r u u R Poistetut tehtavat, kunjännitestabiiliusja jännitteensäätö yhdistettiin:
|
|
- Aino Toivonen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 oittut thtavat, kuäittaiiliua äittäätö yhitttii: Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. iirrä oho a äitläht Thvii kvivaltti. Aa itt kuormaolmuu liittyll ritaill r arvot äärtö,, pu,, pu,, pu a pu a piirrä kuormaolmu äit kuorma tho fuktioa. Ratkaiu: z TH, pu u TH r Thvi äit u TH o, pu a impai z, pu. Laktaa virta, äit a tho atuilla rita arvoilla. Ku ritai kytktää oho päähä, voiaa laka virra itiarvo: i uth r x r u TH x Kuormaolmu äitt itiarvo aaaa äitt aolla: u R u TH TH u R r x r r x Kuorma tho aaaa virra a rita avulla: r u TH p R ri r x Laktaa virta, äit a tho atuilla rita arvoilla. Mrkitää TH.
2 R / pu I / pu u R / pu / pu Liitit a 3 välillä u TH a liitit a välillä,,3,89,, 3,5,77,5,,7,7, 5, R R Tarkatllaa alla olva kuva mukaita ärtlmää. S k Kuorma o puhtaati iuktiivi. Lak V li kuorma ottama tho äitt fuktioa, ku. Määritä uuri tho a kuorma äit V krit kriitti äit illoi ku kuorma ottaa uurimma thoa. Lak myö äitromahuk lähtymiki VI voltag collap proximity
3 iicator, oka määrittää uraavati VI g tuottuloitho muuto. iirrä VI uht kuluttu loitho muuto V : fuktioa. Käytä uhtlliarvoa p, q, v, li prutho o oikoulkutho. V V V VIHJ:,, Ratkaiu: Jäykätä vrkota tulva loitho g o oholla kuluttu loitho a kuormaa kuluva loitho umma. Jäykätä vrkota tulva virta I voiaa ilmaita vrko atama loitho g avulla: * S I Þ I Joho kuluttama loitho I Koka ohto o häviötö a kuorma o plkkää loithoa, ovat oho loppupää pätö a loitho li kuormaa mvät pätö a loitho uraavat:, k 3 Tutkitaa uurita mahollita loithokuormaa oho päää. Mrkitää itä ymolilla. laktaa rivoimalla : yhtälö äitt uht a mrkitmällä rivaatta ollaki. V Û krit krit Voiaa laka kuorma makimiloitho myö yhtälöllä aaaa kuorma loitholl yhtälö: krit k k. Sioittaa tähä kriitti äit, a 5
4 Vrtailmalla yhtälöitä a 5, huomataa, ttä makimitho o illoi ku kuorma raktai o ama kui yöttävä vrko raktai. Laktaa vilä tho a äit uhtlliarvoia:, krit krit u q p Sitt laktaa VI. Kiroittaa yhtälö tuottull loitholl kuorma loitho a oho virra avulla, limioiaa virta a ratkaitaa toi at yhtälötä tuotttu loitho kuorma loitho fuktioa. ø ö è æ ± ± ± Û Û Ratkaitaa VI : I Þ Þ ø ö è æ ± ø ö è æ ø ö è æ ± ø ö è æ ± ± ± VI, VI fuktioa. : VI iirrä Ratkaitaa VI g
5 VI 5,5 3,5 3,5,5,5,,,3,,5,6,7,8,9 / / VI / / ^½,5,5978,,593,5,865,,83,5,57,3,959,35,37,,999,5,38,5,,55,97,6,5839,65,6939,7,857
6 ,75,8,3668,85,58989,9 3,678,95,736 Tutkitaa oho loithotatta oho läpi iirrty tho fuktioa pitkä oho yhtälöillä, ku oho kummaaki päää pitää äit imlliä a ohto olttaa häviöttömäki. Lak a tarkatl tapaukia, oia ohto iirtää a luoolli tho Vatau: kaki krtaa luoolli tho Vatau 95 Mvar c puolt luoollita thota Vatau 8 Mvar Lak lopuki loithota km pitkäll 3Fichoholl, oka päiä äit pitää arvoa kv. 3 Fichoho arvot: y, ms/km, z,9 W/km z,9ð9w / km 69W 6 y,ð9 S/km kv 69W 595MW,8 x km 3 km,9w, 6 km,8ra 6,9 km,9w / km 9W Y km,μs/km,ms / W km Vih: Käytä pitkä oho yhtälöitä häviöttömäll oholl a. Kiroita alku a loppupää loitho yhtälöt Im[ I *] a Im[ I *]. limioi loitho yhtälöitä virrat yhtälöi a avulla. Lak loppupää pätötho oho iirtämä tho lauk R[ I *] a lak avulla, oka iityy loitho yhtälöiä. Ku muitat, ttä luoolli tho /, voit ilmoittaa loppupää pätötho laukk luoolli tho fuktioa. Sioita pätö a loitho laukkiii äitti itiarvot, a lak ta. Muita, ttä ktuyhtälöi vakioill pät A B. I Û A BI I I Û I I Ratkaiu:
7 Ataa loppupää äitt kulmall arvo a alkupää äitt kulmall arvo. Laktaa I yhtälötä Saaaa: I A BI A B B Ð Ð Ð 9 Ð 9 9 Û [ ] 3 Laktaa loppupää ääitho S : S I * 9 9 [ ] [ ] 9 Loppupää loitho o ääitho imagiaarioa. Im Alkupää virta I o
8 [ ] Û B B B B A B B B A B A I I BI A 6 Alkupää ääitho S o [ ] [ ] * I S 7 Alkupää loitho o 9 9 Im Joho loithota voiaa laka alku a loppupää loitho rotuka:
9 [ ] 9 Ku a ovat yhtä uurt, voiaa loithota yhtälö kiroittaa Laktaa vilä oho läpi mvä pätötho yhtälö avulla a ioittaa myö tähä yhtälöö, aaaa R Nyt millä o oho iirtämä pätötho lauk luoolli tho fuktioa, ku oho molmmia päiä o imlliäit. voiaa laka yhtälö avulla: Sioittaa : lauk loithota yhtälöö a muittaa, ttä /, aaaa
10 Nyt millä o loithota yhtälö oho läpi iirtyvä pätötho a ohtovakioi fuktioa, ku oho kummaaki päää o imlliäit. a Voiaa laka loithota, ku oho läpi m luoolli tho. [ ] [ ] Johto kuluttaa tuottamaa loitho. Laktaa vilä alku a loppupää loithot. Kulma voiaa lvittää, ku titää, ttä oho läpi m luoolli tho a raktai o 9 W. Û» 6,9, Huomataa, ttä luoollilla tholla thokulma o yhtä uuri kui oho vaihkrroi. Laktaa oho alkupää loitho. 6,9 6,9 6,9 595 MW Laktaa oho loppupää loitho.
11 Laktaa oho loithota, ku oho läpi iirtyy kaki krtaa luoolli tho. [ ] [ ] Laktaa loithota 3Fichoholl. 6,9 [ ] [ 6,9 6,9 ] [,99,78 ] 595MW,78 39MW,773 95MVar Johto kuluttaa 95 Mvar loithoa. Laktaa kulma :» Û,5 9,56 69 Laktaa oho alkupää loitho. 595MW 6,9,5 97,59 MVar 6,9 Laktaa oho loppupää loitho.
12 97,59 MVar c Laktaa oho loithota, ku oho läpi iirtyy puolt luoollita thota ½. Laktaa loithota 3Fichoholl. 69 W, 595 MW, 6,9. [ ] 8,3MVar,376 39MW,78,99,78 595MW 6,9 6,9 6,9 Johto tuottaa 8,3 Mvar loithoa.
13 Jäittäätö: 8. Ooita, ttä raktiivia iirtoohoa loitho iirto aihuttaa pääoa äitt almata. Ilmoita äitt alma itiarvo oho loppupäää kuluttu pätö a loitho fuktioa. Vih: iirrä ooitipiirro ohi kuva mukaita tilatta, lak likimääräi äitt alma itiarvo a muita, ttä >> R. Vatau: v v» IR I, R»? R I,, Ratkaiu: Jäittalma: iirrtää vaihäitti a virra ooitipiirro, ota aaaa äitvktori likimääräiki pituuroki: IR I I R I I ~ Jäitt alma itiarvo v v» IR I Koka >> R, o älkimmäi trmi mrkitvämpi, a loitho iirto ii aihuttaa pääoa äitt almata.
14 Ku yllä olvaa yhtälöö ioittaa v v I v v I, aaaa: R v v v v» IR I a v» 3I R 3I R R
Ratkaisu: z TH = j0,2 pu. u TH. Thevenin jännite u TH on 1,0 pu ja sen impedanssi z = j0,2 pu.
L89 Jäittaiiliu. Jäykkä vrkko, oka äit u TH o, pu yöttää oho kautta kuormaa. Johto olttaa häviöttömäki a raktai o, pu. Joho päähä liittää vakioritaikuorma r. Piirrä i oho a äitläht Thvii kvivaltti. Aa
2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkeän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.
ELECE849 k 6. Lk 6 Hz:n vrko olvn 5 :n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. Vrtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän ohdon ltoimpdni. Lk
ELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
2. Laske tehtävän 1 mukaiselle 320 km pitkälle johdolle nimellisen p- sijaiskytkennän impedanssit ja admittanssit, sekä piirrä sijaiskytkennän kuva.
ELECE849 iirtoohdot, lkuhroituki. Lk 6 Hz:n vrko olvn 5 k:n ohdon ltoimpdni khdll tvll: kä olttmll ohto hävittmäki ttä ottmll hävit huomioon. rtil impdnin ro. Lk luonnollinn tho P kättämällä hävittmän
Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on
ELEC-E849. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0, ohm/km ( ohmia/johto). Kunkin johdon virta on 000. Jätä rinnakkaiskapasitanssit
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
. väliko 27.0.2008. Saat vatata vain nljään thtävään!. ak jännit. = 4 Ω, 2 = 4 Ω, 3 = 4 Ω, = 0 V, = 3 A, = 2 A. 2 + I 3 2. ak jännit, kun kytkin uljtaan htkllä. = 0 V = 2 = 0 Ω, = 0,2 F, 0 = 2 V. 2 i 2
ELEC-E8419 tentti ratkaisut. johto. z 0 = j0,5
ELECE849 tntti 5.4.6 rtkiut. Trktlln kuvn ukit vrkko. z z, z, z Y_G, B C G z z z, ohto z z, z,5 ohto z z, z,5 E z N, z z z, F z z, z, G z Y_G, Koh F thtuu vihinn ulku vih. Vikini on noll, vrkon ännit vikkoh
Liite VATT Analyysin lukuun 5
Liit VATT Aalyysi lukuu 5 Tässä liittssä sittää VATT Aalyysissa käytty lasktakhiko yksityiskohdat Liitt lopussa raportoidaa lasklmissa käyttyt ikäprofiilit a paramtriarvot Lasktakhiko raktamis sikuva o
Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.
S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn
= = 1600W = Z = 1600W. ELEC-E8419 Välikoe ratkaisut
ELEE849 Väliko..5 rtkiut. Trktlln kuvn mukit vrkko, ok olttn häviöttömäki. Kikki ohdot ovt Finchohto, oidn rktni pituutt kohti on,33 Ohm/ ukptni pituutt kohti 3,58 ms/. Johtopituudt on nnttu kuv. Suhtllirvon
Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä
Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän
Talousmatematiikan perusteet, ORMS1030
Vaaan yliopito, kvät 06 Taloumatmatiikan prutt, ORMS030 4. arjoitu, viikko 6 (8...06) Malliratkaiut. Erään kappaltavaratuottn varaton ykikköylläpitokutannukt ovat 4,00 kappaltta ja vuotta koti. Tilaukutannukt
S-55.1220 Piirianalyysi 2 Tentti 4.1.2007
S-55.2 Piirianalyyi 2 Tentti 4..07. Piiriä yöttää kaki lähdettä, joilla on eri taajuudet. Kuinka uuri on lämmöki muuttuva teho P? Piiri on jatkuvuutilaa. J 2 00 Ω 5µH 0 pf 0/0 V J 2 00/0 ma f MHz f 2 2MHz.
RATKAISUT: 17. Tasavirtapiirit
Phyica 9. paino 1(6) ATKAST 17. Taavirtapiirit ATKAST: 17. Taavirtapiirit 17.1 a) Napajännite on laitteen navoita mitattu jännite. b) Lähdejännite on kuormittamattoman pariton napajännite. c) Jännitehäviö
S-55.1220 Piirianalyysi 2 Tentti 1.9.2011
S-55.2 Piirianalyyi 2 Tentti.9.. e(t) L j(t) Lake vatukea lämmöki muuttuva teho P. = Ω L = mh = 2mF ω = 0 3 rad/ e = ê in(ωt) j = ĵ in(2ωt) ĵ = 0 A ê = 2 2 V. 2. u(t) k Kuvan mukainen taajännitelähteen
Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q
EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,
Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)
Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään
Koska ovat negatiiviset. Keskihajontoja ei pystytä laskemaan mutta pätee ¾.
24.11.2006 1. Oletetaan, että kaksiulotteinen satunnaismuuttuja µ noudattaa kaksiulotteista normaalijakaumaa. Oletetaan lisäksi, että satunnaismuuttujan regressiofunktio satunnaismuuttujan suhteen on ݵ
763101P FYSIIKAN MATEMATIIKKAA Kertaustehtäviä 1. välikokeeseen, sl 2008
76P FYSIIKAN MATEMATIIKKAA Krtausthtäviä. välikoks, sl 8 Näitä laskuja i laskta laskupäivissä ikä äistä saa laskuharjoituspistitä. Laskut o tarkoitttu laskttaviksi alkutuutoroitiryhmissä, itsks, kavriporukalla
LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ
LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan
4.3 Liikemäärän säilyminen
Tämän kappaleen aihe liikemäärän äilyminen törmäykiä. Törmäy on uora ja kekeinen, jo törmäävät kappaleet liikkuvat maakekipiteitten kautta kulkevaa uoraa pitkin ja jo törmäykohta on tällä amalla uoralla.
( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
YDINSPEKTROMETRIA TENTTI mallivastaukset ja arvostelu max 30 p, pisterajat 15p 1, 18p 2, 21p 3, 24p 4, 27p - 5
5573-5 YDISPEKTROMETRIA TETTI 9.5.05 mallivatauket ja arvotelu max 30 p, piterajat 5p, 8p, p 3, 4p 4, 7p - 5. Mittautehokkuu ja iihen vaikuttavat aiat/ilmiöt gammapektrometriaa (yht. 6 p) Vatau: ilmaiimea
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26
ELEC- E8419 välikoe b) Yhtiö A ilmoittaa että sillä on liian korkea jännite solmussa 1.
ELE- E89 väliko 8..5 rkiu. ll olvn kuvn muki vrko on onglmi. Tiln ov kuvillii ikä kiki vihohdoi ol kyä mnlinn vrkko. Vli opivi oimnpiiä, oill onglm dn poiu miä hdään minn nn rkiulli prulu. Vikk ohonkin
JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN
Asettamispäätös ÊÓñîïëëñððòðïòððòðïñîðïê Ö«µ ÝÌó± ± ïòíòîðïé Ö«µ ²»² JULKISEN HALLINNON DIGITAALISEN TURVALLISUUDEN JOHTORYHMÄN SIHTEERISTÖN (VAHTI-sihteeristö) JA ASIANTUNTIJAJAOSTON ASETTAMINEN Ê ±ª
ELEC-E8419 syksyllä 2016 Sähkönsiirtojärjestelmät 1
ELEC-E8419 syksyllä 016 Sähkönsiirtojärjestelmät 1 Jännitteensäätö Periodit I II, 5 opintopistettä Liisa Haarla 10.10.016 1 Luennon ydinasiat Jännitteensäädön ja loistehon välinen yhteys Jännitteensäädössä
gallup gallup potentiaali ja voima potentiaali ja voima potentiaali ja voima potentiaali ja voima
aup Kuinka pajon käytät kurikirjaa (tai jotain muuta oppikirjaa)? a) Tututun aiheeeen ennen uentoja b) Luen kirjaa uentojen jäkeen c) Luen oppikirjaa ähinnä akareita tehdeä d) n koke oppikirjaan aup Kappae
Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen
Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa
Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,
Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie
a) Määritä signaalin x[n] varianssi (keskimääräinen teho) σ x c) Määritä signaalikvantisointikohinasuhde SQNR, kun tiedetään, että
TL, DSK-lgoritmit S rjoitus. Trkstll kosiisigli [] cosπt s. Määritä sigli [] vrissi kskimääräi to. b Määritä sigli [] jot c Määritä siglikvtisoitikoisud SQNR, ku tidtää, ttä.79. b SQNR log Kvss b o kvtisoij
215.3 MW 0.0 MVR pu MW 0.0 MVR
Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi
Viikkotehtävät IV, ratkaisut
Viikkotehtävät IV, ratkaiut. 7,40 V (pariton napajännite) I 7 ma (lampun A ähkövirta rinnankytkennää) I 5 ma (lampun B ähkövirta rinnankytkennää) a) eitani on, joten lamppujen reitanit voidaan lakea tehtävää
S Piirianalyysi 2 2. välikoe
S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan
Y56 Laskuharjoitukset 3 palautus ma klo 16 mennessä
1 Y6 Lakuharjoituket 3 alautu ma 3.. klo 16 menneä Harjoitu 1. Lue enin Vihmo, Jouni (006) Alkoholijuomien hintajoutot uomea vuoina 199 00, Yhteikuntaolitiikka 71, 006/1 ivut 9 ja vataa itten kyymykiin.
ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:
10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)
K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A
K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA JA LKTRONIIKKA 2. väliko 15.12.2008. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Lask jännit. = 10 Ω, = 40 Ω, = 3 kω, = 9 kω, = 1 kω, = 1 V. Puskurivahvistin rottaa kuorman
12. laskuharjoituskierros, vko 16, ratkaisut
1. lakuharjoitukierro, vko 16, ratkaiut D1. Muuttujien x ja Y havaitut arvot ovat: x 1 3 4 6 8 9 11 14 Y 1 4 4 5 7 8 9 a) Määrää regreiomallin Y i = α +βx i +ǫ i regreiokertoimien PNS-etimaatit ja piirrä
Physica 7 Opettajan OPAS 1(29)
Phyica 7 Opttajan OPAS 1(9) 1. luku 06. Magnttivuontihyttä kuvaava vktori on magnttiknttää kuvaavan knttäviivan tangntin uuntainn. Vktorin pituu on uurin auvamagntin napojn lähiyydä ja pinn täiyydn kavaa.
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 5
5384A RADIOTEKNIIKAN PERUSTEET Haroitu 5. Häviötön 5 Ω:n aaltoohto on päätetty tuntemattomaan impedaniin. Aaltoohdolla olevaki ännitteen eiovan aallon uhteeki aadaan 3 a enimmäinen minimi havaitaan 5 cm:n
Nelisolmuinen levyelementti
Lv hm 6..3 Nliolminn lvlmntti arkatllaan kvan nliolmita lvlmnttiä. q 6 q 8 η 3 q 5 ( 3, 3 q 7 (, q (, v P q ξ (, q q 3 Pitn P koordinaatit voidaan laa mokoordinaattin ξ ja η avlla, jotka ovat normratt
SÄHKÖMOTORINEN VOIMA. 1. Työn tavoitteet. 2. Teoria. e =, (1)
Oulu yliopisto Fysiika optuslaboratorio Fysiika laboratoriotyöt 2 1 SÄHKÖMOTONEN OM 1. Työ tavoittt Tässä työssä tutustut yht tavallisimmista sähköisistä jäitlähtistä; paristoo. Työ simmäisssä osassa mittaat
t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoski, professori. Lappeenrannan teknillinen yliopisto
KUINKA PALJON VAROISTA OSAKKEISIIN? Mika Vaihekoki, proeori Lappeenrannan teknillinen yliopito Näin uuden vuoden alkaea ueat meitä miettivät ijoitualkkuna kootumuta. Yki kekeiitä kyymykitä on päätö eri
p q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. x 1 y 1 z 1 x 2 y 2 z 2
º ÅÓÒ ÙÐÓØØ Ø Ö ÒØ Ð Ð ÒØ º½ Â Ø ÙÚÙÙ Ó ØØ Ö Ú Ø Ø Ù Ò ÑÙÙØØÙ Ò ÙÒ Ø Ó Ò Ö ÒØ Ð Ð ÒØ ÐÑÔ Ø Ð ÓÒ Ò Ô Ò ÙÒ Ø Ó T(x, y, z.t) ÄÑÔ Ø Ð Ö ÒØØ ÐÑÓ ØØ Ñ Ò ÙÙÒØ Ò ÐÑÔ Ø Ð Ú ÚÓ Ñ ÑÑ Ò Ù Ò Ð ÐÑÔ Ø Ð Ö ÒØØ ½½ ÃÓÓÖ
Mat-2.090 Sovellettu todennäköisyyslasku A
Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie
C B A. Kolmessa ensimmäisessä laskussa sovelletaan Newtonin 2. ja 3. lakia.
Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on tiitaina 23.5.2017. Ektra-tehtävät vataavat kolmea tehtävää, kun kurin lopua laketaan lakuharjoitupiteitä.
METSÄNTUTKIMUSLAITOS. tutkimusosasto. Metsäteknologian WÄRTSILA. Kenttäkoe. Tutkimusselostus
METSÄNTUTKIMUSLAITOS Metäteknologian Uniinkatu WÄRTSILA 40 A tutkimuoato Helinki TELESKOOPPIKUORMAIN AUTOKUORMAUKSESSA Kenttäkoe Tutkimuelotu Juhani Helinki Lukkari 97 7 Ainto Tutkimuken kenttäkoe Ruokolahdella.
TL5362DSK-algoritmit (J. Laitinen) TTE2SN4X/4Z, TTE2SN5X/5Z Välikoe 1, ratkaisut
TL536DSK-algoritmit (J. Laitie) 4. - 5..4 TTESN4X/4Z, TTESN5X/5Z Välikoe, ratkaiut a) Maiite väitää kaki digitaalite FIR-uotimie etua verrattua IIR-uotimii. b) Mite Reme-meetelmällä uuitellu FIR-uotime
Jakso 4: Dynamiikan perusteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautus- tai näyttöpäivä on maanantaina
Jako 4: Dynamiikan peruteet jatkuu, työ ja energia Näiden tehtävien viimeinen palautu- tai näyttöpäivä on maanantaina 8.8.2016. Kolmea enimmäieä lakua ovelletaan Newtonin 2. ja 3. lakia. T 4.1 (pakollinen):
Kertausosa. 2. Kuvaan merkityt kulmat ovat samankohtaisia kulmia. Koska suorat s ja t ovat yhdensuuntaisia, kulmat ovat yhtä suuria.
5. Veitoken tilavuu on V,00 m 1,00 m,00 m 6,00 m. Pienoimallin tilavuu on 1 V malli 6,00 m 0,06m. 100 Mittakaava k aadaan tälötä. 0,06 1 k 6,00 100 1 k 0,1544... 100 Mitat ovat. 1,00m 0,408...m 100 0,41
ääexgäl*ääääe ääg I ä*fre3 I äee iäa ää-äälgü il leääö ää; i ääs äei:ä ä+ i* äfä g u ;; + EF'Hi: 2 ä ; s i r E:;g 8ää-i iää: Ffärg',
!P9) (?trtrr('l rl 9< l ( r,r^iüfl.l ltrt ;ä r!! (r, t 6 t, rti 'le )( ö O RRZöF;ä x öö 1 74ö 9 jii\rtr lrl l jipäp. ldrrr_.^!. 9r. i P.^vä P. t!! v 7 ' '.ä e.q i >6l( t (p C ] ä il; ', +t n l ( e iei
MAOL-Pisteitysohjeet Fysiikka kevät 2004
MAOL-Piteityohjeet Fyiikka kevät 004 Tyypilliten virheiden aiheuttaia piteenetykiä (6 piteen kaalaa): - pieni lakuvirhe -1/3 p - lakuvirhe, epäielekä tulo, vähintään - - vataukea yki erkitevä nuero liikaa
ELEC-E8419 Sähkönsiirtojärjestelmät 1 Luento: Jännitteen säätö. Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla
ELEC-E8419 Sähkönsiirtojärjestelmät 1 Luento: Jännitteen säätö Kurssi syksyllä 015 Periodit I-II, 5 opintopistettä Liisa Haarla 1 Luennon ydinasiat Jännitteensäädön ja loistehon välinen yhteys Jännitteensäädössä
Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,
TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko
RATKAISUT: 8. Momentti ja tasapaino
Phyica 9. paino (7) : 8. Voian vari r on voian vaikutuuoran etäiyy pyöriiakelita. Pyöriiakeli on todellinen tai kuviteltu akeli, jonka ypäri kappale pyörii. Voian oentti M kuvaa voian vääntövaikututa tietyn
Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:
Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,
20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:
SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot
S if b then S else S S s. (b) Muodosta (a)-kohdan kieliopin kanssa ekvivalentti, so. saman kielen tuottava yksiselitteinen.
T-79.148 yky 2003 Tietojenkäittelyteorian peruteet Harjoitu 7 Demontraatiotehtävien ratkaiut 4. Tehtävä: Ooita, että yhteydettömien kielten luokka on uljettu yhdite-, katenaatioja ulkeumaoperaatioiden
1. Kaikki kaatuu, sortuu August Forsman (Koskimies)
olo q» date reliioso olo 7 K (2003) KE2a7 1. Kaikki kaatuu, sortuu uust Forsma (Koskimies) olo 14 olo 21 3 3 3 3 3 3 3 3 Ÿ ~~~~~~~~~~~ π K (2003) KE2a7 uhlakataatti (kuoro) - 2 - Kuula: - 3 - uhlakataatti
KJR-C2001 KIINTEÄN AINEEN MEKANIIKAN PERUSTEET, KEVÄT 2018
Vastaukset palautetaan htenä PDF-tiedostona Courses:iin 1.3. klo 1 mennessä. ahdolliset asia- ja laskuvirheet ja voi ilmoittaa osoitteeseen serge.skorin@aalto.fi. askuharjoitus 1. Selitä seuraavat käsitteet:
d+tv 1 S l x 2 x 1 x 3 MEI Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen
MEI-55100 Mallintamisen perusteet Harjoitus 6, kevät 2015 Tuomas Kovanen Tehtävä 1: Tarkastellaan luentojen esimerkkiä, jossa johepalkki liikkuu kahen johelevyn välissä homogeenisessä magneettikentässä,
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti
MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.
Scalar diffraction and vector diffraction using Fourier analysis. Yasuhiro Takaki. Tokyo University of Agriculture & Technology. Faculty of Technology
Scalar diffraction and vector diffraction using Fourier analysis Yasuhiro Takaki Faculty of Technology Maxwell RCWA : F F I G G ; Maxwell! " # $ % & ' ( ) * +, -. / 0. 1 ' 2 3 $ 4 5 6 7 8 9, : ; < = >
Pakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
"h 'ffi: ,t^-? ùf 'J. x*r:l-1. ri ri L2-14. a)5-x:8-7x b) 3(2x+ l) :6x+ 1 c) +* +5 * I : 0. Talousmatematiikan perusteet, onus to o.
1 Vaasan yopso, kev a 0 7 Taousmaemakan perusee, onus o o R1 R R3 R ma 1-1 ma 1-1 r 08-10 r -1 vkko 3 F9 F53 F5 F53 1.-0..01 R5 R o R7 pe R8 pe - r-1 08-10 10-1 F53 F10 F5 F9 1. Sevennä seuraava ausekkee.
S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH4. Bohrin vetyatomimallin mukaan elektronin kokonaisenergia tilalla n on. n n.
S-1146 FYSIIKKA IV (S), Koulutuskskus Dipoli, Kvät 00, LH4 LH4-1* Vdy spkti s Pasch-saja viivat sijaitsvat ifapua-alulla N sytyvät tasitioissa, joissa lktoi siityy kokaalta viitystilalta i tilall f = i
CST-elementti hum
CS-lmntti hm 4..3 CS-lmntti arkatllaan kan kolmiolmita kolmiolmnttiä, jota kttaan akionmän kolmiolmntiki (Contant Strain riangl). q 6 3 q 5 ( 3, 3 ) (, ) q 4 q 3 P q (, ) q O Pitn P koordinaatit oidaan
Intensiteettitaso ja Doplerin ilmiö
Inteniteettitao ja Doplerin ilmiö Tehtävä Erkki työkentelee airaalaa. Sairaalalta 6,0 km päää on tapahtunut tieliikenneonnettomuu ja onnettomuupaikalta lähteneen ambulanin ireenin ääni kuuluu Erkille 60,0
SUUNNITELMA MUHOKSEN KUNNAN LIIKUNTAPAIKKOJEN PARANTAMISEKSI 2013
SUUNNITELM MUHOKSEN KUNNN LIIKUNTPIKKOJEN PRNTMISEKSI 2013 Tämän uunnitlman tarkoitukna on kartoittaa Muhokn kunnan liikuntapaikkojn kunto ja ittää parannukinoja. Liäki ill ottaan muutamia uuia lajja ja
ELEC-E8419 Sähkönsiirtojärjestelmät Siirtojohdot. Kurssi syksyllä 2015 Periodit I-II, 5 opintopistettä Liisa Haarla
ELEC-E849 Sähköniirtojärjetelmät Siirtojohdot Kuri ykyllä 5 Periodit -, 5 opintopitettä Liia Haarla Luennon ydinaiat Mihin ähköjohtoja tarvitaan? Johtojen tehtävät ähköniirroa, Siirtokyky, luonnollinen
Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
À Ö Ö Ð Ù Ø ÅÖ Ø ÐÑ ÙÒ Ø Ó : Æ Æ Ñ (Ò) = O(ÐÓ Ò) ÓÒ Ø Ð ÓÒ ØÖÙÓ ØÙÚ Ó ÐÐ Ò Ò ÙÒ Ø Ó Ó ÙÚ Ñ Ö ÓÒÓÒ ½ Ò (Ò) Ò ÒÖ ØÝ ÐÐ ÓÒ Ð ØØ Ú Ø Ð O( (Ò))º Ä Ù Å Ø Ø
Ì ÔÙÑ ØØÓÑÙÙ Ì Ó Ø ÐÐÒ ÓÒ ÐÑ ÓØ ÓÚ Ø Ô Ö ØØ Ö Ø Ú ÑÙØØ Ó Ò Ö Ø Ù Ú Ø Ò Ò Ô Ð ÓÒ Ø Ø Ð ØØ Ö Ø Ù ÓÐ ÝØÒÒ ÐÚÓÐÐ Ò Òº Í ÑÑ Ø ÓÐ ØØ Ú Ø ØØ ÆÈ¹ØÝ ÐÐ Ø ÔÖÓ Ð Ñ Ø ÓÚ Ø Ø ÔÙÑ ØØÓÑ ÒØÖ Ø Ð µ ÑÙØØ ØØ ÓÐ ØÓ Ø ØØÙº
MP069 alueen sähköteknisten reunaehtojen laskeminen.
M069 alueen ähkötekniten reunaehtojen lakeinen. Kekiteho tälle alueelle aatiin kun otettiin Tornion irkkiötä ataaa oakotitalo alue ja niiden talojen kulututen peruteella äärättiin kullekin tontille kulutupite
SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa
SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri
S-55.1220 Piirianalyysi 2 Tentti 27.10.2011
S-55.220 Piirianalyyi 2 Tentti 27.0. j(t) u(t) -piiriin vaikuttaa lähdevirta j(t) = A ĵ in(ωt)]. Lake piirin jännite u(t) ajan funktiona ja vatukea kuluva teho. Piiri on jatkuvuutilaa. ĵ = 0,5A = 2µF ω
HY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
7.4 PERUSPISTEIDEN SIJAINTI
67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli
Jakso 15. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt
Jakso 15. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt Tässä jaksossa käsitllään vaihtovirtapiirjä. Mukana on skä sarjapiirjä ttä linaaripiirjä. Sarjapiirilaskut ovat hkä hlpompia, sillä virta
BH60A0900 Ympäristömittaukset
BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie
Kuvan piirto. Pelaaja. Maailman päivitys. Syötteen käsittely
ØÙغ Ø Ò ÐÐ Ò Ò ÝÐ ÓÔ ØÓ Ì ÑÔ Ö Ò È Ð Ó ÐÑÓ ÒØ È Ð Ó ÐÑ Ò Ö ÒÒ ÒØØ ÈÙ ÒØØ ºÔÙ Ç ÐÑ ØÓØ Ò Ò Ø ÐРؽ ؾ Ø È Ð Ó ÐÑ Ò Ô ÖÙ Ö ÒÒ Ì ØÓ ÓÒ Ô Ð Ò ÝØ Ñ Ò ÓÒ Ñ ÐÐ Ó Ø Ò ÙÚ ØØ ÐÐ Ø Ñ ÐÑ Ø ÚÓ ÓÐÐ Ú Ò Ý Ò ÖØ Ò Ò Ð
Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o
Forssan kaupunki Osavuosikatsaus 2017-08 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S E U T U P A L V E L U T T I L I
YHDEN RAON DIFFRAKTIO. Laskuharjoitustehtävä harjoituksessa 11.
YHDEN RAON DIFFRAKTIO Laskuharjoitustehtävä harjoituksessa 11. Vanha tenttitehtävä Kapean raon Fraunhoferin diffraktiokuvion irradianssijakauma saadaan lausekkeesta æsin b ö I = I0 ç b è ø, missä b = 1
Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ : Æ Ê ÙÒ Ø Óº Ì Ð Ú Ø ÚÙÙ ÐÙÓ Ø ËÈ ( (Ò)) ÆËÈ ( (Ò)) ÑÖ Ø ÐÐÒ ÙÖ Ú Ø ËÈ ( (Ò)) ÓÒ Ò Ò ÐØ Ò Ä ÓÙ Ó ÓØ ÚÓ Ò ØÙÒÒ Ø Ø
Ì Ð Ú Ø ÚÙÙ Á ÅÖ Ø ÐÑ ÇÐ ÓÓÒ Å Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó ÔÝ ØÝÝ ÐÐ Ý ØØ Ðк Å Ò Ø Ð Ú Ø ÚÙÙ ÓÒ ÙÒ Ø Ó : Æ Æ Ñ (Ò) ÓÒ Å Ò Ð Ñ Ò ÑÙ Ø Ô Ó Ò Ñ Ñ ÐÙ ÙÑÖ ÙÒ Ø Ö Ø ÐÐ Ò Ò Ò Ô ØÙ Ý ØØ غ ÂÓ Å Ò Ø Ð Ú Ø ÑÙ ÓÒ
J fihu. oitus, :?'! Matemaattinen Analyysi. D:at-btp+ctp', R2 Ti. tç16. dpldt : a(q" - q) + þ(p" - p) (1) pt(t) ' viikko 47.
Vsn yps, syksy 207 / ORMS00 Memnen Anyys J fhu.us, vkk 47 R T R2 T 2-4 6 F426 F426 s.2. s.2.. Os, eä fun fn /- OTæ Tyn s kehyskeskuksen n # - u-, _D2 _f"- 3'- * - fø- 5 b Men mn emä summs pää ske, eä sdn
S SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.3 SÄHKÖTKNKKA.. Kimmo Silvonn Tntti: thtävät,3,5,7,9. väliko: thtävät,,3,4,5. väliko: thtävät 6,7,8,9, Oltko muistanut vastata palautkyslyyn Voit täyttää lomakkn nyt.. Lask virta. = = 3 =Ω, J =3A,
SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi
SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto
ELEC-E8419 tentti joulukuu 2016
ELECE849 tntti oulukuu 6 rtkisut. Erilisiss päsymmtrisissä vioiss komponnttivrkot kytktään yhtn ri tvoin. Ehot komponnttivrkkon kytknnöill päsymmtrisissä vioiss ovt survt: vihinn msulku: vihinn moikosulku:
ARK 01-01. Asiakirjaluettelo. Jyrki Ala-Mäkelä, per. Koy:n lukuun Pinotie 33470 YLÖJÄRVI ENECON OY. Laksontie 11 60420 SEINÄJOKI
ENECON OY Lksoti SEINÄJOKI 9 timo.mtil@co.fi Uudisrkus, Jyrki Al-Mäklä, pr. Koy lukuu, Pioti, Ylöjärvi Piirustusluttlo.. Vstuuhkilö Timo Mtil, RI Asikirj Sisältö Mittkv Luttlot - Asikirjluttlo.. Pääpiirustukst
Sauvaelementti hum
Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu
1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.
a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa
ÈÖÓ Ð Ø Ø ÌÙÖ Ò Ò ÓÒ Ø ÅÖ Ø ÐÑ ÈÖÓ Ð Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Å ÓÒ ÖÒÐ Ò Ò Ô Ø ÖÑ Ò Ø Ò Ò ÌÙÖ Ò Ò ÓÒ Ó Ô Ø ÖÑ Ò Ø Ø ÐØ ÙØ ÙØ Ò ÓÐ ÓÒ ØØÓ ¹ Ð º ÂÓ Ò Å Ò Ö Ò Ý
ÈÖÓ Ð Ø Ø Ð ÓÖ ØÑ Ø Î Ñ Ø ÐÐÒ ÔÖÓ Ð Ø Ð ÓÖ ØÑ º ÌÐÐ Ð ÓÖ ØÑ ÖÚ Ø Ò Ø Ø ØÒ ÓÐ Ó ØÙÐÓ Ò ÑÙ Ò Ö Ù ÙØ Òº ÖÓÒ Ô Ø ÖÑ Ò Ñ Ò ÓÒ ØØ ÒÝØ Ø Ö Ø ÐÐ ÖÓ Ú Ò Ð ÒØ ØÓ Ø Ø Ò ÙÙ ÐÐ ÖÚ Ù ÐÐ Ø ÖÚ ØØ º Ä ÓÒ Ö ØØ Ø ØÓ ÒÒ ÝÝ
WESTENERGY OY AB MUSTASAAREN JÄTTEENPOLTTOLAITOKSEN KATTILATUHKA JA SAVUKAASUNPUHDISTUSJÄTE
29/15/KRi 4.2.2015 1(9) WESTENERGY OY AB MUSTASAAREN JÄTTEENPOLTTOLAITOKSEN KATTILATUHKA JA SAVUKAASUNPUHDISTUSJÄTE Vuosiraportti 2014 16/15/KRi 21.1.2015 2(9) SISÄLLYS 1 Johdanto... 3 2 Näytteenotto...
Summien arviointi integraalien avulla
Solmu /25 Summi arvioiti itgraali avulla A-Maria Ervall-Hytö Matmatiika ja tilastotit laitos, Hlsigi yliopisto Johdato Molaisia summia voi arvioida itgraali avulla. Itgraalilla saavutttava hyöty o s, ttä
Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet
Mtlmä sgaal/koha-suht paratamsks Vahvstt pädaalsuudt Atur kohasovtus vahvstm Suodatus Chopprvahvstmt Lock- vahvst (Vahhrkkävahvst, PSD) Kskarvostus (Auto- ja rstkorrlaato) Ptr Kärhä 0/0/009 Luto 4: Mtlmä
Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten