Mat Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Koko: px
Aloita esitys sivulta:

Download "Mat Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:"

Transkriptio

1 Mat-.04 Tilatollie aalyyi peruteet. harjoituket Mat-.04 Tilatollie aalyyi peruteet. harjoituket / Tehtävät Aiheet: Avaiaat: Tetit uhdeateikolliille muuttujille Hypoteei, Kahde riippumattoma otoke t-tetit, Nollahypoteei, p-arvo, Päätöäätö, Teti, Tetiuure, Tetiuuree ormaaliarvo, Tetit uhdeateikolliille muuttujille, t-teti, t-teti parivertailuille, Vaihtoehtoie hypoteei, Variaie vertailuteti, Yhde otoke t-teti, Yleie hypoteei. Kahde riippumattoma otoke t-teti STATISTIX-tiedotoa MORT o eitetty 9 amerikkalaipaki käyttämät korot (muuttuja KORKO; ykikkö = %) autolaioille. Laiat voidaa ryhmitellä kahtee ryhmää e mukaa oko korko ollut kiiteä vai vaihtuva (muuttuja LAINATYYP; 0 = kiiteä korko, = vaihtuva korko). (a) (b) Määrää kummalleki laiatyypille: aritmeettie kekiarvo, kekihajota, miimi, makimi, 95 %: luottamuväli kekimääräielle korolle, Box ja Whiker -kuvio Tee tulotute peruteella johtopäätökiä laiatyyppie koroita. Tetaa kahde riippumattoma otoke t-tetillä ollahypoteeia, että kekimääräie korko o kummalleki laiatyypille ama. Käytä vaihtoehtoiea hypoteeia oletuta: Kekimääräie laiakorko o kiiteäkorkoielle laialle korkeampi. Vaihtoehtoie hypoteei vataa taloutietee käitytä korkoje määräytymimekaimita. Muotoile myö kaikki tetii liittyvät hypoteeit. Käytätkö variaie yhtäuuruuoletukee vai eriuuruuoletukee perutuvaa t-tetiä? Perutele!. t-teti parivertailuille STATISTIX-tiedotoa PalkkaMF o eitetty 0 amerikkalaimiehe (= MALE) ja 0 amerikkalaiaie (= FEMALE) vuoipalkat (ykikkö = $). Havaiot muodotuvat ovitetuita pareita, joia jokaita mietä vataa amalaie tauta (iä, ammati, koulututao, työpaika je.) omaava aie. (a) (b) Määrää aite ja miete palkoille: aritmeettie kekiarvo, kekihajota, miimi, makimi, 95 %: luottamuväli kekimääräielle korolle, Box ja Whiker -kuvio Tee tulotute peruteella johtopäätökiä palkkaeroita. Tetaa t-tetillä parivertailuille ollahypoteeia, että miete ja aite palkat eivät eroa toitaa. Käytä vaihtoehtoiea hypoteeia oletuta: Naite ja miete palkat eroavat toiitaa. Ilkka Melli (005) /6

2 Mat-.04 Tilatollie aalyyi peruteet. harjoituket (c) (d) Tetaa riippumattomie otote t-tetillä ollahypoteeia, että miete ja aite palkat eivät eroa toitaa. Vertaa (b)- ja (c)-kohda tulokia toiiia. Kumpi meettely o oikea? 3. t-teti parivertailuille STATISTIX-tiedotoa VERENP o tuloket amoille potilaille tehdyitä verepaiee mittaukita (. yläpaie) ee (muuttuja ENNEN) ja jälkee (muuttuja JALKEEN) verepaietta aletava lääkkee atamie. (a) Tetaa t-tetillä parivertailuille ollahypoteeia, että lääkkee atamiella ei ole vaikutututa verepaieeee, ku vaihtoehtoiea hypoteeia o, että lääke aletaa verepaietta. (b) (c) Muodota verepaieide erotuket ja tee iille tavallie t-teti, joa ollahypoteeia o, että erotute odotuarvo = 0. Vertaa kohtie (a) ja (b) tulokia toiiia. 4. Kahde riippumattoma otoke t-teti STATISTIX-tiedotoa COMPRo tiedot betoi puritulujuutta kokevita teteitä. Muuttuja CONCR iältää tetituloket betoierätä, jotka o tehty valmitumeetelmällä ja muuttuja CONCR iältää tetituloket 30 betoierätä, jotka o tehty valmitumeetelmällä. Puritulujuude ykikköä o kg/cm. Tetaa kahde riippumattoma otote t-tetillä ollahypoteeia, että kekimääräiet puritulujuudet eivät eroa toiitaa, ku vaihtoehtoiea hypoteeia o, että e eroavat. Ilkka Melli (005) /6

3 Mat-.04 Tilatollie aalyyi peruteet. harjoituket Liitteet Teti : Olkoo Yleie hypoteei H : Nollahypoteei: Riippumattomie otote t-teti, ku ryhmäkohtaiet variait aavat erota toiitaa X i = muuttuja havaittu arvo havaioa i X j = muuttuja havaittu arvo havaioa j () Havaiot X ~N( µ, σ ), i =,,, i () Havaiot X ~N( µ, σ ), j =,,, j (3) Havaiot X i ja X j ovat riippumattomia kaikille i ja j H : µ = µ 0 Vaihtoehtoiet hypoteeit: H: µ > µ H: µ < µ H: µ µ Tetiuure ja e approkimatiivie jakauma ollahypoteei pätieä: joa t = ν = X X a t( ν ) Tetiuuree approkimatiiviea jakaumaa ollahypoteei pätieä käytetää uei myö tadardoitua ormaalijakaumaa: t = X X a N(0,) Tämä approkimaatio o kuiteki heikompi kui edellä maiittu t-jakaumaa perutuva approkimaatio. Ilkka Melli (005) 3/6

4 Mat-.04 Tilatollie aalyyi peruteet. harjoituket Teti : Olkoo Yleie hypoteei H : Nollahypoteei: Riippumattomie otote t-teti, ku ryhmäkohtaiet variait ovat yhtä uuret X i = muuttuja havaittu arvo havaioa i X j = muuttuja havaittu arvo havaioa j () Havaiot X i i ~N( µ, σ ), =,,, () Havaiot X j ~N( µ, σ ), j =,,, (3) Havaiot X i ja X j ovat riippumattomia kaikille i ja j H : µ = µ 0 Vaihtoehtoiet hypoteeit: H: µ > µ H: µ < µ H: µ µ Tetiuure ja e jakauma ollahypoteei pätieä: joa X X t = t ( ) P ( ) ( ) P = Ilkka Melli (005) 4/6

5 Mat-.04 Tilatollie aalyyi peruteet. harjoituket Teti 3: Olkoo t-teti parivertailuille X i = muuttuja havaittu arvo havaioa i X i = muuttuja havaittu arvo havaioa i i = X i X i Yleie hypoteei H : () Havaiot ~N( µ, σ ), i =,,, i () Havaiot i ovat riippumattomia kaikille i Nollahypoteei: H : µ = 0 Vaihtoehtoiet hypoteeit: 0 H: µ > 0 H: µ < 0 H: µ 0 Tetiuure ja e jakauma ollahypoteei pätieä: t = t ( ) / Ilkka Melli (005) 5/6

6 Mat-.04 Tilatollie aalyyi peruteet. harjoituket Teti 4: Variaie vertailuteti Olkoo X i = muuttuja havaittu arvo havaioa i X j = muuttuja havaittu arvo havaioa j Yleie hypoteei H : () Havaiot X ~N( µ, σ ), i=,,, i () Havaiot X j ~N( µ, σ ), j =,,, (3) Havaiot X i ja X j ovat riippumattomia kaikille i ja j Nollahypoteei: H : σ = σ 0 Vaihtoehtoiet hypoteeit: H: σ > σ H: σ < σ H: σ σ Tetiuure ja e jakauma ollahypoteei pätieä: F = F(, ) Ilkka Melli (005) 6/6

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuittelu ja tilatolliet mallit Mat-.03 Koeuuittelu ja tilatolliet mallit / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Tetit uhdeateikolliille muuttujille Tetit laatueroateikolliille muuttujille

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme?

