Markov-kustannusmallit ja kulkuajat
|
|
- Ismo Lattu
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua johonkin tilaan ennen käymistä jossain valitussa tilajoukossa. Harjoituksiin kannattaa tuoda mukaan kannettava tietokone tai laskin, jolla voi laskea tehtävissä esiintyvien laskujen lukuarvoja. Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 2B1 Tarkastellaan tilajoukon S = 1, 2,..., 6} Markov-ketjua, jonka siirtymämatriisi on P = Piirrä ketjun siirtymäkaavio ja vastaa seuraaviin kysymyksiin. Ratkaisu / 8
2 (a) Millä todennäköisyydellä tilasta 1 käynnistyvä ketju lopulta päätyy tilaan 5? Entäpä tilaan 6? Ratkaisu. (Kytölä: luentomuistiinpanot 2016, luku Markov-kustannusmallit ja -kulkuajat. Vaihtoehtoisesti Leskelä, luku 4.5.) Tilat 5 ja 6 ovat absorboivia tiloja eli nieluja (engl. absorbing state tai sink). Näin ollen niihin osuminen ja päätyminen ovat sama asia. Muistetaan luentomonisteesta, että joukon A osumatodennäköisyys on yksi joukossa A ja toteuttaa diskreetin keskiarvoperiaatteen muualla. Formaalisti: kootaan tilan 5 osumatodennäköisyydet vektoriin, ja merkitään sitä (f(x)) x S. Nyt siis f(5) = 1 f(x) = y S P (x, y)f(y), x 5. (1) Yllä jäävät muuttujiksi f(x), x 5. Näin saatu yhtälöryhmä on matriisein kirjoitettuna f(1) I f(2) 5 f(3) f(4) = f(6) 0 Huomaa y.o. matriisien sukulaisuus siirtymämatriisiin: vasemmanpuolimmainen matriisi on saatu poistamalla siirtymämatriisista 5. rivi ja sarake, oikealla vektorissa taas ovat siirtymätodennäköisyydet tilaan 5. Yllä olevaa yhtälöryhmää ei kuitenkaan voida suoraan ratkaista kääntämällä matriisia; tilaa 6 vastaava alin rivi on muotoa 0 = 0. Koska tila 6 on nielu, voidaan kuitenkin päätellä, että f(6) = 0. Näin saadaan uusi yhtälöryhmä f(1) I f(2) 4 f(3) = f(4) Tässä kerroinmatriisi on kääntyvä, ja saadaan [ f(1), f(2), f(3), f(4) ] = [ , , , 1 ]. Lopulta siis tn päätyä tilaan 5 tilasta 1 on f(1) = Koska Markov-ketju päätyy todennäköisyydellä 1 joko tilaan 5 tai 6, on tn päätyä tilaan 6 tilasta 1 1 f(1) = / 8
3 Lisäys. (Y.o. ratkaisutavan yleispätevyys.) Markov-ketjun todennäköisyys osua epätyhjään tilajoukkoon A alkutilasta x toteuttaa yhtälöryhmän f(x) = 1, x A f(x) = y S P (x, y)f(y), muutoin (2) Y.o. tehtävässä vastaava yhtälöryhmä osoittautui singulaariseksi, ja osumatodennäköisyyksien ratkaiseminen vaati pientä järkeilyä. Itse asiassa yleisemmin pätee, että joko yhtälöryhmästä (2) seuraa, että osumatodennäköisyys f(x) = 1 kaikilla tiloilla x, tai sillä on äärettömän monta ratkaisua. Leskelän luentomonisteessa (Lause 4.10) muotoiltiin osumatodennäköisyyden olevan yhtälöryhmän (2) pienin ei-negatiivinen ratkaisu. Kytölän muistiinpanoissa taas puhutaan osumatodennäköisyyksien ratkeamisesta yleensä järkeilemällä. Tarjottakoon tässä vielä kolmas muotoilu: Äärellistilaisen Markov-ketjun todennäköisyys osua epätyhjään tilajoukkoon A on yhtälöryhmän f(x) = 1, x A f(x) = 0, x A f(x) = y S P (x, y)f(y), muutoin yksikäsitteinen ratkaisu. Tämä muotoilu siis takaa, että järkeily toimii ja antaa järkeilyn usein muodossa, joka soveltuu osumatodennäköisyyksien ratkaisemiseen tietokoneella. (b) Mikä on todennäköisyys, että tilasta 1 käynnistyvä ketju ei koskaan käy tilassa 3? Ratkaisu. Lasketaan ensin todennäköisyys g käydä tilassa 3. Vektori (g(x)) x S toteuttaa siis osumatodennäköisyyksien yhtälöryhmän g(3) = 1 g(x) = y S P (x, y)g(y), x 3. eli matriisein g(1) I g(2) 5 g(4) g(5) = g(6) 0 Matriisi ei taaskaan ole kääntyvä. Päätellään g:n arvo nieluissa: g(5) = g(6) = 0. Nyt saadaan ryhmä g(1) I 5 g(2) = g(4) 0 3 / 8
4 Tämä ryhmä on kääntyvä (kuten y.o. huomautuksesta tiedetään), ja saadaan g = [0.3056, , 1, 0, 0, 0]. Todennäköisyys olla käymättä tilassa 3 kun on aloitettu tilasta 1 on siis = (c) Kauanko odotusarvoisesti kestää, ennen kuin tilasta 1 käynnistyvä ketju osuu tilajoukkoon 5, 6}? Ratkaisu. (Kytölä: luentomuistiinpanot 2016, luku Markov-kustannusmallit ja -kulkuajat. Vaihtoehtoisesti Leskelä, luku 4.4.) Luentomonisteesta tiedetään, että odotusarvoinen kulkuaika f(x) solmusta x joukkoon 5, 6} toteuttaa yhtälöryhmän f(x) = 0, x 5, 6} f(x) = 1 + y S P (x, y)f(y), muilla x. Jälkimmäiset yhtälöt voidaan kirjoittaa matriisein: olkoon P matriisi P, josta on poistettu 5. ja 6. rivi ja sarake, eli P = (3) Nyt siis (I 4 P )[f(1), f(2), f(3), f(4)] T = [1, 1, 1, 1] T. Kerroinmatriisi yllä on kääntyvä. Kääntämällä matriisi saadaan erityisesti kysytty tn f(1): f(1) = ((I 4 P ) ) 1 [1, 1, 1, 1] T = Lisäys. Leskelän ja Kytölän muistiinpanoissa on pieniä eroja myös kulkuaikojen kohdalla. Tarjotaan tässäkin (toivottavasti) laskennallisempi mutta eksakti vaihtoehto: odotusarvoiset kulkuajat epätyhjään tilajoukkoon A ovat yhtälöryhmän f(x) = 0, x A f(x) = 1 + y S P (x, y)f(y), muutoin (4) yksikäsitteinen ratkaisu joukossa (R + }) n. Erityisesti jos ryhmä ratkeaa reaalisesti, on ratkaisu odotusarvoinen kulkuaika. 1 4 / 8
5 Kotitehtävät (palautettava kirjallisina ti klo 10:15 mennessä) 2B2 Analysoi Katiskakauppa.com Oyj:n liiketoiminnan odotettua voittoa käyttäen luentomonisteen (esimerkit 2.2. ja 4.2) stokastista kustannusmallia. (a) Laske varaston kokoa kuvaavan ketjun tasapainojakauma. Ratkaisu. Tämän Markov-ketjun siirtymämatriisi on siis P = , jossa ketjun tilat ovat järjestyksessä 2, 3, 4, 5, ja kaavio Tasapainoyhtälöt: πp = π π[1, 1, 1, 1] T = 1. Kirjoitetaan π = [π 2, π 3, π 4, π 5 ] ja avataan yhtälöryhmä: π π π π 5 = π π π π 5 = π π π 5 = π π π π π 5 = π 5 π 2 + π 3 + π 4 + π 5 = 1. 5 / 8
6 Kolmas yhtälö antaa π 4 = π π 5 mikä voidaan sijoittaa toiseen yhtälöön: jolloin ensimmäinen yhtälö antaa π 3 = ( )π 5/ π 5 π 2 = (1494π π π 5 ) π 5. Neljättä yhtälöä ei ole käytetty, mutta on helppoa todeta y.o. arvojen toteuttavan sen (numeerista virhettä vaille). Viidennestä yhtälöstä saadaan π π π 5 + π 5 = 1 π 5 = Näin ollen tasapainojakauma on [0.1812, , , ] [0.181, 0.150, 0.091, 0.578]. (b) Laske myymälän pitkän aikavälin odotettu kustannus/tuottovauhti (EUR/viikko). Ratkaisu.(Leskelä, luku 4.3) Pitkän aikavälin odotusarvoinen kustannusvauhti saadaan suoraan tasapainojakauman kustannuskeskiarvona. Kustannus oli annettu prujussa [c(2), c(3), c(4), c(5)] = [250.21, , , ], joten merkitsemällä edellä ratkaistua rajajakaumaa π, pitkän aikavälin kustannusvauhti on π(x)c(x) x S Lisäys. Ergodisuusteoreeman 4.3 mukaan deterministiselle kustannukselle c(x s ) pätee vahvempi ominaisuus: pitkän aikavälin kustannuskeskivauhti lähestyy tn:llä 1 lukua x π(x)c(x). Katiskakauppa-esimerkissä (ja usein muutenkin) hetken s kustannus on kuitenkin satunnainen siten, että riippuu vain seuraavasta tilasta: C(X s ) = c(x s, X s+1 ). Ergodisuusominaisuus voidaan helposti todistaa myös tällaisille kustannuksille. Näin ollen yllä laskettu pitkän aikavälin odotusarvoinen kustannusvauhti on myös tn:llä 1 pitkän aikavälin kustannusvauhti. (c) Vertaa b)-kohdan tulosta esimerkissä 4.2 laskettuihin kymmenen viikon kustannuskertymiin. Ratkaisu. Y.o. pitkän aikavälin kustannusvauhti antaisi 10 viikon kertymäksi noin 3100 e. Riippuen alkutilasta 10 viikon kertymä on esimerkissä e. Suhteellinen virhe pitkän aikavälin kertymään verrattuna on alle kaksi prosenttia, eli ainakin tässä käytännön esimerkissä Markov-ketjun käytöstä voidaan mallintaa rajajakauman avulla hämmästyttävän hyvin jo lyhyellä aikavälillä. 6 / 8
7 2B3 Olkoon (X 0, X 1,... ) äärellisen tilajoukon S Markov-ketju, joka aina käydessään tilassa x aiheuttaa deterministisen kustannuksen c(x). Olkoon g(x) tilasta x käynnistyvän Markov-ketjun aiheuttama odotettu kokonaiskustannus ennen ketjun osumista tilajoukkoon A. (a) Johda funktiolle g : S R seuraavat yhtälöt: g(x) = 0, g(x) = c(x) + y S x A p x,y g(y), x / A. Ratkaisu. (Vrt. Kytölä, luvun Markov-kustannusmallit ja -kulkuajat ensiaskelanalyysi.) On selvää, että g(x) = 0, x A. Kun x A, merkitään τ A satunnaiskävelyn osumaaikaa joukkoon A, ja asetetaan c(x) = 0, x A. Tällöin suoraan määritelmästä g(x) = E[ τ A t=0 = c(x) + E[ (ehdollistus) = c(x) + y S (Markov-ominaisuus) = c(x) + y S (g:n määritelmä) = c(x) + y S c(x t ) X 0 = x] τ A t=1 c(x t ) X 0 = x] p x,y E[ p x,y E[ τ A t=1 τ A t=1 p x,y g(y). c(x t ) X 0 = x, X 1 = y] c(x t ) X 1 = y] Huomaa, että y.o. lasku on tehty sillä oletuksella, että odotusarvoinen kustannut g on olemassa (joukossa R + }). Tämä on ilmeistä kaikille järkeville kustannuksille ja Markov-ketjuille. Samoin voidaan osoittaa, että kaikille järkeville kustannuksille ja Markov-ketjuille yllä saatu yhtälöryhmä ratkeaa yksikäsitteisesti (joukossa R + }). (b) Selvitä a)-kohdan tulosta soveltamalla kuinka monta kertaa tehtävän 2B1 tilasta 1 käynnistyvä ketju odotusarvoisesti käy tilassa 3 ennen absorboitumistaan tilajoukkoon 5, 6}. Ratkaisu. Olkoon g(x) haluttun odotusarvo lähtötilasta x. Tällöin siis kustannus c(x) = I 3} (x) g(x) = 0, x 5, 6} g(x) = I 3} (x) + y S p x,y g(y), x / 5, 6}. 7 / 8
8 Tämä voidaan kirjoittaa matriisin P avulla, kun siitä poistetaan nieluja vastaavat 5. ja 6. rivi ja sarakke. Merkitään tätä matriisia P (kts. yhtälö 3). Nyt siis g(1) 0 ( I 4 P ) g(2) g(3) = 0 1, g(4) 0 josta saadaan matriisi kääntämällä g(1) = (Sanity check: tässä saatu odotusarvoinen vierailujen lukumäärä on suurempi kuin kohdassa 2B1b ratkaistu vierailutodennäköisyys ) 8 / 8
Markov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
Markov-ketjut pitkällä aikavälillä
2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin
Jatkuva-aikaisia Markov-prosesseja
5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa
Markov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
Erilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
Esimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
Valintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
Markov-ketjuja suurilla tila-avaruuksilla
3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa
1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
Jatkuvan aikavälin stokastisia prosesseja
6A Jatkuvan aikavälin stokastisia prosesse Tämän harjoituksen tavoitteena on tutustua uusiutumisprosesseihin tkuva-aikaisiin Markovprosesseihin harjoitella laskemaan niihin liittyviä hetkittäisiä kaumia
Jatkuva-aikaisten Markov-prosessien aikakehitys
5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.
Martingaalit ja informaatioprosessit
6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on
Martingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
STOKASTISET PROSESSIT Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Stokastiset prosessit 1 STOKASTISET PROSESSIT Peruskäsitteitä Usein tarkasteltava järjestelmä kehittyy ajan mukana ja meitä kiinnostaa sen dynaaminen, yleensä satunnaisuutta
Markov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
1 p p P (X 0 = 0) P (X 0 = 1) =
Mat-2.3 Stokastiset rosessit Syksy 2007 Laskuharjoitustehtävät 3 Poroudas/Kokkala. Tarkastellaan Markov-ketjua, jonka tilajoukko on {0, } ja tilansiirtotodennäköisyysmatriisi P Olkoon alkujakauma α 0 a
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
JAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
Markov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
Luento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen
Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen
Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Stokastiset prosessit. Lasse Leskelä Aalto-yliopisto
Stokastiset prosessit Lasse Leskelä Aalto-yliopisto 7. elokuuta 2018 Sisältö 1 Satunnaisluvut ja satunnaisvektorit 5 1.1 Todennäköisyysjakauma...................... 5 1.2 Satunnaismuuttuja.........................
Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
Malliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
Gaussin ja Jordanin eliminointimenetelmä
1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:
Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38
Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon
Kokonaislukuoptiomointi Leikkaustasomenetelmät
Kokonaislukuoptiomointi Leikkaustasomenetelmät Systeemianalyysin Laboratorio 19.3.2008 Sisällys Leikkaustasomenetelmät yleisesti Leikkaustasomenetelmät generoivilla kokonaislukujoukoilla Gomoryn leikkaavat
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
4. Lasketaan transienttivirrat ja -jännitteet kuvan piiristä. Piirielimien arvot ovat C =
BMA58 Funktiot, lineaarialgebra ja vektorit Harjoitus 6, Syksy 5. Olkoon [ 6 6 A =, B = 4 [ 3 4, C = 4 3 [ 5 Määritä matriisien A ja C ominaisarvot ja ominaisvektorit. Näytä lisäksi että matriisilla B
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Lineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Malliratkaisut Demo 1
Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,
Neliömatriisin adjungaatti, L24
Neliömatriisin adjungaatti, L24 1 2 1 3 Matriisi = A = 7 4 6 5 2 0 ( ) 7 6 Alimatriisi = A 12 = 5 0 Minori = det(a 12 ) = 7 6 5 0 = 30 Kofaktori = ( 1) 1+2 det(a 12 ) = 30 2 Määritelmä n n neliö-matriisin
Malliratkaisut Demot 6,
Malliratkaisut Demot 6, 19.2.21 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös
Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
1 Kannat ja kannanvaihto
1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Ominaisarvo ja ominaisvektori
Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 4.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Viimeiset harjoitukset on palautettava torstaina 13.6. Laskaripisteensä ja läsnäolonsa voi kukin tarkistaa
, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.
Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)
Determinantit. Kaksirivinen determinantti. Aiheet. Kaksirivinen determinantti. Kaksirivinen determinantti. Kolmirivinen determinantti
Determinantit 1 2 2-matriisin ( A = on det(a) = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 ) = a 11a 22 a 12 a 21. 1 2 2-matriisin on det(a) = Esim. Jos A = ( a 11 a 12 a 21 a 22 A = a 11 a 12 a 21 a 22 )
Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,
Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
1 Ominaisarvot ja lineaariset di erenssiyhtälöt
Taloustieteen mat.menetelmät syksy 27 materiaali II-4 Ominaisarvot ja lineaariset di erenssiyhtälöt. Idea a b Ajatellaan di erenssiyhtälöä z k+ Az k, A : Jos A olisi diagonaalimatriisi, eli b c, niin muuttujat
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Matriisialgebra harjoitukset, syksy 2016
MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 7 Onko kuvaus F : R R, F(x 1,x = (x 1 +x,5x 1, x 1 +6x lineaarinen kuvaus? Jos on, niin määrää sen matriisi luonnollisen kannan suhteen Jos ei ole, niin
Malliratkaisut Demot
Malliratkaisut Demot 2.2.217 Tehtävä 1 Edellisten demojen tehtävä oli muotoa max 3x 1 + 4x 2 s.t. 7x 1 + 3x 2 24 : v 1 x 1 + 4x 2 17 : v 2 x 2 3 : v 3 x 1, x 2. Kohdefunktio voitiin kirjoittaa myös muotoon
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt
Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
Liikenneongelmien aikaskaalahierarkia
J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät
Talousmatematiikan perusteet
kevät 219 / orms.13 Talousmatematiikan perusteet 9. harjoitus, viikko 12 (18.3. 22.3.219) L Ma 1 12 A22 R5 Ti 14 16 F453 R1 Ma 12 14 F453 L To 8 1 A22 R2 Ma 16 18 F453 R6 Pe 12 14 F14 R3 Ti 8 1 F425 R7
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Lineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun
MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB