostett skomsniersmeien systeemi niin niersmit ot sellisi että jos niien leikks on ei-tyhjä niin niersmien älillä ei ole yhtään krt mistään leikkksen lkopolelle jääästä solmst. Lisäksi oletetn että jos niersmien leikks on tyhjä niin niersmien älillä ei ole yhtään krt. Kss 1 on esimerkki skomserkost jost ei oi moost kin yhen skomsniersmin. K 1. Esimerkki skomserkost; sllitt skomsniersmit Kn 1 skomserkost ei oi moost niersmeit {} j {} sillä riipp :stä joten :n j :n on kltt smn niersmiin eli ino
3 niersmi jok tästä sn on {} kikki mt niersmit ot tämän niersmin liniersmeit. eritteess liniersmeit oitisi pitää omin skomsniersmeinn mtt tällöin os rtikkeliss esitetyistä opertioist tlisi määritellä estn. Eli jtkoss skomsniersmeille on tehty eellä esitetty lisäolets. Uskomsniersmin osjokost oin moost si skomsniersmi in kten sen mttjn yhteisjkmst oin moost osjokon renjkm smmmll integroimll os mttjist tällist skomsniersmi oin kts liskomsniersmiksi. Uskomsniersmej oi myös yhistää jos niersmit ot keskenään yhteneät eli niersmien leikkksen renjkmt ot smt oletetn että tällöin leikks on myös ei tyhjä. Esimerkiksi niersmit U j V joien leikks on ei-tyhjä ot yhteneät jos V U V U U V eli skomkset niersmien leikkksen tiloist ot niersmeille keskenään errnnolliset. Siis niersmeille yhteinen tieto on sm. Tällöin yhistetyn niersmin skomstlksi sn: *. Uskomsniersmien yhistäminen tpksess joss niersmien leikks on tyhjä on si erikseen eikä sitä ole trpeen trkstell tässä yhteyessä. Khest epäyhteneästä niersmist sitä jonk tieto on lotettmp oin käyttää toisen niersmin tieon kliroimiseen. Kliroinnill trkoitetn sitä että toisen niersmin skomstln tlee niersmien leikkksen skomksiksi smt skomkset kin lotettmmss skomstlss. Siis epälotett tieto sisältään niersmin toennäköisyysjkmn renjkm niersmien leikkkselle päiitetään. Khen niersmin U j V tpksess jos hltn kliroi V U:n knss päiitetään V U V U U V:ksi **. Uskomsniersmien moostmisell skomserkost pyritään konstroimn sellinen niersmien systeemi että tieon päiittämiseksi trittt lsktoimitkset oin tehä käyttäen pn kyseistä systeemiä. On kitenkin helppo hit että skomserkost sti erilisi skomsniersmien systeemejä on yleensä seit. Vlitsemll skomserkost mieliltisesti jokin skomsniersmien systeemi j sorittmll lsktoimitkset tieon päiittämiseksi litn systeemin ll oin kitenkin päätyä järjettömiin tloksiin. Siis on löyettää jokin sellinen skomsniersmien systeemi että tieon päiitys tpht oikein. 3 skomsniersmisysteemin moostminen Ensimmäisessä iheess skomserkost moostetn lst skomsniersmien systeemi eli lst liitosgrfi. lst liitosgrfi sn määrittämällä että solm j sen nhemmt klt smn niersmiin. lstn * Esim. merkinnöin } { } { } { V U V U : ** ol ol
4 liitosgrfin ll oin moost skomsgrfi. Uskomsgrfi sn settmll lkperäisen skomserkon solmjen älille linkki jos ne klt smn skomsniersmiin lstss systeemissä. Lisäksi grfiin jotn mhollisesti lisäämään mmy-linkkejä jott st skomsgrfi olisi tringloit. Uskomsgrfi on siis sntmton erkko joss kret moostt kolmioit. Tringlointi on trpeen jott tieon päiittäminen tphtisi koorinoisti. Sss skomsgrfiss on klikkejä. Klikki on mksimlinen jokko solmj jotk ot preittin linkitettyjä. Uskomsniersmien systeemiksi tlee tällöin lit kikki klikit skomsgrfiss. St systeemiä ktstn liitosgrfiksi. Liitosgrfiss on siis skomsniersmeit joien älillä on kri jos niersmien leiks on ei-tyhjä. Kret liitosgrfiss ilmiset siis tritti klirtioit jos sn jotin tt tieto jok tlee päiittää grfiin. Kiss 2 - on esitetty esimerkki liitosgrfin moostmisest. F F E K 2. Uskomserkko E K 2. lst liitosgrfi F F E E K 2. Uskomsgrfi K 2. Liitosgrfi Os liitosgrfiss oleist kliroinneist eiät ole älttämättömiä. Yllä oless liitosgrfiss {} oin kliroi {E}:n knss mtt smn tlokseen päästään jos {} kliroin {E}:n knss j {} kliroin
5 {E}:n knss. Siis linkki niersmien {} j {E} älillä ei ole älttämätön. Liitosgrfi piskin helposti isoksi j sekksi j kosk os kliroinneist on trhi oin löytää yksinkertisempi esitys jok esittää trittt kliroinnit. Trhien linkkien poistminen liitosgrfist joht liitosp-esitykseen. Kss 3 on esitetty liitosp kien 2 tpkselle. Trkoitksen on tehä kikki tieon päiittäminen käyttäen pn liitospt. E F K 3. Liitosp 4. Tieon päiittäminen käyttäen liitospt Tieon päiittämiseksi on pystyttää lisäämään hinnot liitosphn siirtämään tieto niersmilt toiselle j keräämään tieto niersmiin. Uet hinnot ot moto ' on josskin tiloist 1 n '. Jos U on jokin niersmi jok sisältää solmn niin tällöin hinto homioin U:n skomstlss settmll kikki selliset skomstln lkiot jotk eiät sisällä tiloj 1 n nolliksi. Jos jokin niersmi on snt en hinnon eli kyseisen niersmin skomstl on mttnt niin kikki skomsniersmit joihin on linkki niersmist johon hinto on tllt on kliroit kyseisen niersmin knss. Eelleen kikkien jo kliroitjen niersmeien nprit joit ei ole kliroit tlee kliroi niien eeltäjien knss. Uen hinnon lisääminen ihett siis ketjn klirointej liitsphn. äiitysmenetelmän oi totett oliohjelmoinnill siten että jokinen niersmi jtelln olion jok oi kommnikoi npreiens knss. Lisäksi jokisell olioll on tieon päiitysmenetelmä jonk ktioi kts joltkin nprilt. Ktsn stn niersmi päiittää itsensä nprins knss j lähettää sen jälkeen ktsn mille npreille jotk eelleen toimit smoin. Viimeinen persopertio liitospss on tieon kerääminen niersmiin eli sortio. Kn jokin niersmi kliroin semmn mn niersmin knss niin st skomstll on epäyhteneä mien niersmien knss. Esimerkiksi tilnteess joss niersmi V kliroin niersmien U j W knss V:n skomstl on epäyhteneä U:n j W:n skomstljen knss. Toisin snoen si tieto U:st älittyy inostn V:lle mtt ei W:lle j smoin U:n shteen. Siksi niersmit W j U tlee ielä kliroi V:n knss. Tällöin snotn että V soroi U:lt j W:ltä. Myös tieon kerääminen oin totett oliohjelmoinnill siten että kllkin
6 niersmill on menetelmä tieon keräämiseen jonk ktioi kts joltkin nprilt j eelleen niersmi kts mit npreitn jotk kerääät et tieot omilt npreiltn. Kn niersmin nprit ot sorittneet omt opertions tietojen keräämiseksi ktsn lähettänyt niersmi soroi npreiltn. 5 Yhteeneto j pohintoj Uskomserkkojen käsittelyssä on opertionlisesti kksi os: stttinen j ynminen. Stttinen os trkoitt erkon mttmtont os eli erkon rkennett j solmjen älisiä reltioit eli ehollisi toennäköisyyksiä. ynmisell osll trkoitetn kikke sitä työtä jok on tehtää kn sn si hintoj. Nyt on erityisesti ollt pyrkimyksenä moost erkost si rkenne liitosp jot oin käyttää hyöyksi ynmisess osss. ynmisen osn opertioit on klirointi hintojen lisääminen tietojen kerääminen j en skomksen lskeminen hlttn solmn. Liitosgrfi rkenteen mhollist loklit opertiot joll tieto oin päiittää. Kkin solm oin jtell olioksi jok oi itsenäisesti soritt tietyt opertiot. Tällöin solmt oit soritt tietojen päiittämistä smnikisesti. Loklien opertioien ll ältytään koko erkon yhteisjkmn päiittämiseltä kerrll. Liitosp j siinä tehtäät opertiot ot nlogisi yhesti yhistetyn skomserkon tietojen päiittämisopertioihin. Liitosp oitisi jop jtell yhesti yhistettynä skomserkkon. Monet soellksiss esiintyät skomserkot ot rkenteeltn sesti yhistettyjä j syklisiä joten eellä esitetty menetelmä tieon päiittämiseksi on lltsti mitä käyttökelpoisin. Lisäksi menetelmä iktt myös lskennllisesti tehokklt ikk menetelmän soeltminen eellyttää liitosp-rkenteen moostmist mikä stt oll sritöinen ihe. Liitosp oi oll tieon esitysrkenteen lkperäistä skomserkko selkeämpi sillä se esittää kompktiss mooss lkperäisen erkon oleellisimmt riippet. Lähteenä olleess rtikkeliss ei minit soeltko menetelmä jtki jkmi sisältäien erkkojen päiittämiseen mtt lltsti solelt. Jtkien stnnismttjien yhteyessä skomstlt on kortt jtkill toennäköisyysjkmill j os päiitysopertioist mtt hiemn. rtikkeliss ei myöskään pnett prolemtiikkn jok sisältyy tringloin skomsgrfin moostmiseen. Lisäksi os skomstlille määritellyistä koist on mielestäni ptteellisesti persteltj. Esimerkiksi tietojen kerääminen niersmiin eli sortio olisi oit esittää holellisemmin.
6.6. Tasoitus ja terävöinti
6.6. soits j teräöinti Serss mtetn pikselin ro persten mpäristön pikselien ominisksiin. Kn 6.8. nojll j Lkjen 3.4. j 3.5. hrmsäjen käsittelssä esitellillä menetelmillä tss nähään sptilisen sotsopertion.
58131 Tietorakenteet ja algoritmit (kevät 2015) Toinen välikoe, malliratkaisut
583 Tietorkenteet j lgoritmit (kevät 205) Toinen välikoe, mllirtkisut. () Brnh n oun. Brnh n oun on lgoritmityyppi, joss tutkitn kikki ongelmn mhollisi rtkisuj puumisess rkenteess. Kun hvitn, että jokin
Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista
Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),
3 Integraali ja derivaatta
3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,
ICS-C2000 Tietojenkäsittelyteoria Kevät 2015
ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,
Optioiden hinnoittelu binomihilassa
Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai
Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13
MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.
2.1 Vaillinaiset yhtälöt
.1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön
Sähkömagneettinen induktio
ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä
10. Optiohinnoittelu binomihilassa
10. Optiohinnoittel binomihilassa 1. Sijoitskohteien hintaprosessit Moniperioisten investointitehtävien tarkastel eellyttää sijoitskohteien hintojen kehittymisen mallintamista joko iskreetteinä tai jatkvina
Kuvausta f sanotaan tällöin isomorfismiksi.
Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,
Olkoon. M = (Q, Σ, δ, q 0, F)
T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.
Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio
Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään
T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()
Automaatin tunnistama kieli on sen hyväksymien merkkijonojen joukko. Täsmällinen muotoilu: δ,q 0,{q 2,q 3,q 6 }), missä
T 79.1001/1002 Tietojenkäsittelyteorin perusteet 2.3 Äärellisen utomtin käsitteen formlisointi eknistinen mlli: syötenuh: nuhpää: ohjusyksikkö: i n p δ u q 1 q 2 Äärellinen utomtti koostuu äärellistilisest
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.
T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä
S Laskennallinen systeemibiologia
S-4.50 Lsknnllinn systmiiologi 4. Hrjoitus. Viill tutkittvll ljill (,, c, j ) on määrätty täisyyt c 0 8 8 8 0 8 8 8 c 0 4 4 0 0 Määritä puurknn käyttän UPGMA-mntlmää. Näytä kunkin vihn osrkntt vstvin täisyyksinn.
Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon
17 Nmeroitat ja linmeroitat jokot Määritelmä 110 Jokko X on nmeroitasti ääretön, jos on olemassa bijektio f : N X Jokko on nmeroita, jos se on äärellinen tai nmeroitasti ääretön Jokko, joka ei ole nmeroita
Säännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 2, 18. 22. tmmikuut Demonstrtiotehtävien rtkisut D1: Formuloi luennoll (monisteen s. 17) esitetty yksinkertinen khviutomtti täsmällisesti äärellisen
II.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C Tietojenkäsittelyteori Kevät 6 Kierros 8, 7.. mliskuut Demonstrtiotehtävien rtkisut D: Määrittele Turingin koneen stndrdimllin muunnelm, joss koneen työnuh on molempiin suuntiin ääretön, j osoit
Riemannin integraali
LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu
2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
Kattoeristeet - nyt entistä parempia kokonaisratkaisuja. Entistä suurempi Kuormituskestävyys ja Jatkuva Keymark- Laadunvalvontajärjestelmä
Kttoeristeet - nyt entistä prempi kokonisrtkisuj Entistä suurempi Kuormituskestävyys j Jtkuv Keymrk- Lunvlvontjärjestelmä Rockwool-ekolvll kttoeristeet seisovt omill jloilln Ekolvoj käytettäessä työ on
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij
Koestusnormit: VDE 0660 osa 500/IEC Suoritettu koestus: Nimellinen virtapiikkien kestävyys I pk. Ip hetkellinen oikosulkuvirta [ka]
Oikosulkukestoisuus EC:n mukn Oikosulkukestoisuus DN EN 439-1/EC 439-1:n mukn Tyyppikoestus DN EN 439-1 Järjestelmän tyyppikoestuksen yhteyessä suoritettiin seurvt Rittl-virtkiskojärjestelmien sekä vstvien
Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
4 Taso- ja avaruuskäyrät
P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen
PRO GRADU -TUTKIELMA. Eeva Mäkelä. Hiloista ja Boolen algebroista
PRO GRADU -TUTKIELMA Eev Mäkelä Hiloist j Boolen lgeroist TAMPEREEN YLIOPISTO Luonnontieteiden tiedekunt Mtemtiikk Mrrskuu 2017 Tmpereen yliopisto Luonnontieteiden tiedekunt MÄKELÄ, EEVA: Hiloist j Boolen
Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP
Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }
Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä
Sopimustekstin käännös 30.03.2015 (epävirllinen) Counil of Europe Trety Series - No. 199 Euroopn neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnllisest merkityksestä Fro, 27.10.2005 Johnto Euroopn
Viittomakielten fonologisista prosesseista
Viittomkielten fonologisist prosesseist Tommi Jntunen Helsingin yliopisto Yleisen kielitieteen litos tjjntun@ling.helsinki.fi Seurvss esitellään joitkin tyypillisimpiä fonologisi prosessej viitotuiss kielissä.
2.2 Automaattien minimointi
24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss
Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:
2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:
Lyhyt johdatus joukko-oppiin ja relaatioihin
Lyhyt johtus joukko-oppiin j reltioihin Tommi Syrjänen 1 Johnto Tämän oppn trkoituksen on esittää lyhyt tiivistelmä joukko-opin j reltioien perusteist. Esitys seur pääpiirteissään kirjn Lewis, Ppimitriou:
Q = {q 1, q 2, q 3, q 4 } Σ = {a, b} F = {q 4 },
T-79.48 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 4 Demonstrtiotehtävien rtkisut 4. Tehtävä: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016
lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet
Graafinen ohjeisto. Julkis- ja yksityisalojen toimihenkilöliitto Jyty
Grfinen ohjeisto Julkis- j yksityislojen toimihenkilöliitto Jyty Julkis- j yksityislojen toimihenkilöliitto Jyty Grfinen ohjeisto Sisällysluettelo: 1. Johdnto 2. Peruselementit Tunnus j versiot...2.1 Tunnuksen
5. Ekvivalenssit ja veriointi. Spesioinnin ja verioinnin perusteet. Päivi Kuuppelomäki
5. Ekvivlenssit j veriointi Spesioinnin j verioinnin perusteet. Päivi Kuuppelomäki 2008 1 5.1. Plvelun kuvukset Hjutetun järjestelmän prosessien kuvuksist voidn meknisesti generoid yhteistilverkko. Jos
Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja
582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko
ELEMENTTIMENETELMÄN PERUSTEET SESSIO 13: Avaruuskehän palkkielementti.
/ EEMENIMENEEMÄN PERUSEE SESSIO : Aarskhän palkkilmntti. AARUUSKEHÄN EEMENIERKKO solm solm Ka. Aarskhän lmnttirkko ja sn lmntti. Jos khä sisältää ain tasapaksja ja soria osia, sn tarkka ratkais saaaan
Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO
Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten
Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto
Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään
Laskennan perusmallit (LAP)
Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014
Matematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss
Pinta-alan laskeminen
Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden
Riemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko
3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu
Täydentäviä muistiinpanoja epädeterministisistä äärellisistä automaateista
Täydentäviä muistiinpnoj epädeterministisistä äärellisistä utomteist Antti-Juhni Kijnho 2. mrrsuut 25 NFA Trstelln seurv NFA:t. 2 3 Sen toimint merijonoll voidn esittää päätöspuun: 3 3 2 2 3 3 TIEA24 Automtit
Muita määrätyn integraalin sovelluksia
Muit määrätyn integrlin sovelluksi Ekstr Pohint Auto kiihyttää tsisesti viiessä sekunniss vuhist 4 km/h vuhtiin 76 km/h. ) Muoost funktio, jok ilmisee uton vuhin v(t), kun on kulunut t sekunti kiihytyksen
Kieli, merkitys ja logiikka, kevät 2011 HY, Kognitiotiede. Vastaukset 2.
Kieli, merkitys j logiikk, kevät 2011 HY, Kognitiotiede stukset 2. ** Kikiss utomteiss lkutil on. 1.. nn äärelliset utomtit luseille (1-c), jokiselle omns. (1).. c. q3 q4 q3 q4 q5 q6. Muodost äärellinen
T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 7 (Predikaattilogiikka )
T-79.3001 Kevät 2009 Logiikk tietotekniikss: perusteet Lskuhrjoitus 7 (Predikttilogiikk 9.1 10.2) 19.3. 23.3. 2009 Rtkisuj demotehtäviin Tehtävä 9.1 Rtkisuss on käytetty usen otteeseen rjoitettuj universli-
Päijät-Hämeen ja Mäntsälän museoiden työryhmän kokous SOPENKORVEN KOKOELMAKESKUS
Päijät-Hämeen ja Mäntsälän mseoiden työryhmän kokos 10.4.2019 SOPENKORVEN KOKOELMAKESKUS Asialista 10.4.2019 1. Kokoelmaohjelmien kokoelmien historiaa, kehitystä ja nykytilaa koskevan osden lyhyt käsittely,
Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13
Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes
Diskreetin matematiikan perusteet Ratkaisut 4 / vko 11
Diskreetin mtemtiikn perusteet Rtkisut 4 / vko 11 Tuntitehtävät 41-42 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-46 loppuviikon hrjoituksiss. Kotitehtävät 43-44 trkstetn loppuviikon hrjoituksiss.
TAMPEREEN YLIOPISTO Valinnaisten opintojen syventäviin opintoihin kuuluva tutkielma. Lauri Kumpulainen. Büchin automaateista
TAMPEREEN YLIOPISTO Vlinnisten opintojen syventäviin opintoihin kuuluv tutkielm Luri Kumpulinen Büchin utomteist Luonnontieteiden tiedekunt Tietojenkäsittelytieteiden tutkinto-ohjelm Huhtikuu 2017 Tmpereen
Pakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
Knauf Safeboard Säteilysuojalevy 03/2009. Knauf Safeboard Säteilysuojalevy. 0% lyijyä. 100% turvallisuus.
Knuf Sfor Sätilysuojlvy 03/2009 Knuf Sfor Sätilysuojlvy 0% lyijyä. 100% turvllisuus. Knuf Sfor Knuf Sfor Suoj röntgnsätiltä Lyijytön Suoj plolt Hlppo snt Hyvä äännristävyys Ympäristöystävällinn hävittää
4 DETERMINANTTI JA KÄÄNTEISMATRIISI
4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.
Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on
4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void
HAVAINNOINTI JA TUTKIMINEN
ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä
Omakotitalon energiaratkaisu Pieni askel omavaraisuuteen.
Omakotitalon energiaratkais Pieni askel omavaraisteen. www.arime.fi Phdasta energiaa lonnosta Arinko on meidän kakien elämään vattava ehtymätön energianlähde ja se tottaa välillisesti srimman osan ihmisten
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen
Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.
8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst
θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö
22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017
Tangram TUTUSTUTAAN TANGRAMIIN. Ensikohtaaminen. Synty Kiinassa. Painotuotteet tangramista. Tangramin synnystä on lukuisia erilaisia tarinoita,
Tngrm TUTUSTUTAAN TANGRAMIIN Ensikohtminen Tngrm on kiinlinen plpeliä muistuttv ongelmkimppu. Siinä neliö on jettu erimuotoisiin j -kokoisiin ploihin, joit kääntelemällä j siirtelemällä on trkoitus rkent
1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [
1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014
763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin
5 Epäoleellinen integraali
5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss
Keski-Suomen opin ovi Verkostovalmennus paikallisten ohjauspalvelujen kehittäjille
Keski-Suomen opin ovi Verkostovlmennus pikllisten ohjusplvelujen kehittäjille 19.10.2009 ANNE LEPPÄNEN & HANNELE TORVINEN MITÄ YMMÄRRÄMME VERKOSTOILLA TÄSSÄ OPIN OVI KONTEKSTISSA Verkostot on lähestymistp,
7. Tasapainoitetut hakupuut
7.1. Monitiehakpt 7. Tasapainoitett hakpt Tässä lssa jatketaan järjestetyn sanakirjan tarkastela esittämällä kehittynyt ptietorakenne. Lssa 7.1. esitetään monitiehakpn käsite. Se on järjestetty p, jonka
6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
HAVAINNOINTI JA TUTKIMINEN
ilumuoto st ksvtu luun ou perusk d Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A1 Muotoilun milm j muotoilusuunnistus Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Etsitään j löydetään muotoilu ympäristöstä.
Arvostelu OHJ Johdatus tietojenkäsittelyteoriaan syksy op. Viikkoharjoitukset. Materiaali. Kurssista voi selvitä parhaalla mahdollisella
OHJ-300 Johtus tietojenkäsittelyteorin syksy 006 6 op Luennot: prof Tpio Elom j DI Jussi Kujl m, to 6 T B 8 8 3 - työmtkt 6 9 j 6 309 - perioituko 9 3 0 Viikkohrjoitukset 59 Teknyo Timo Aho ti 0 sli T
Vakioiden variointi kolmannen kertaluvun yhtälölle
Vkioiden vriointi kolmnnen kertluvun yhtälölle Olkoon trksteltvn kolmnnen kertluvun linerinen epähomogeeninen differentiliyhtälö > diffyht:= (-1)*diff(y(), $3)-*diff(y(), $2)+diff(y(), )=ep(^2); diffyht
S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y.
3.8 Yhtedettömien kielten rajoitksista Yhtedettömille kielille on oimassa säännöllisten kielten pmppaslemman astine. Nt kitenkin merkkijonoa on pmpattaa samanaikaisesti kahdesta paikasta. Lemma 3.9 ( -lemma
Korkotuettuja osaomistusasuntoja
Korkotuettuj osomistussuntoj Hvinnekuv suunnitelmst. Titeilijn näkemys Asunto Oy Espoon Stulmkri Stulmkrintie 1, 02780 ESOO Asunto Oy Espoon Stulmkri Kerv Kuklhti Iso Mntie 2 Espoo Vihdintie Keh III Hämeenlinnnväylä
Asennusopas. Daikin Altherma Matalan lämpötilan Monoblocin varalämmitin EKMBUHCA3V3 EKMBUHCA9W1. Asennusopas. Suomi
Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin EKMBUHCAV EKMBUHCA9W Dikin Altherm Mtln lämpötiln Monolocin vrlämmitin Suomi Sisällysluettelo Sisällysluettelo Tietoj sikirjst. Tieto tästä sikirjst...
Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta
Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää
Q on automaatin tilojen äärellinen joukko; Σ on automaatin syöteaakkosto; δ : Q Σ Q on automaatin siirtymäfunktio; q 0 Q on automaatin alkutila;
Q on utomtin tilojen äärellinen joukko; Σ on utomtin syötekkosto; δ : Q Σ Q on utomtin siirtymäfunktio; q Q on utomtin lkutil; F Q on utomtin hyväksyvien tilojen joukko. Siirtymäfunktio δ on määritelmän
Hakemus- ja ilmoituslomake LAPL, BPL, SPL, PPL, CPL, IR lupakirjoja varten vaadittava lentokoe- ja tarkastuslentolausunto
kijn tiot kijn sukunimi kijn tunimt kijn llkirjoitus Lupkirjn tyyppi* Lupkirjn numro* Lupkirjn myöntänyt vltio kmus- j ilmoituslomk LPL, BPL, SPL, PPL, CPL, IR lupkirjoj vrtn vittv lntoko- j trkstuslntolusunto
2.5 Säännöllisten kielten rajoituksista
68 2.5 Säännöllisten kielten rjoituksist Minkä thns kkoston formlej kieliä (= päätösongelmi, tunnistusongelmi) on ylinumeroituv määrä kun ts säännöllisiä lusekkeit (= merkkijonoj) on numeroituv määrä Näin
Ankkurijärjestelmä Monotec Järjestelmämuotti Framax Xlife
999805711-02/2015 fi Muottimestrit. nkkurijärjestelmä Monotec Järjestelmämuotti rmx Xlife Käyttäjätieto sennus- j käyttöohje 9764-445-01 Johdnto Käyttäjätieto nkkurijärjestelmä Monotec dnto Joh- by ok
AUTOMAATTIEN SYNKRONISAATIOSTA
AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost
Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30
Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),
3 Mallipohjainen testaus ja samoilutestaus
Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto
Sinilause ja kosinilause
Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,
7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen
7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn
MARJA-VANTAA ALOITUSKORTTELIT KORTTELI Kadunkulmaperspektiivi
MARJA-ANTAA ALOITUSKORTTELIT KORTTELI 23125 Kdnklmperspektv 71 e t s p s J KORTTELI 23125 Tntten 1, 2 j 3 kk yhensä 4896,m² Tehkks e=1,7 => Rkennskes 8324,m² +53.19 Rkennskeeen lskettv kerrsl rkennetn
9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET
DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,
Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20
Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät
LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat
(0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset
Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?
Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.