Väliestimointi. Väliestimointi. Väliestimointi: Mitä opimme? 2/3. Väliestimointi: Mitä opimme? 1/3. Väliestimointi: Mitä opimme? TKK (c) Ilkka Melli (004) Välietimoiti Todeäköiyyjakaumie parametrie etimoiti Normaalijakauma variai luottamuväli Beroulli-jakauma odotuarvo luottamuväli Johdatu tilatotieteeee Välietimoiti TKK (c) Ilkka

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi Mat-.6 Sovellettu todeäköisyyslasketa. harjoitukset Mat-.6 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Tilastolliset testit Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, F-jakauma,

Lisätiedot

Mat Koesuunnittelu ja tilastolliset mallit

Mat Koesuunnittelu ja tilastolliset mallit Mat-.03 Koeuuttelu tlatollet mallt. harjotuket Mat-.03 Koeuuttelu tlatollet mallt. harjotuket / Ratkaut Aheet: Avaaat: Tlatollte aetoje kuvaame Oto otokaumat Etmot Etmotmeetelmät Väletmot Artmeette kekarvo,

Lisätiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot

Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille. Testit suhdeasteikollisille muuttujille: Esitiedot TKK (c) Ilkka Melli (4) Testit suhdeasteikollisille muuttujille Johdatus tilastotieteesee Testit suhdeasteikollisille muuttujille Testit ormaalikauma parametreille Yhde otokse t-testi Kahde otokse t-testi

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

2-suuntainen vaihtoehtoinen hypoteesi

2-suuntainen vaihtoehtoinen hypoteesi MS-A53 Todeäköisyyslaskea ja tilastotietee peruskurssi Esimerkkikokoelma 5 Aiheet: Tilastolliset testit Yhde otokse t-testi Testausasetelma yhde otokse t-testissä odotusarvolle Olkoo X i, i =,,, riippumato

Lisätiedot

12. laskuharjoituskierros, vko 16, ratkaisut

12. laskuharjoituskierros, vko 16, ratkaisut 1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

Tilastollinen päättely II, kevät 2017 Harjoitus 3B Tilastollie päättely II, kevät 7 Harjoitus 3B Heikki Korpela 3. maaliskuuta 7 Tehtävä. Jatkoa harjoitukse B tehtävii -3. Oletetaa, että x i c kaikilla i, ku c > o vakio. Näytä, että ˆβ, T ja T ovat tarketuvia.

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY / Matematiika ja tilastotietee laitos Tilastollie päättely II, kevät 018 Harjoitus 5B Ratkaisuehdotuksia Tehtäväsarja I 1. (Jatkoa Harjoitus 5A tehtävää ). Moistee esimerki 3.3.3. mukaa momettimeetelmä

Lisätiedot

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (005) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo ja otosvariassi otosjakaumat

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.4 Tilatollie aali peruteet, kevät 7 6. lueto: Johdatu regreioaalii Regreioaali idea Tavoitteea elittää elitettävä tekiä/muuttua havaittue arvoe vaihtelu elittävie tekiöide/muuttuie havaittue arvoe

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

POSITIIVISEN LINSSIN POLTTOVÄLI

POSITIIVISEN LINSSIN POLTTOVÄLI S-108110 OPTIIKKA 1/6 POSITIIVISEN LINSSIN POLTTOVÄLI Laboratoriotyö S-108110 OPTIIKKA /6 SISÄLLYSLUETTELO 1 Poitiivien linin polttoväli 3 11 Teoria 3 1 Mittauken uoritu 5 LIITE 1 6 Mittaupöytäkirja 6

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet

Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Konvergenssikäsitteet ja raja arvolauseet Ilkka Melli Todeäköisyyslasketa Osa 2: Satuaismuuttujat ja todeäköisyysjakaumat Kovergessikäsitteet ja raja arvolauseet TKK (c) Ilkka Melli (2006) 1 Kovergessikäsitteet ja raja arvolauseet >> Kovergessikäsitteitä

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia

Mat Sovellettu todennäköisyyslaskenta B 5. harjoitukset / Ratkaisut Aiheet: Jatkuvia jakaumia Avainsanat: Jatkuvia jakaumia Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Jatkuvia jakaumia Avaisaat: Biomijakauma, Ekspoettijakauma, Jatkuva tasaie jakauma, Kertymäfuktio, Keskeie raja-arvolause, Mediaai, Normaaliapproksimaatio,

Lisätiedot

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I

HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14). Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille 0. Testejä järjestysasteikollisille muuttujille. Testejä laatueroasteikollisille

Lisätiedot

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Tilastollinen riippuvuus ja korrelaatio. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteesee Tilastollie riippuvuus ja korrelaatio TKK (c) Ilkka Melli (2004) 1 Tilastollie riippuvuus ja korrelaatio Tilastollie riippuvuus, korrelaatio ja regressio Kahde muuttuja havaitoaieisto

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Melli Tilastolliset meetelmät Osa 2: Otokset, otosjakaumat ja estimoiti Estimoitimeetelmät TKK (c) Ilkka Melli (2007) Estimoitimeetelmät >> Todeäköisyysjakaumie parametrie estimoiti Suurimma uskottavuude

Lisätiedot

SATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit

SATE1150 Piirianalyysi, osa 2 syksy /10 Laskuharjoitus 1: RL- ja RC-piirit SATE1150 Piirianalyyi, oa 2 yy 2017 1 /10 auharjoitu 1: R ja Rpiirit Tehtävä 1. a) Millainen uodatin on yeeä uvaa 1? Perutele aia taratelemalla unin yittäien omponentin impedanin taajuuäyttäytymitä. b)

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Konvergenssikäsitteet ja raja-arvolauseet. TKK (c) Ilkka Mellin (2004) 1 Johdatus todeäköisyyslasketaa Kovergessikäsitteet ja raja-arvolauseet TKK (c) Ilkka Melli (2004) 1 Kovergessikäsitteet ja raja-arvolauseet Kovergessikäsitteitä Suurte lukuje lait Keskeie raja-arvolause

Lisätiedot

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme? TKK (c) Ilkka Melli (4) Johdato Johdatus todeäköisyyslasketaa TKK (c) Ilkka Melli (4) : Mitä opimme? / Tutustumme tässä luvussa seuraavii ormaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihi jakaumii:

Lisätiedot

Sosiaalihuollon kertomusmerkintä

Sosiaalihuollon kertomusmerkintä Soiaalihuollon kertomumerkintä Kommentoitava materiaali Terveyden ja hyvinvoinnin laito (THL) L 30 (Mannerheimintie 166) 0071 Helinki Telephone: 09 54 6000 www.thl.fi Siällyluettelo Soiaalihuollon kertomumerkintä...

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

SELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko

SELITETTÄVÄ MUUTTUJA SELITTÄVÄ MUUTTUJA. Välimatka- tai suhdelukuasteikko. Laatuero- tai järjestysasteikko. Laatuero- tai järjestysasteikko Moimuuttujameetelmät Kvatitatiiviset meetelmät Sami Fredriksso Yleie valtio-oppioppi Mikko Mattila 009 1 Yhde muuttuja meetelmät (uivariate statistics): keskiluvut ja hajotaluvut Moimuuttujameetelmät:

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

S Laskennallinen systeemibiologia

S Laskennallinen systeemibiologia S-4250 Laskeallie systeemibiologia Harjoitus Mittaustuloksea o saatu havaitoparia (x, y ),, (x, y ) Muuttuja y käyttäytymistä voidaa selittää muuttuja x avulla esimerkiksi yksikertaise lieaarise riippuvuude

Lisätiedot

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä

Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä 1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

2.1. Parametrien estimointi 2.2. Regressiokertoimien estimointi kovariansseista ja korrelaatioista

2.1. Parametrien estimointi 2.2. Regressiokertoimien estimointi kovariansseista ja korrelaatioista Moimuuttujameetelmät: Ilkka Melli. Yleise lieaarise malli määrittelemie.. ja malli oletukset.. Yleise lieaarise malli matriisiesitys. Yleise lieaarise malli parametrie estimoiti.. Parametrie estimoiti..

Lisätiedot

χ 2 -yhteensopivuustesti

χ 2 -yhteensopivuustesti Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Yhteesopivuude, homogeeisuude ja riippumattomuude testaamie Tilastollie

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mitä tilastotiede o? Mat-.04 Tilastollise aalyysi perusteet, kevät 007. lueto: Johdato Tilastotiede kehittää ja soveltaa meetelmiä: reaalimaailma ilmiöistä johtopäätökset ilmiöitä kuvaavie tietoje perusteella

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Otos- ja otosjakaumat Estimointi Estimointimenetelmät Väliestimointi. Avainsanat: Mat-.090 Sovellettu todeäköisyyslasku A Mat-.090 Sovellettu todeäköisyyslasku A / Ratkaisut Aiheet: Avaisaat: Otos- ja otosjakaumat Estimoiti Estimoitimeetelmät Väliestimoiti Aritmeettie keskiarvo, Beroulli-jakauma,

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3 LIITTEET... 2 Liite A Stirligi kaava tarkkuudesta...2 Liite B Lagrage kertoimet... 2 Liitteet Liitteet Liite A Stirligi kaava tarkkuudesta Luoollista logaritmia suureesta! approksimoidaa usei Stirligi

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Harjoitukset 1 : Tilastokertaus

Harjoitukset 1 : Tilastokertaus 31C99904, Capstoe: Ekoometria ja data-aalyysi TA : markku.siikae(a)aalto.fi & tuuli.vahapelto(a)aalto.fi Harjoitukset 1 : Tilastokertaus (Palautus 10.1.2017) Palautellaa mielii hiema tilasto-oppia ja todeäköisyyslasketaa.

Lisätiedot

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointimenetelmät. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Estimoitimeetelmät TKK (c) Ilkka Melli (2005) 1 Estimoitimeetelmät Todeäköisyysjakaumie parametrie estimoiti Momettimeetelmä Normaalijakauma parametrie estimoiti Ekspoettijakauma

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme?

Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen. Tilastollisten aineistojen kuvaaminen: Mitä opimme? TKK (c) Ilkka Melli (004) Tilastolliste aieistoje kuvaamie Tuusluvut Laatueroasteikolliste muuttujie tuusluvut Johdatus tilastotieteesee Tilastolliste aieistoje kuvaamie TKK (c) Ilkka Melli (004) Tilastolliste

Lisätiedot

6.1 Riippumattomat satunnaismuuttujat

6.1 Riippumattomat satunnaismuuttujat Luku 6 Otatajakaumie teoria 6.1 Riippumattomat satuaismuuttujat Muistamme edellisistä luvuista, että satuaismuuttujat X 1 ja X 2 ovat riippumattomat (määritelmät 4.6 ja 5.5), jos f(x 1, x 2 ) f 1 (x 1

Lisätiedot

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet

Luottamusmiehen / -valtuutetun valinta, asema ja oikeudet YLEMMÄT TOIMIHENKILÖT YTN RY OHJE YRY+K -ryhmä / Mko 19.8.2009 1 (13) Luottamumiehen / -valtuutetun valinta, aema ja oikeudet Siällyluettelo: Yleitä... 2 Oikeu luottamumiehen valintaan... 2 Luottamumiehen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien

Lisätiedot

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,

Lisätiedot

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016)

805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) 805324A (805679S) Aikasarja-analyysi Harjoitus 4 (2016) Tavoitteet (teoria): Hallita autokovarianssifunktion ominaisuuksien tarkastelu. Osata laskea autokovarianssifunktion spektriiheysfunktio. Tavoitteet

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu

Lisätiedot

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

= 0, = 0, = 0, = 0, = 0, = 0,

= 0, = 0, = 0, = 0, = 0, = 0, Liite 1 SU/Vakuutumatemaattinen ykikkö 18.9.2013 Kutannutenjakokertoimet vuodelle Soiaali- ja terveyminiteriön 23.12.2011 vahvitamia kutannutenjakoperuteia eiintyvien taaukertoimien arvot vuodelle = 0,419195

Lisätiedot

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b

Tilastollinen päättömyys, kevät 2017 Harjoitus 5b Tilastollie päättömyys, kevät 07 Harjoitus b Heikki Korpela 3. helmikuuta 07 Tehtävä. a Olkoot Y,..., Y Bθ. Johda uskottavuusosamäärä testisuuree ry, Waldi testisuuree wy ja Rao pistemäärätestisuuree uy

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/5

TKK @ Ilkka Mellin (2008) 1/5 Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Tehtävät Demo-tehtävät: 1, 3, 6, 7 Pistetehtävät: 2, 4, 5, 9 Ylimääräiset tehtävät: 8, 10, 11 Aiheet: Moniulotteiset jakaumat Avainsanat: Diskreetti jakauma,

Lisätiedot

Triathlon Training Programme 12-week Sprint Beginner

Triathlon Training Programme 12-week Sprint Beginner 12 viikon kilpailuuunnitelma--kilpailumatka: printti Urheilijan tao: aloitteleva urheilija, 1 tai 2 vuoden kokemu printtitriathlonkilpailuita Tunteja viikoa: 5-6 Tätä harjoituuunnitelmaa käytetään Garminin

Lisätiedot

Noora Nieminen. Hölderin epäyhtälö

Noora Nieminen. Hölderin epäyhtälö Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise

Lisätiedot

χ 2 -yhteensopivuustesti

χ 2 -yhteensopivuustesti Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset Mat-.60 Sovellettu todeäköisyyslasketa B. harjoitukset / Ratkaisut Aiheet: Yhteesopivuude, homogeeisuude ja riippumattomuude testaamie Tilastollie

Lisätiedot

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat:

Mat Sovellettu todennäköisyyslaskenta B 9. harjoitukset / Ratkaisut Aiheet: Estimointi Estimointimenetelmät Väliestimointi Avainsanat: Mat-.60 Sovellettu todeäköisyyslasketa B Mat-.60 Sovellettu todeäköisyyslasketa B / Ratkaisut Aiheet: Estimoiti Estimoitimeetelmät Väliestimoiti Avaisaat: Aritmeettie keskiarvo, Beroulli-jakauma, Beroulli-koe,

Lisätiedot

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k

X 2 = k 21X 1 + U 2 s + k 02 + k 12. (s + k 02 + k 12 )U 1 + k 12 U 2. s 2 + (k 01 + k 21 + k 02 + k 12 ) s + k Aalto-yliopiton Perutieteiden korkeakoulu Matematiikan ja yteemianalyyin laito Mat-49 Syteemien Identifiointi 0 harjoituken ratkaiut äytetään enin iirtofunktiomalli Tehdään Laplace-muunno: ẋ k 0 k x +

Lisätiedot

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770. JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 0, MALLIRATKAISUT Tehtävä. Voidaako seuraavat luvut esittää kahde eliö summia? Jos voidaa, ii kuika moella eri tavalla? (i) = 45 (ii) = 770. Ratkaisu. (i) Jaetaa

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todeäköisyyslaskea ja tilastotietee peruskurssi 4A Satuaisotata ja parametrie estimoiti Lasse Leskelä Matematiika ja systeemiaalyysi laitos Perustieteide korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

LASKENTA laskentakaavat

LASKENTA laskentakaavat LASKENA lketkvt Kvkokoelm älle ivulle o koottu yleiiät j ueiite trvitut lketkvt. Näitä käytetää hihleveyde j keliväli lket. Liäki o koottu muutmi muuokvoj. Hhih mitoittmie käy helpoti Heomitoituohjelmll.

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot