ILMALASERKEILAUSAINEISTOJEN JA ILMAKUVIEN KESKINÄINEN ORIENTOINTI. Petri Rönnholm 1, Juha Hyyppä 2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "ILMALASERKEILAUSAINEISTOJEN JA ILMAKUVIEN KESKINÄINEN ORIENTOINTI. Petri Rönnholm 1, Juha Hyyppä 2. petri.ronnholm@aalto.fi, juha.hyyppa@fgi."

Transkriptio

1 The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 ILMALASERKEILAUSAINEISTOJEN JA ILMAKUVIEN KESKINÄINEN ORIENTOINTI Petri Rönnholm 1, Juha Hyyppä 2 1 Aalto-yliopisto, Insinööritieteiden korkeakoulu, Fotogrammetria ja kaukokartoitus 2 Geodeettinen laitos TIIVISTELMÄ Artikkeli perustuu EuroSDR:n (European Spatial Data Research) kansainväliseen koetyöhön, jonka tavoitteena oli selvittää ja vertailla menetelmiä ilmalaserkeilausaineistojen ja ilmakuvien keskinäiseksi orientoimiseksi. Koska laserkeilaus ja valokuvaus täydentävät toisiaan, niiden yhteiskäyttö ja integrointi ovat mielekkäitä. Eri aineistojen on kuitenkin oltava samassa koordinaatistossa. Koetyöhön saatiin mukaan useita yliopistoja, tutkimuslaitoksia ja organisaatioita, joiden soveltamat menetelmät kattoivat hyvin kaikki tärkeimmät lähestymistavat ongelmaan. Koetyön perusteella vastinpiirretyypin valinta, vastinpiirteiden määrä sekä menetelmän toteutus olivat merkittävimmät tekijät orientointien tarkkuuksiin. Esimerkiksi automaation taso ei ollut tarkkuutta rajoittava tekijä. Käytännöllisesti katsottuna kaikki menetelmät olivat yhä kehitysvaiheessa, joten tulevaisuudessa on odotettavissa tarkkuuksien, luotettavuuden ja prosessien parantumista. Koetyö suoritettiin rakennetussa ympäristössä, joten tuloksia ei voida suoraan siirtää rakentamattomaan ympäristöön. 1. JOHDANTO Laserkeilaus ja fotogrammetriset menetelmät soveltuvat molemmat erinomaisesti kartoitustehtäviin. Laajojen alueiden geometrisen tiedon keruussa käytetään toistaiseksi eniten ilmasta kerättäviä aineistoja, vaikka erityisesti ajoneuvopohjaiset kartoitusjärjestelmät ovat viime aikoina lisänneet suosiotaan. Fotogrammetriset mittaukset ovat olleet käytössä jo lähes 200 vuotta (Konecny, 1985), mutta digitaaliset kamerat ja uudet aineistojen käsittelymenetelmät ovat kehittäneet alaa voimakkaasti. Laserkeilaus vastaavasti on kehittynyt kaupallisesti varteenotettavaksi kartoitusmenetelmäksi vasta viimeisten vuosikymmenten aikana. Vaikka sekä laserkeilaus että kuvamittaukset soveltuvat yksinäänkin 3D aineiston lähteeksi, on usein mielekästä yhdistää molempien menetelmien parhaat ominaisuudet, sillä ne tarjoavat toisiaan täydentävää informaatiota (Kern, 2001; Schenk & Csathó, 2002). Laserkeilauksen etuna on kyky tuottaa pintamallia niiltäkin alueilta, joilla ei ole selkeää tekstuuria. Lisäksi lasermittausten avulla voidaan saada kohtuullisen hyvin havaintoja maanpinnasta myös alueilla, joissa kasvillisuus ehkäisee fotogrammetristen mittausten onnistumisen. Valokuvien vahvuus syntyy hyvästä resoluutiosta, väri- tai harmaasävyarvoista ja helpohkosti hallittavissa olevasta geometrisesta tarkkuudesta. Tyypillisesti valokuvilta on huomattavasti helpompi mitata taiteviivoja kuin laserkeilausaineistoista. Lisäksi valokuvilta kohteen tunnistaminen ja näkymän ymmärtäminen on helpompaa kuin laserpistepilvestä. Laserpistepilven tulkittavuutta voidaan parantaa liittämällä 3D laserpisteille väriarvot valokuvilta. Jos aineiston tulkinnassa ja luokittelussa käytetään laseretäisyysmittauksesta saatavaa intensiteettiä eli palaavan kaiun hetkellistä voimakkuutta, intensiteettiarvot tulisi kalibroida (Luzum 92

2 ym., 2004; Kaasalainen ym., 2009). Kuva 1 havainnollistaa, kuinka samaan koordinaatistoon orientoidut kuvat ja ilmalaserkeilausaineisto vastaavat tai eroavat toisistaan. Kuva 1. Ilmalaserkeilausaineisto päällepiirrettynä stereoilmakuvaparille (ristiin katseltavissa). Laserpistepilvi on värjätty korkeuden mukaan. (Kuva Petri Rönnholm) Ilmalaserkeilausaineistojen ja ilmakuvien integrointi tai integroitu käyttö edellyttää, että aineistot ovat yhteisessä koordinaatistossa. Aineistojen muuntaminen yhteiseen koordinaatistoon voidaan toteuttaa jollain kolmesta perusstrategiasta: 1. Instrumentit asennetaan yhteiselle alustalle, aineistot kerätään samanaikaisesti ja kartoitussysteemi on kalibroitu 2. Aineistot orientoidaan erikseen yhteiseen koordinaatistoon, esimerkiksi maastokoordinaatistoon 3. Selvitetään aineistojen välinen keskinäinen orientointi Periaatteessa systeemikalibroitu järjestelmä vaatisi toimiakseen tarkasti joko matriisipohjaisen etäisyysmittauksen tai alusta ei saisi liikkua keilaushetkellä. Nykyisellä teknologialla kumpikaan rajoitteista ei ole mahdollinen ilmasta tapahtuvista kartoituslaitteista. Vaikka matriisipohjaisia 3D etäisyysmittauskameroita on olemassa (esimerkiksi Schroeder ym., 1999; Lange & Seitz, 2000; Oggier ym., 2004), niiden resoluutio, tarkkuus ja mittausetäisyys eivät vielä ole riittäviä ilmakartoitussovelluksiin. Sijoittamalla sekä laserkeilain että kamerat samaan kuvausalustaan, kuten lentokoneeseen tai helikopteriin, voidaan saada tarkka keskinäinen orientointi niille laserpisteille, jotka keilattiin kuvanoton aikana. Jos voidaan olettaa, että laserpistepilven sisäinen geometria on virheetön eli GPS/inertiajärjestelmä ei ole aiheuttanut virhettä, systeemikalibroinnin kautta saatu keskinäinen orientointi pätee koko aineistolle. Lisärajoitteena vielä on, että kohteessa ei saa olla liikettä. Muuten eriaikaisesti mitatut aineistot sisältävät toisistaan poikkeavaa informaatiota. Joissakin tilanteissa ei ole edes mielekästä tehdä laserkeilausta ja ilmakuvausta samanaikaisesti. Mittausvaatimukset laserkeilaukselle ja ilmakuvaukselle saattavat olla hyvin erilaiset. Esimerkiksi laserkeilausta voidaan tehdä myös pimeällä, mikä ei ole mahdollista valokuvatessa. Toisaalta myöskään laserkeilauksen optimaalinen lentokorkeus ei välttämättä ole sama kuin ilmakuvien tapauksessa. Tällöin aineistot kerätään eri lentokerroilla. 93

3 Sekä laserpistepilvi että ilmakuvat on mahdollista orientoida erikseen ulkoiseen koordinaatistoon. Edellytyksenä on, että maastosta on mitattu tukipisteitä tai -piirteitä. Valitettavasti tukipisteiden tai -piirteiden vaatimukset ovat usein erilaiset laserkeilausaineistolle kuin valokuville, jolloin samalta alueelta voidaan joutua mittaamaan kaksinkertainen määrä tukipiirteitä. Esimerkiksi Vosselman (2008) toi esille, että useiden tukipiirteiden mittaaminen laserkeilauskampanjassa ei ole välttämättä mahdollista tai mielekästä. Laserpistepilven orientointia varten on ehdotettu esimerkiksi isoja ympyrätähyksiä (Toth & Grejner- Brzezinska, 2005; Csanyi & Toth, 2007; Yastikli ym., 2008) sekä katumerkintöjä (Hyyppä ym., 2005; Toth ym., 2007). Käytännössä myös GPS:llä mitattujen 3D referenssipintojen käyttö on suosittua. Laserkeilainjärjestelmät käyttävät niin kutsutun suoran orientoinnin sensoreita keilauspaikkojen sijaintien ja instrumentin kallistusten selvittämiseksi. Suoran orientoinnin sensorit sisältävät GPS-laitteiston sekä inertiaalimittausyksikön (IMU=Inertial Measurement Unit). Näiden laitteiden tarkkuudet ovat nykyään kohtuullisen hyvät ja odotettavissa olevat virheet ovat 5-10 cm sijainnille ja vähemmän kuin 0.006º ω- ja ϕ-kierroille sekä 0.01º κ-kierrolle (Schwarz, 1995; Cramer, 1999; Kremer, 2001; Heipke ym., 2002; Honkavaara ym., 2003; Legat ym., 2006). Valitettavasti suoran orientoinnin mittauksissa ei ole sisäänrakennettua laadunkontrollointijärjestelmää, joten mahdolliset säännölliset tai satunnaiset virheet joudutaan tunnistamaan ja korjaamaan jälkeenpäin. Useimmiten GPS/IMU-orientointitietoja on parannettava käyttämällä tukipisteitä tai -piirteitä. Onnistunut keskinäinen orientointi varmistaa, että aineistot ovat samassa koordinaatistossa. Lisäksi se mahdollistaa, että tukipisteistö rakennetaan vain toisen menetelmän tarpeet huomioiden. Tyypillinen valinta on orientoida ilmakuvablokki tukipisteiden avulla, koska orientointiprosessit valokuville ovat pidemmälle kehittyneitä, mutta tarvittaessa voidaan myös orientoida ensin laserpistepilvi maastokoordinaatistoon. Ennen keskinäistä orientointia on kuitenkin huolehdittava, että molempien aineistojen sisäiset geometriat ovat kunnossa. Valokuvien tapauksessa tulee käyttää kalibroituja kameroita ja laserkeilausaineistolle suositellaan jonotasoitusta sisäisten virheiden minimoimiseksi. Keskinäinen orientointi perustuu vastinpiirteisiin, joita tulee löytää ilmalaserkeilausaineiston ja kuvien välille. Vaikka käytännön toteutuksia löytää vastinpiirteitä on erittäin paljon, on löydettävissä kolme perusstrategiaa: 1. Etsitään yhteisiä 3D piirteitä aineistojen välille. Menetelmä vaatii stereomittauksia tai mittauksia useammalta kuvalta. 2. Etsitään laseraineistosta 3D piirteitä ja niiden vastinpiirteitä 2D kuvatasolta. 3. Luodaan 3D laserpistepilvestä synteettinen 2D kuva ja etsitään 2D piirteitä sekä virtuaalisilta laserkuvilta että valokuvilta. Vuonna 2009 EuroSDR (European Spatial Data Research, aloitti kansainvälisen koetyöprojektin, jossa tavoitteena oli koota tietämystä sekä vertailla menetelmiä, joiden avulla voidaan selvittää keskinäinen orientointi ilmakuvien ja ilmalaserkeilausaineistojen välille. Tehtävänä eri osapuolilla oli selvittää yhteistä lähtöaineistoa käyttäen keskinäinen orientointi ilmalaserkeilausaineistojen ja ilmakuvien välille. Lisäksi pyydettiin muuntamaan laserpistepilvet siten, että ne olisivat samassa koordinaatistossa ilmakuvien kanssa. Koetyössä pyrittiin myös selvittämään orientointimenetelmien automaation nykyinen taso. Projektin vetovastuu oli Aalto-yliopistolla. Artikkelissa esitellään tämän projektin tuloksia. 94

4 2. EUROSDR:N KOETYÖ 2.1 Osallistujat Koetyöhön saatiin mukaan yhdeksän yliopistoa, tutkimuslaitosta, yritystä tai organisaatiota (kts. Taulukko 1). Koska osa osallistujista kokeili useampaa kuin yhtä menetelmää, koetyöhön saatiin 13 erilaista sovellusta. Yksi osallistujista (Independent Research Group on Geospatial) toteutti oman menetelmänsä käyttäen tunnettuja maastopisteitä, joten menetelmää ei ole sisällytetty tämän artikkelin keskinäisten orientointimenetelmien vertailuun. Taulukko 1. EuroSDR:n koetyöhön osallistuneet tahot. Osallistujat Lyhenne Toteutettujen rekisteröintimenetelmien lkm Aalto-yliopiston Insinööritieteiden korkeakoulu, Suomi Aalto 1 Dublin Institute of Technology, Irlanti DIT 1 Geodeettinen laitos, Aalto-yliopiston Insinööritieteiden FGI ym. 1 korkeakoulu ja TerraSolid Oy, Suomi Independent Research Group on Geospatial, Iran IRGG 1 National Geographic Institute, Espanja IGN-1, IGN-2 2 University of Calgary, Kanada UofC-1, UofC-2, 3 UofC-3 University College London, UK UCL 1 IFP University of Stuttgart, Saksa IFP-1, IFP-2 2 IPF Vienna University of Technology, Itävalta IPF 1 Yhteensä Koetyössä sovelletut menetelmät Aalto-yliopiston menetelmä (Aalto) perustui interaktiiviseen orientointimenetelmään (Rönnholm ym., 2003; Rönnholm ym., 2009), jossa laserpistepilvi projisoidaan suodattamatta stereokuvan päälle ja operaattorilla on mahdollisuus muuttaa kuvien tai laserpistepilven orientointiparametreja. Menetelmä perustuu operaattorin visuaaliseen näkymän tulkintaan. Interaktiivinen orientointi tehtiin erikseen kuudelle pienelle alueelle. Näiltä alueilta löydettyjen orientointipoikkeamien avulla laskettiin koko aineiston siirto ja kiertoparametrit. Dublin Institute of Technology (DIT) loi menetelmässään laserpisteaineistosta synteettisen kuvan ja vastinpisteet haettiin 2D kuvatasoilta. Itse vastinpisteiden valinta tapahtui manuaalisesti, vaikka automaattisen prosessin mahdollisuudet tuotiin esille. Toisin kuin muilla menetelmillä vain 2D siirrot XY-tasossa ja kappa-kierto otettiin mukaan muunnokseen. Käytännön sovelluksissa menetelmää olisi siis täydennettävä poistamalla lisäksi korkeussiirtymä ja aineiston mahdolliset kallistumat. Koetyön aineistot olivat valmiiksi hyvin lähellä tasattua, joten merkittäviä kallistumia ei ollut. Geodeettinen laitos, Aalto-yliopisto ja TerraSolid Oy ratkaisivat keskinäisen orientoinnin käyttämällä rakennusten harjaviivoja. 3D harjaviivat löydettiin automaattisesti laserpistepilvestä leikkaamalla kattojen tasopintoja. Vastaavat harjaviivat löydettiin automaattisesti kuvatasolta. Keskinäinen orientointi ratkaistiin käyttämällä koplanariteettiehdon mukaista mallia tasoituksessa (Karjalainen ym., 2006). Menetelmä toimi muuten automaattisesti, mutta orientoinnin lähtölikiarvoja jouduttiin manuaalisesti korjaamaan, jotta automatiikka tunnisti vastinpiirteet. 95

5 National Geographic Institute (Espanja) toteutti kaksi orientointimenetelmää. Ensimmäisessä menetelmässä (IGN-1) operaattori etsi manuaalisesti 3D liitospisteitä laseraineiston ja stereoilmakuvilta mitattujen pisteiden välille. Laseraineistosta muodostettiin pintamalli, jota varjostettiin ja värjättiin intensiteettiarvoilla. Näin operaattorin oli helpompi tunnistaa laseraineistosta ilmakuvalta valittuja pisteitä. Vastinpisteitä mitattiin lähes 40, joiden avulla laserpistepilvi muutettiin samaan koordinaatistoon ilmakuvien kanssa. Toisessa menetelmässä (IGN-2) luotiin laseraineistosta synteettinen 2D kuva lähelle ilmakuvien perspektiiviä. Kuvia ehostettiin käyttämällä Daubechies D4 -aallokemuunnosta (Jensen & la Cour-Harbo, 2001), kuvat binarisoitiin ja lopullisilta tuloskuvilta etsittiin automaattisesti kiinnostuspisteitä vastinpisteiden löytämiseksi. Menetelmä oli lähes automaattinen. Oikeiden vastinpisteiden tunnistaminen ja yhdistäminen vaati kuitenkin operaattorin tarkistusta ja avittamista. University College London (UCL) etsi kattojen harjojen päätepisteitä. Laserpistepilvestä etsittiin puoliautomaattisesti kattotasoja. Katon harjat ja niiden päätepisteet saatiin leikkaamalla löydettyjä kattotasoja. Vastaavat pisteet mitattiin manuaalisesti 2D kuvatasoilta. University of Calgary testasi kolmea menetelmää, joista ensimmäinen käytti orientointiin tasopintoja (UofC-1), toinen suoria viivoja (UofC-2) ja kolmas yhdisti sekä tasopinnat että suorat viivat (UofC-3). Tasot löydettiin puoliautomaattisesti laserpistepilvestä. Vastaavat tasot mitattiin manuaalisesti joko kahdelta tai useammalta kuvalta. Molemmista aineistoista määriteltiin tasojen painopisteet. Nämä painopisteet eivät välttämättä ole täsmällisiä vastinpisteitä, mutta sijaitsevat samoilla tasoilla 3D avaruudessa. Tasoituksessa käytettiin painomatriiseja siten, että vastinpainopisteet saivat liikkua, mutta vain pitkin määritettyä tasoa. Suorien viivojen tapaus vastasi muuten tasojen tapausta, mutta piirteinä käytettiin kattojen harjaviivoja, jotka saatiin kattojen tasopintojen leikkauksina laserpistepilvestä sekä mittaamalla päätepisteet kahdelta tai useammalta kuvalta. Kolmas menetelmä erosi kahdesta edellisestä vain laskennan suhteen, jolloin sekä tasot että suorat viivat olivat yhtä aikaa mukana tasoituksessa. University of Stuttgart osallistui koetyöhön kahdella menetelmällä. Ensimmäisessä menetelmässä (IFP-1) käytettiin 3D pintamalleja liitospiirteinä. Stereokuvista laskettiin kuvakorrelaation avulla tiheä 3D pintamalli ja laserpistepilvi muodostaa suoraan pintamallin. Yhteensovituksesta poistettiin kohinaiset alueet kuten kasvillisuus. Pintamallien välinen muunnos ratkaistiin käyttämällä ICP-menetelmää (Iterative Closest Point). Menetelmä oli muuten automaattinen, mutta aineistojen lähtölikiarvoja jouduttiin parantamaan, jotta automatiikka toimisi. Toisessa menetelmässä (IFP-2) luotiin ortokuva ilmalaserkeilausaineistosta. Ilmakuvien ja laserpohjaisen ortokuvan välille valittiin manuaalisesti viisi vastinpistettä. Ortokuvan 2D havainnot muutettiin takaisin 3D havainnoiksi säilyttämällä yhteys alkuperäiseen 3D pistepilveen. Varsinainen muunnos siis tehtiin 3D maastopisteiden ja 2D kuvapisteiden välillä. Vienna University of Technology (IPF) laski menetelmässään automaattisesti koealueesta 3D pintamallin stereokuvien avulla. Sekä kuvapohjaisesta että laserpohjaisesta pintamallista luotiin ruutumalli. Ruutumallia käytettiin pintamallien yhteensovittamisessa pienimmän neliösumman menetelmällä. Yhteensovitukseen otettiin mukaan vain ne alueet, joissa pintamallissa ei ollut jyrkkiä muutoksia. Ressl ym. (2008; 2009) kuvaavat menetelmää tarkemmin. 2.3 Materiaali Koetyöhön tarvittavat materiaalit tulivat Geodeettiselta laitokselta. Koealue sijaitsi Espoonlahdessa ja käytettävissä oli digitaalisen ilmakuvakameran DMC:n kuvia (pankromaattinen, RGB ja IR värikanavat; RGB=Red, Green, Blue; IR=Infrared). Kuvien orientoinnit ratkaistiin 96

6 sädekimpputasoituksella käyttäen 8 kuvan blokkia ja RTK (Real-Time Kinetic) GPS:llä mitattuja tukipisteitä. Pankromaattisille ja multispektraalisille kanaville tehtiin erilliset tasoitukset. Koetyöhön osallistuneille annettiin käyttöön blokin keskeltä 4 kuvaa. Pankromaattisten kuvien maastoresoluutio oli noin 5 cm ja multispektraalisten kuvien noin 22 cm. Tässä artikkelissa esitetään tuloksia vain pankromaattisten kuvien tapauksesta, koska useat koetyöhön osallistuneet eivät käsitelleet multispektraalisia kuvia. Keskimäärin tulokset olivat multispektraalisilla kuvilla jonkin verran heikompia kuin pankromaattisten kuvien tapauksessa. Laserkeilausaineistot olivat peräisin Optech ALTM 3100 (vuodelta 2005) ja Leica ALS50-II (vuodelta 2007) ilmalaserkeilaimista. Molemmista aineistoista annettiin koetyöhön osa yhdestä lentolinjasta, jotka sijaitsivat kuvien stereopeittoalueella. Optech ALTM keilaimen lentokorkeus oli noin 1000 m, keilauksen avauskulma 24 (20 käytettiin), pisteentoistotaajuus 100 khz, keilaustaajuus 67 Hz ja lentonopeus 75 m/s, mikä antoi pistetiheydeksi maastossa noin 2-3 pistettä/m 2. Vastaavat tiedot Leica ALS50-II -keilauksesta olivat lentokorkeus 500 m, avauskulma 40 (±20 ), pisteentoistotaajuus 148 khz, keilaustaajuus 42.5 Hz, lentonopeus 72 m/s ja pistetiheys maastossa 4-5 pistettä/m 2. Kuva 2 esittää Leican aineiston kattavuuden ilmakuvablokin päällä. Optechin aineisto kattoi vastaavasti kuvien stereopeittoalueen. Kuva 2. Leica ALS50-II ilmalaserkeilausaineiston maastopeitto ja ilmakuvablokin stereopeittoalueet. (Kuva Petri Rönnholm) Koealueelle mitattiin maastomittauksilla kuusi vertailualuetta, joihin pyrittiin saamaan erisuuntaisia tasopintoja. Eri vertailualueet saatiin mitattua samassa koordinaatistossa mittaamalla tunnettuja pisteitä staattisella GPS-mittauksella. Näiden pisteiden avulla georeferoitiin pistepilvet, jotka tuotettiin terrestriaalisella laserkeilaimella (Leica HDS6000). Hyvin tiheästä terrestriaalisesta laserpistepilvestä irrotettiin tasopintoja, joista muodostettiin pintoja kolmioimalla. Näitä tasopintoja käytettiin vertailun lähtökohtana. 2.4 Vertailumenetelmä Koska terrestriaalisella laserkeilaimella mitatut vertailupinnat olivat samassa koordinaatistossa ilmakuvien kanssa, voitiin ilmakuvien ja laseraineistojen välistä keskinäistä orientointi tarkistaa käyttämällä mitattuja vertailupintoja (Kuva 3). Jokaisessa kuudessa vertailualueessa tutkittiin vain laseraineiston 3D siirtymiä. Siirtymä ratkaistiin käyttämällä ICP-menetelmän versiota, jossa 3D pistepilven etäisyys vertailupinnoista minimoitiin. Näistä siirtymistä ratkaistiin lopuksi koko aineistolle kierrot. 97

7 Kuva 3. Yhden vertailualueen sisältämät vertailupinnat. Vertailupinnat on kolmioitu terrestriaalisella laserkeilaimella mitatusta 3D pistepilvestä. (Kuva Petri Rönnholm) 2.5 Tulokset Taulukko 2. Eri menetelmillä laskettujen keskinäisten orientointien virheet. Δx (m) Δy (m) Δz (m) Δomega ( ) Δphi ( ) Δkappa ( ) Aalto, Optech Aalto, Leica IPF, Optech IPF, Leica IFP 1, Optech IFP 1, Leica FGI ym., paras tapaus, image 2_14, Leica FGI ym., paras tapaus, image 2_13, Optech IGN 1, Optech IGN 1, Leica UCL, Optech UCL, Leica UofC 1, Optech UofC 1, Leica DIT, Optech DIT, Leica UofC 3, Optech UofC 3, Leica UofC 2, Optech UofC 2, Leica IGN 2, Optech IGN 2, Leica IFP 2, Optech IFP 2, Leica Taulukko 2 listaa koetyössä saadut tulokset pankromaattisten kuvien tapauksessa kaikille keskinäisen orientoinnin menetelmille, jotka olivat mukana projektissa. Kuva 4 ovat samat 98

8 tulokset ryhmiteltynä vastinpiirretyyppien mukaisesti. Lisäksi vielä Kuva 5 havainnollistetaan tuloksia automaation tason mukaan. Kokonaisvirhe on laskettu: Kokonaisvi rhe = X + Y + Z. (1) 2 virhe 2 virhe 2 virhe (1.94) Kuva 4. Keskinäisen orientoinnin siirtymien kokonaisvirheet ryhmiteltynä vastinpiirretyypeittäin. Jos kokonaisvirhe on mennyt yli visualisoinnin maksimiarvosta, virheen kokonaismäärä on ilmoitettu sulkeissa. 99

9 Kuva 5. Keskinäisten orientointien siirtymien kokonaisvirheet ryhmiteltynä automaation tason mukaan. Jos kokonaisvirhe on mennyt yli visualisoinnin maksimiarvosta, virheen kokonaismäärä on ilmoitettu sulkeissa. (Ylhäällä Optech- ja alhaalla Leica-aineisto) 3. KESKUSTELU Menetelmien vastinpiirretyypit näyttävät vaikuttavan huomattavasti tuloksiin. Kuten edeltä käsin oli arvattavissa, pistemäisiä vastinpiirteitä käyttävissä menetelmissä tuli eniten hajontaa. Selitys ilmiölle on siinä, että laserpistepilvet olivat liian harvoja tarkkojen pisteiden määrittämiseen suorin menetelmin. Kuitenkin ne menetelmät, jotka käyttivät erityisen paljon vastinpisteitä keskinäisen orientoinnin laskennassa, näyttävät tuottavan parempia tuloksia kuin vain muutamaan pisteeseen tukeutuvat menetelmät. Laserkeilausaineistojen laadussa oli jonkin verran vaihtelua. Optechin aineistolle oli tehty jonotasoitus ja sen jonokohtainen sisäinen geometria vaikutti olevan varsin hyvä. Toisaalta aineisto sisälsi melko paljon kohinaa. Leican aineistolle ei tehty jonotasoitusta, mikä aiheutti jonkin verran tarkkuuden vaihteluita keilausjonon sisällä. Aineiston kohina oli kuitenkin vähäisempää Optechiin verrattuna. Orientointimenetelmien joukossa oli muutamia lähes automaattisia prosesseja. Erityisen mielenkiintoisia olivat menetelmät, jotka yhteensovittivat fotogrammetrisesti mitattua pintamallia laserpistepilvestä johdettuun pintamalliin. Näiden menetelmien vahvuutena on liitosalueiden suuri kattavuus. Periaatteessa näitä menetelmiä voisi käyttää myös laserpistepilven sisäisen eheyden tarkistamiseen. 100

10 Suoriin viivoihin perustuvat menetelmät tuottivat vaihtelevampia tuloksia kuin pintoihin perustuvat menetelmät. Tarkkuuteen vaikuttaa oleellisesti, kuinka tarkasti viivat on ylipäänsä mitattavissa aineistoista. Esimerkiksi talojen harjat voivat olla pyöreitä, eikä teräviä. Laserpistepilvestä kattojen harjat etsitään poikkeuksetta kattotasojen leikkauksina, mikä ei välttämättä tuota tarkasti todellisen harjan kuvausta. Koetyön tulosten mukaan yhdistämällä laskentaan tasoja ja suoria viivoja ei saatu oleellista parannusta tuloksiin. Osasyynä tähän saattaa olla se, että talojen harjat johdettiin kattotasoista, jolloin viivamaiset piirteet eivät käytännössä voi olla tarkempia kuin tasot. Interaktiivinen menetelmä tuotti hyviä tuloksia, vaikka manuaalisena menetelmänä vaatii operaattorin työaikaa. Menetelmän vahvuutena on se, että laserpistepilvestä ei tarvitse etukäteen suodattaa hajapisteitä pois. Käytännössä laserpistepilvi sisältää hyvin paljon yksittäisiä osumia lampuista, aidoista ja muista pienistä kappaleista. Muilla menetelmillä näitä yksityiskohtia ei voi käyttää hyväksi, mutta operaattori stereotulkinnan aikana kykenee tarkentamaan interaktiivisesti orientointia erityisesti näiden pienten yksityiskohtien avulla. Monet menetelmistä olivat vielä kehitysvaiheessa. Orientointiprosessien toimivuudessa, käytettävyydessä ja nopeudessa on vielä paljon parannettavaa. Lisäksi monet menetelmistä tarvitsevat toimiakseen rakennetun ympäristön. Näin ollen tutkimuksen tuloksia ei voi suoraan soveltaa esimerkiksi metsäisillä alueilla. 4. JOHTOPÄÄTÖKSET Artikkelissa esiteltiin EuroSDR:n kansainvälisen koetyön tuloksia. Koetyön tavoite oli tutkia menetelmiä, joiden avulla ilmalaserkeilausaineistot ja ilmakuvat voidaan orientoida keskinäisesti. Keskinäinen orientointi varmistaa, että aineistot ovat yhteisessä koordinaatistossa. Laserkeilausaineiston ja ilmakuvan yhteiskäytöllä on laajasti sovelluksia, koska menetelmät täydentävät toisiaan. Koetyöhön osallistui useita yliopistoja, tutkimuslaitoksia ja organisaatioita, mikä mahdollisti laajan vertailun erilaisten menetelmien tarkkuuksista. Koetyöhön mukaan saadut menetelmät edustivat kaikkia perusstrategioita aineistojen välisen keskinäisen orientoinnin selvittämiseksi. On kuitenkin huomioitavaa, että käytännöllisesti katsottuna kaikki menetelmät olivat vielä kehitysasteella, joten tulevaisuudessa voidaan odottaa parannuksia prosesseissa, tarkkuuksissa ja luotettavuudessa. Koetyötä varten osapuolille jaettiin yhteinen lähtöaineisto ja lopputuotteena pyydettiin, että laserpistepilvet muunnettiin samaan koordinaatistoon ilmakuvien kanssa. Menetelmiä verrattiin maastomittauksilla mallinnettujen vertailupintojen avulla. Tulosten mukaan suurin osa menetelmistä pääsi kokonaisvirheeltään (XYZ) lähelle 20 cm:ä useat menetelmät jopa tämän alle. Merkittävimmät tekijät keskinäisen orientoinnin tarkkuuksiin olivat valittu vastinpiirretyyppi, menetelmän toteutus sekä vastinpiirteiden lukumäärä tai kattavuus. Sen sijaan esimerkiksi automaation taso ei näyttänyt olevan kovin merkittävä tekijä. Yksikään menetelmistä ei toiminut täysin automaattisesti, vaikka automaation taso olikin muutamassa menetelmässä erittäin korkea. Tyypillisesti lähtöorientointitietoja jouduttiin parantamaan, jotta automaattiset menetelmät osaisivat paremmin tunnistaa vastinpiirteet. 101

11 Koetyön perusteella ei ole helppo valita yksittäistä menetelmää, joka olisi ollut ylivertainen muihin nähden. Erityisen kiinnostavia olivat esimerkiksi menetelmät, jotka ratkaisivat keskinäisen orientoinnin vertailemalla kuvamittauksista saatua pintamallia ja laserkeilauksen pintamallia. Näiden menetelmien etu on siinä, että vastinpiirteet kattavat parhaimmillaan koko alueen. Koska pintamalli voidaan valokuvilta luoda automaattisesti, koko prosessista on mahdollista saada automaattinen. EuroSDR:n koetyö toteutettiin rakennetussa ympäristössä. Monet menetelmät käyttivät vastinpiirteitä, joita löytyy vain rakennetusta ympäristöstä. Näin ollen tutkimuksen tuloksia ei voida suoraan liittää esimerkiksi metsäympäristöön. Koetyö kuitenkin täytti sille asetetut odotukset ja on askel eteenpäin, joka johtaa ilmakuvien ja ilmalaserkeilausaineistojen tehokkaaseen yhteiskäyttöön ja integrointiin. KIITOKSET Kiitokset Geodeettisen laitoksen henkilökunnalle, Harri Kaartinen, Lauri Markelin, Kimmo Nurminen, Eija Honkavaara ja Eero Ahokas, jotka pääasiassa esikäsittelivät koetyön lähtömateriaalit. Erityiskiitos kuuluu EuroSDR:lle, joka mahdollisti projektin. LÄHTEET Cramer, M., Direct geocoding is aerial triangulation obsolete? In Fritsch/Spiller (eds.): Photogrammetric Week 1999, Wichmann Verlag, Heidelberg, Germany, s phowo99/cramer.pdf Csanyi, N. & Toth, C., Improvement of lidar data accuracy using lidar-specific ground targets. Photogrammetric Engineering & Remote Sensing, 73(4), s Heipke, C., Jacobsen K. & Wegmann H., Analysis of the results of the OEEPE test Integrated Sensor Orientation. Test Report and Workshop Proceedings, OEEPE Official Publication n. 43, s Honkavaara, E., Ilves, R. & Jaakkola, J., Practical results of GPS/IMU/camera-system calibration. Proceedings of International Workshop: Theory, Technology and Realities of Inertial/GPS Sensor Orientation, Castelldefels, Spain, 10 s. (accessed September 29, 2009) Hyyppä, H., Rönnholm, P., Soininen, A. & Hyyppä, J., Scope for laser scanning to provide road environment information. The Photogrammetric Journal of Finland, 19(2), s Jensen, A. & la Cour-Harbo, A., Ripples in Mathematics: The Discrete Wavelet Transform. Springer- Verlag, Berlin, 246 sivua. ISBN Kaasalainen, S., Lindroos, T. & Hyyppä, J., Toward hyperspectral lidar: measurement of spectral backscatter intensity with a supercontinuum laser source. IEEE Geoscience and Remote Sensing Letters, 4(2), s Karjalainen, M., Hyyppä, J. & Kuittinen, R., Determination of Exterior Orientation Using Linear Features from Vector Maps. The Photogrammetric Record 21(116), s Kern, F., Supplementing laserscanner geometric data with photogrammetric images for modeling. The CIPA International Archives for Documentation of Cultural Heritage, Vol. XVIII, Sept., Potsdam, Germany, s Konecny, G., The International Society for Photogrammetry and Remote Sensing 75 years old, or 75 years young. Photogrammetric Engineering & Remote Sensing, 51(7), s

12 Kremer, J., CCNS and AEROcontrol: Products for efficient photogrammetric data collection. In Fritsch/Spiller (eds.), Photogrammetric Week 2001, Wichmann Verlag, Heidelberg, Germany, s Lange, R. & Seitz, P., Seeing distances a fast time-of-flight 3D camera. Sensor Review, 20(3), s Legat, K., Skaloud, J. & Schmidt, R., Reliability of Direct Georeferencing: A Case Study on Practical Problems and Solutions Final Report on Phase 2. In EuroSDR Official Publication No 51, s ~eurosdr/publications/51.pdf Luzum, B., Starek, M. & Slatton, K., Normalizing ALSM intensities. Geosensing Engineering and Mapping (GEM) Center Report No. Rep_2004_07_001, Civil and Coastal Engineering Department, University of Florida, 8 s.. (accessed September 25, 2009) Oggier, T., Lehmann, M., Kaufmann, R., Schweizer, M., Richter, M., Metzler, P., Lang, G., Lustenberger, F. & Blanc, N., An all-solid-state optical range camera for 3D-real-time imaging with sub-centimeter depthresolution (SwissRangerTM). Proc. SPIE Vol. 5249, s Ressl, C., Kager, H. & Mandlburger, G., Quality Checking Of ALS Projects Using Statistics Of Strip Differences. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B3b), s Ressl, C., Mandlburger, G. & Pfeifer, N., Investigating Adjustment of Airborne Laser Scanning Strips Without Usage Of GNSS/IMU Trajectory Data, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 3/W8), s Rönnholm, P., Hyyppä, H., Pöntinen, P., Haggrén, H. & Hyyppä, J., A Method for Interactive Orientation of Digital Images Using Backprojection of 3D Data, the Photogrammetric Journal of Finland, 18(2), s Rönnholm, P., Hyyppä, H., Hyyppä, J. & Haggrén, H., Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks. Sensors, 9, s Schenk, T. & Csathó, B., Fusion of LIDAR data and aerial imagery for a more complete surface description. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34 (3), s Schroeder, W., Forgber, E., & Estable, S., Scannerless laser range camera, Sensor Review, 19(4), s Schwarz, K.P., Integrated airborne navigation systems for photogrammetry. In Fritsch/Hobbie (eds.): Photogrammetric Week 1995, Wichmann Verlag, s Toth, C. & Grejner-Brzezinska, D., Traffic flow estimation from airborne imaging sensors: a performance analysis. ISPRS Workshop "High-Resolution Earth Imaging for Geospatial Information", May, Hannover, Germany, 7 s. (accessed September 9, 2009) Toth, C., Paska, E. & Brzezinska, D., Using pavement markings to support the QA/QC of lidar data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 3/W49B), s Vosselman, G., Analysis of planimetric accuracy of airborne laser scanning surveys. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part 3A), s Yastikli, N., Toth, C. & Brzezinska, D., Multi sensor airborne systems: The potential for in situ sensor calibration. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(Part B1/I), s

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Luento 10: Optinen 3-D mittaus ja laserkeilaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus

Lisätiedot

www.terrasolid.com Kaupunkimallit

www.terrasolid.com Kaupunkimallit www.terrasolid.com Kaupunkimallit Arttu Soininen 03.12.2015 Vuonna 1993 Isoja askeleita 1993-2015 Laserkeilaus helikopterilla/lentokoneella Laserkeilaus paikaltaan GPS+IMU yleistynyt kaikkeen ilmasta mittaukseen

Lisätiedot

Fotogrammetrian termistöä

Fotogrammetrian termistöä Fotogrammetrian termistöä Petri Rönnholm, Henrik Haggrén, 2015 Hei. Sain eilen valmiiksi mukavan mittausprojektin. Kiinnostaako kuulla yksityiskohtia? Totta kai! (Haluan tehdä vaikutuksen tähän kaveriin,

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 12.10.2004) Luento 8: Kolmiointi AIHEITA Kolmiointi Nyrkkisääntöjä Kuvablokki Blokin pisteet Komparaattorit

Lisätiedot

Laserkeilauksen ja kuvauksen tilaaminen

Laserkeilauksen ja kuvauksen tilaaminen www.terrasolid.com Laserkeilauksen ja kuvauksen tilaaminen Arttu Soininen 22.08.2017 Käsiteltävät aiheet Tarjouspyynnössä määrättävät asiat Laserkeilaustyön jakaminen osiin Ajankohdan vaikutus laserkeilaukseen

Lisätiedot

Kymmenen vuotta maastolaserkeilaustutkimusta käytännön kokemuksia

Kymmenen vuotta maastolaserkeilaustutkimusta käytännön kokemuksia Kymmenen vuotta maastolaserkeilaustutkimusta käytännön kokemuksia MMT Ville, Kankare Laserkeilaustutkimuksen huippuyksikkö Metsätieteiden laitos, Helsingin yliopisto Kymmenen vuotta maastolaserkeilaustutkimusta

Lisätiedot

INTENSITEETTITIEDON HYÖDYNTÄMINEN LASERKEILAUKSESSA. mallinnuksen instituutti. sanna.kaasalainen@fgi.fi, antero.kukko@fgi.fi, hannu.hyyppa@aalto.

INTENSITEETTITIEDON HYÖDYNTÄMINEN LASERKEILAUKSESSA. mallinnuksen instituutti. sanna.kaasalainen@fgi.fi, antero.kukko@fgi.fi, hannu.hyyppa@aalto. The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 INTENSITEETTITIEDON HYÖDYNTÄMINEN LASERKEILAUKSESSA Sanna Kaasalainen 1, Antero Kukko 1 ja Hannu Hyyppä 2 1 Geodeettinen Laitos, Kaukokartoituksen

Lisätiedot

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Sanna Kaasalainen Kaukokartoituksen ja Fotogrammetrian Osasto Ilmastonmuutos ja ääriarvot 13.9.2012 Ympäristön Aktiivinen

Lisätiedot

Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Liikennejärjestelmien kuvaaminen laserkeilauksen avulla

Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Liikennejärjestelmien kuvaaminen laserkeilauksen avulla Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Liikennejärjestelmien kuvaaminen laserkeilauksen avulla Paula Ylönen 60375P paula.ylonen(a)tkk.fi Sisällys 1 Johdanto s. 2 2 Laserkeilain

Lisätiedot

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Jan Biström TerraTec Oy TerraTec-ryhmä Emoyhtiö norjalainen TerraTec AS Liikevaihto 2015 noin 13 miljoonaa euroa ja noin 90 työntekijää

Lisätiedot

1. Hankinnan tausta ja tarkoitus

1. Hankinnan tausta ja tarkoitus 1 (5) Liite 5 HANKINNALLE ASETETTUJA VAATIMUKSIA HANKITTAVA PALVELU: LASERKEILAUS JA ORTOKUVAT 2015 KERAVAN, JÄRVENPÄÄN JA TUUSULAN ALUEILTA Lomakkeessa kuvataan hankittava palvelu, sille asetettavia sekä

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

Suuriformaattiset digitaaliset ilmakuvakamerat

Suuriformaattiset digitaaliset ilmakuvakamerat Maa 57.270, Fotogrammetrian, kaukokartoituksen ja kuvantulkinnan seminaari Suuriformaattiset digitaaliset ilmakuvakamerat 2007 Lauri Saarinen Sisällysluettelo 1 Johdanto...3 2 Digitaalinen ilmakuvakamera...3

Lisätiedot

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa Anna Lopatina, Itä-Suomen yliopisto, Metsätieteiden osasto, Anna.lopatina@uef.fi

Lisätiedot

Radanrakentamisen 3D-lähtötietomallin mittaus (Case Jorvas, UAS)

Radanrakentamisen 3D-lähtötietomallin mittaus (Case Jorvas, UAS) RYM PRE InfraFINBIM, Pilottipäivä nro 5, 3.10.2012 VTT, Vuorimiehentie 3, Espoo Radanrakentamisen 3D-lähtötietomallin mittaus (Case Jorvas, UAS) Rauno Heikkilä, Oulun yliopisto Tausta 3D-lähtötietojen

Lisätiedot

LASERKEILAUKSEEN PERUSTUVA 3D-TIEDONKERUU MONIPUOLISIA RATKAISUJA KÄYTÄNNÖN TARPEISIIN

LASERKEILAUKSEEN PERUSTUVA 3D-TIEDONKERUU MONIPUOLISIA RATKAISUJA KÄYTÄNNÖN TARPEISIIN LASERKEILAUKSEEN PERUSTUVA 3D-TIEDONKERUU MONIPUOLISIA RATKAISUJA KÄYTÄNNÖN TARPEISIIN PSK-BIM seminaari 9.5.2014 Jukka Mäkelä, Oy 1 SMARTGEO OY Palvelujen johtoajatuksena on tarkkojen, kattavien ja luotettavien

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

Ryhmät & uudet mahdollisuudet

Ryhmät & uudet mahdollisuudet www.terrasolid.com Ryhmät & uudet mahdollisuudet Arttu Soininen 22.08.2017 Uudet mahdollisuudet ryhmien avulla Parempi maanpinnan yläpuolisten kohteiden luokittelu Maanpäällisten kohteiden luokittelu toimii

Lisätiedot

Luento 13: Ympäristömallien tiedonkeruu

Luento 13: Ympäristömallien tiedonkeruu Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 13: Ympäristömallien tiedonkeruu Luento 13: Ympäristömallien tiedonkeruu 3-D mallien tiedonkeruu Ilmakuvauksen

Lisätiedot

DroneKnowledge Towards knowledge based export of small UAS remote sensing technology Kohti tietämysperusteisen UAS kaukokartoitusteknologian vientiä

DroneKnowledge Towards knowledge based export of small UAS remote sensing technology Kohti tietämysperusteisen UAS kaukokartoitusteknologian vientiä DroneKnowledge Towards knowledge based export of small UAS remote sensing technology Kohti tietämysperusteisen UAS kaukokartoitusteknologian vientiä Tekes Challenge Finland Vaihe 1 Projekti, 1.6-14.11.2016

Lisätiedot

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1 Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset:

MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset: MARV1-11 Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä Metsikkökoealojen puuston mittaukseen käytetty menetelmä, jossa puut etsitään laseraineistosta/ilmakuvilta ja mitataan

Lisätiedot

Tietojenkäsittelytieteen tutkimusmetodit J. Parkkinen, M. Hauta-Kasari & V. Heikkinen

Tietojenkäsittelytieteen tutkimusmetodit J. Parkkinen, M. Hauta-Kasari & V. Heikkinen Multi-scale Geospatial Analysis of Forest Ecosystems Tahko 22.-23.3.2011 Tietojenkäsittelytieteen tutkimusmetodit J. Parkkinen, M. Hauta-Kasari & V. Heikkinen Tutkimus yleisesti Radiometrisen informaation

Lisätiedot

Mittausten suunnittelu I

Mittausten suunnittelu I Mittausten suunnittelu I Eteenpäinleikkaukseen perustuvan mittauksen tarkkuus riippuu kahdesta asiasta (C.S. Fraser, 1996): 1) kuvaus-/tähtäyssäteen määritystarkkuudesta 2) kuvausgeometriasta Saavutettavaa

Lisätiedot

Luento 4 Georeferointi

Luento 4 Georeferointi Luento 4 Georeferointi 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa. Harri Kaartinen , FOREST BIG DATA -hankkeen tulosseminaari

Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa. Harri Kaartinen , FOREST BIG DATA -hankkeen tulosseminaari Maastolaserkeilauksen mahdollisuudet metsävaratiedon hankinnassa ja puunkorjuussa Harri Kaartinen 9.3.2016, FOREST BIG DATA -hankkeen tulosseminaari Maastolaserkeilaus Staattinen laserkeilaus, keilain

Lisätiedot

Maanmittauslaitoksen laserkeilaustoiminta - uusi valtakunnallinen korkeusmalli laserkeilaamalla

Maanmittauslaitoksen laserkeilaustoiminta - uusi valtakunnallinen korkeusmalli laserkeilaamalla Maanmittauslaitoksen laserkeilaustoiminta - uusi valtakunnallinen korkeusmalli laserkeilaamalla Juha Vilhomaa Ilmakuvakeskus MAANMITTAUSLAITOS TIETOA MAASTA Korkeusmallityön taustalla: Yhteiskunnallinen

Lisätiedot

ENY-C2005 Geoinformation in Environmental Modeling Luento 2b: Laserkeilaus

ENY-C2005 Geoinformation in Environmental Modeling Luento 2b: Laserkeilaus 1 ENY-C2005 Geoinformation in Environmental Modeling Luento 2b: Laserkeilaus Petri Rönnholm Aalto-yliopisto 2 Oppimistavoitteet Ymmärtää laserkeilauksen sovelluksia Ymmärtää laserkeilauksen perusteet Tuntea

Lisätiedot

Luento 6: Stereo- ja jonomallin muodostaminen

Luento 6: Stereo- ja jonomallin muodostaminen Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 5.10.2004) Luento 6: Stereo- ja jonomallin muodostaminen AIHEITA Keskinäinen orientointi Esimerkki

Lisätiedot

Biomassatulkinta LiDARilta

Biomassatulkinta LiDARilta Biomassatulkinta LiDARilta 1 Biomassatulkinta LiDARilta Jarno Hämäläinen (MMM) Kestävän kehityksen metsävarapalveluiden yksikkö (REDD and Sustainable Forestry Services) 2 Sisältö Referenssit Johdanto Mikä

Lisätiedot

MAA-C2001 Ympäristötiedon keruu

MAA-C2001 Ympäristötiedon keruu MAA-C2001 Ympäristötiedon keruu Luento 1b Petri Rönnholm, Aalto-yliopisto 1 Laserkeilauksen, fotogrammetrian ja kaukokartoituksen harjoituksista Laserkeilausharjoitus Tarkempi aikataulu julkaistaan lähiaikoina

Lisätiedot

Luento 7: Kuvan ulkoinen orientointi

Luento 7: Kuvan ulkoinen orientointi Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 6.10.2004) Luento 7: Kuvan ulkoinen orientointi AIHEITA Ulkoinen orientointi Suora ratkaisu Epäsuora

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen

Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen Pieksämäen kaupunki, Euref-koordinaatistoon ja N2000 korkeusjärjestelmään siirtyminen Mittausten laadun tarkastus ja muunnoskertoimien laskenta Kyösti Laamanen 2.0 4.10.2013 Prosito 1 (9) SISÄLTÖ 1 YLEISTÄ...

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry)

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) -luennot: --ti 12-14 M5, to 12-14 M5 --Henrik Haggrén (HH), Petteri Pöntinen (PP) 1. Johdanto ja teoreettisia perusteita I,

Lisätiedot

FOTOGRAMMETRINEN PISTETIHENNYS

FOTOGRAMMETRINEN PISTETIHENNYS FOTOGRAMMETRINEN PISTETIHENNYS 1. Yleistä 2. Ilmakuvaus SKM Gisair Oy Työssä määritettiin ulkoinen orientointi Sotkamon kunnan keskustan alueen ilmakuvaukselle. Ilmakuvauksen teki SKM Gisair Oy keväällä

Lisätiedot

ETRS89- kiintopisteistön nykyisyys ja tulevaisuus. Jyrki Puupponen Kartastoinsinööri Etelä-Suomen maanmittaustoimisto

ETRS89- kiintopisteistön nykyisyys ja tulevaisuus. Jyrki Puupponen Kartastoinsinööri Etelä-Suomen maanmittaustoimisto ETRS89- kiintopisteistön nykyisyys ja tulevaisuus Jyrki Puupponen Kartastoinsinööri Etelä-Suomen maanmittaustoimisto Valtakunnalliset kolmiomittaukset alkavat. Helsingin järjestelmä (vanha valtion järjestelmä)

Lisätiedot

Uuden valtakunnallisen laserkeilaukseen perustuvan korkeusmallituotannon käynnistäminen Maanmittauslaitoksessa

Uuden valtakunnallisen laserkeilaukseen perustuvan korkeusmallituotannon käynnistäminen Maanmittauslaitoksessa 28 Uuden valtakunnallisen laserkeilaukseen perustuvan korkeusmallituotannon Maanmittaus 85:2 (2010) Tietoisku Uuden valtakunnallisen laserkeilaukseen perustuvan korkeusmallituotannon käynnistäminen Maanmittauslaitoksessa

Lisätiedot

LASERKEILAUS- JA KUVA-AINEISTOJEN AUTOMAATTINEN TULKINTA KARTTOJEN AJANTASAISTUKSESSA

LASERKEILAUS- JA KUVA-AINEISTOJEN AUTOMAATTINEN TULKINTA KARTTOJEN AJANTASAISTUKSESSA The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 LASERKEILAUS- JA KUVA-AINEISTOJEN AUTOMAATTINEN TULKINTA KARTTOJEN AJANTASAISTUKSESSA Leena Matikainen 1, Juha Hyyppä 1, Kirsi Karila 1, Matti

Lisätiedot

Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla

Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla Ilmakolmioinnin laadunvalvonta fotogrammetristen pintamallien ja laserkeilausaineiston avulla Aalto-yliopiston insinööritieteiden korkeakoulun maankäyttötieteiden laitoksella tehty diplomityö Espoo, toukokuu

Lisätiedot

24.3.2015. Lomakkeessa kuvataan hankittava palvelu, sille asetettavia vaatimuksia sekä hankinnalle asetettavia vaatimuksia.

24.3.2015. Lomakkeessa kuvataan hankittava palvelu, sille asetettavia vaatimuksia sekä hankinnalle asetettavia vaatimuksia. Liite 5 HANKINNALLE ASETETTUJA VAATIMUKSIA HANKITTAVA PALVELU: KAAVAN POHJAKARTTA, MITTAUSLUOKKA 2 Lomakkeessa kuvataan hankittava palvelu, sille asetettavia vaatimuksia sekä hankinnalle asetettavia vaatimuksia.

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Peruskartasta maastotietokantaan

Peruskartasta maastotietokantaan Peruskartasta maastotietokantaan 2.11.2012 Kari Hautamäki Pohjanmaan maanmittaustoimisto Sisältö Merkkipaaluja Tärkeimmät tuotantomenetelmät Toimintaympäristön kehitys Tulevaisuuden näkymiä Merkkipaaluja

Lisätiedot

Luento 5: Stereoskooppinen mittaaminen

Luento 5: Stereoskooppinen mittaaminen Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 5: Stereoskooppinen mittaaminen AIHEITA Etäisyysmittaus stereokuvaparilla Esimerkki: "TKK" Esimerkki: "Ritarihuone"

Lisätiedot

Paikkaontologiat. Tomi Kauppinen ja Jari Väätäinen Aalto-yliopiston teknillinen korkeakoulu tomi.j.kauppinen at gmail.com

Paikkaontologiat. Tomi Kauppinen ja Jari Väätäinen Aalto-yliopiston teknillinen korkeakoulu tomi.j.kauppinen at gmail.com Paikkaontologiat Tomi Kauppinen ja Jari Väätäinen Aalto-yliopiston teknillinen korkeakoulu tomi.j.kauppinen at gmail.com Mihin tarvitaan paikkaontologioita? Jokainen meistä liittyy paikkoihin Esimerkkejä:

Lisätiedot

Väylät, metsät ja kaupungit (piste)pilveen

Väylät, metsät ja kaupungit (piste)pilveen Väylät, metsät ja kaupungit (piste)pilveen COMBAT / Pointcloud-hanke Harri Kaartinen 15.12.2016 Paikkatietoverkoston seminaari Sisältö COMBAT / Pointcloud-hankkeen esittely Esimerkkejä tutkimuksesta Tiet

Lisätiedot

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava Leica ScanStation 2 Laserkeilainten joustavuuden ja nopeuden uusi taso 10-kertainen maksimimittausnopeuden kasvu ja takymetreistä tuttu

Lisätiedot

ja ilmakuvauksen hankinta

ja ilmakuvauksen hankinta HANKEKUVAUS, liite 6 1 /6 Imatran kaupungin 3Dkaupunkimalli: Laserkeilausdatan ja ilmakuvauksen hankinta HANKEKUVAUS ja KILPAILUTUSMENETTELY Vasemmalla rakennuskaavan pohjakarttaa Vuoksenniskalta1930 luvulta,

Lisätiedot

Metsäkoneiden sensoritekniikka kehittyy. Heikki Hyyti, Aalto-yliopisto

Metsäkoneiden sensoritekniikka kehittyy. Heikki Hyyti, Aalto-yliopisto Metsäkoneiden sensoritekniikka kehittyy, Metsäkoneiden sensoritekniikka kehittyy Miksi uutta sensoritekniikkaa? Tarkka paikkatieto metsässä Metsäkoneen ja puomin asennon mittaus Konenäkö Laserkeilaus Tietolähteiden

Lisätiedot

Luento 13: Ympäristömallien tiedonkeruu

Luento 13: Ympäristömallien tiedonkeruu Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 13: Ympäristömallien tiedonkeruu Luento 13: Ympäristömallien tiedonkeruu 3-D mallien tiedonkeruu Ilmakuvauksen

Lisätiedot

Korkeusmallien vertailua ja käyttö nitraattiasetuksen soveltamisessa

Korkeusmallien vertailua ja käyttö nitraattiasetuksen soveltamisessa Korkeusmallien vertailua ja käyttö nitraattiasetuksen soveltamisessa Valtakunnallisesti kattavaa laserkeilausaineistoa ei vielä ole. Kaltevuusmallit perustuvat tällä hetkellä digitaalisen korkeusmallin

Lisätiedot

N2000 korkeusjärjestelmään siirtyminen Kotkan kaupungin valtuustosali 9.10.2015

N2000 korkeusjärjestelmään siirtyminen Kotkan kaupungin valtuustosali 9.10.2015 N2000 korkeusjärjestelmään siirtyminen Kotkan kaupungin valtuustosali 9.10.2015 Sisältöä: Suomessa käytössä olevat valtakunnalliset korkeusjärjestelmät Miksi N2000 - korkeusjärjestelmään siirrytään? Kotkan

Lisätiedot

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Suunnittelija (Maanmittaus DI) 24.1.2018 Raidegeometrian geodeettisen mittaukset osana radan elinkaarta Raidegeometrian geodeettisilla mittauksilla

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Metsätuhoihin liittyvät riskit, kuten kuivuus-, lumi-,

Metsätuhoihin liittyvät riskit, kuten kuivuus-, lumi-, Metsätieteen aikakauskirja 1/2015 Tieteen tori Mikko Vastaranta, Eija Honkavaara, Ninni Saarinen, Markus Holopainen ja Juha Hyyppä Tuuli- ja lumituhojen kartoitus ja mallinnus useampiaikaisten kaukokartoituspintamallien

Lisätiedot

Tiedonkeruun miljoonat pisteet

Tiedonkeruun miljoonat pisteet Tiedonkeruun miljoonat pisteet Arttu Julin, Rakennetun ympäristön mittauksen ja mallinnuksen instituutti, Aalto-yliopisto. arttu.julin@aalto.fi Kaupunkimallit 2017 seminaari 8.11.2017 Rakennetun ympäristön

Lisätiedot

DIGITAALINEN ILMAKUVAUS JA SEN MAHDOLLISUUDET. Eija Honkavaara, Lauri Markelin, Kimmo Nurminen

DIGITAALINEN ILMAKUVAUS JA SEN MAHDOLLISUUDET. Eija Honkavaara, Lauri Markelin, Kimmo Nurminen The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 DIGITAALINEN ILMAKUVAUS JA SEN MAHDOLLISUUDET Eija Honkavaara, Lauri Markelin, Kimmo Nurminen Geodeettinen laitos, Kaukokartoituksen ja fotogrammetrian

Lisätiedot

Oppimistavoitteet. MAA-C2001 Ympäristötiedon keruu. Ymmärtää laserkeilauksen kartoitusprosesseja. Maalaserkeilaus Ilmalaserkeilaus Mobiilikartoitus

Oppimistavoitteet. MAA-C2001 Ympäristötiedon keruu. Ymmärtää laserkeilauksen kartoitusprosesseja. Maalaserkeilaus Ilmalaserkeilaus Mobiilikartoitus MAA-C2001 Ympäristötiedon keruu http://www.youtube.com/watch?v=8ntfjvm9stq Luento 7, 2017 Petri Rönnholm, Aalto-yliopisto 1 Oppimistavoitteet Ymmärtää laserkeilauksen kartoitusprosesseja Maalaserkeilaus

Lisätiedot

Mittaaminen projektipäällikön ja prosessinkehittäjän työkaluna

Mittaaminen projektipäällikön ja prosessinkehittäjän työkaluna Mittaaminen projektipäällikön ja prosessinkehittäjän työkaluna Finesse-seminaari 22.03.00 Matias Vierimaa 1 Mittauksen lähtökohdat Mittauksen tulee palvella sekä organisaatiota että projekteja Organisaatiotasolla

Lisätiedot

Miehittämättömän ilma-aluksen käyttö toimitustuotannon kartoitustyössä

Miehittämättömän ilma-aluksen käyttö toimitustuotannon kartoitustyössä Miehittämättömän ilma-aluksen käyttö toimitustuotannon kartoitustyössä Jussi Syväjärvi Maanmittauslaitos Maanmittauspäivät 2017 Ilmakuva Fiskari / MML Esityksen sisältö UAV UAS RPAS-Drone-Lennokki? Termit

Lisätiedot

Ilmalaserkeilausaineiston prosessointi

Ilmalaserkeilausaineiston prosessointi GIS-E1020 From measurements to maps Luento 8 Ilmalaserkeilausaineiston prosessointi Petri Rönnholm Aalto University 1 Oppimiatavoitteet Tiedostaa ilmalaserkeilauksen virhelähteet Ymmärtää, miten ilmalaserkeilauksen

Lisätiedot

Maanmittauspäivät 2014 Seinäjoki

Maanmittauspäivät 2014 Seinäjoki Maanmittauspäivät 2014 Seinäjoki Parempaa tarkkuutta satelliittimittauksille EUREF/N2000 - järjestelmissä Ympäristösi parhaat tekijät 2 EUREF koordinaattijärjestelmän käyttöön otto on Suomessa sujunut

Lisätiedot

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely)

Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Epätäydellisen preferenssi-informaation huomioon ottavien päätöksenteon tukimenetelmien vertailu (aihe-esittely) Vilma Virasjoki 23.01.2012 Ohjaaja: Jouni Pousi Valvoja: Raimo P. Hämäläinen Työn saa tallentaa

Lisätiedot

Pitkän kantaman aktiivinen hyperspektraalinen laserkeilaus

Pitkän kantaman aktiivinen hyperspektraalinen laserkeilaus Pitkän kantaman aktiivinen hyperspektraalinen laserkeilaus MATINE:n Tutkimusseminaari, 18.11.2015 Helsinki Sanna Kaasalainen, Olli Nevalainen, Teemu Hakala Paikkatietokeskus Sisällys Taustaa Multispektraaliset

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

Puukarttajärjestelmä hakkuun tehostamisessa. Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola

Puukarttajärjestelmä hakkuun tehostamisessa. Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola Puukarttajärjestelmä hakkuun tehostamisessa Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola Tavoite Tutkimuksessa selvitettiin hakkuukoneeseen kehitetyn puukarttajärjestelmän (Optical Tree Measurement

Lisätiedot

Riistapäivät 2015 Markus Melin Itä Suomen Yliopisto Metsätieteiden osasto markus.melin@uef.fi

Riistapäivät 2015 Markus Melin Itä Suomen Yliopisto Metsätieteiden osasto markus.melin@uef.fi Riistapäivät 2015 Markus Melin Itä Suomen Yliopisto Metsätieteiden osasto markus.melin@uef.fi Laserkeilaus pähkinänkuoressa Aktiivista kaukokartoitusta, joka tuottaa 3D aineistoa (vrt. satelliitti- ja

Lisätiedot

4G LTE-verkkojen sisätilakuuluvuusvertailu 1H2014

4G LTE-verkkojen sisätilakuuluvuusvertailu 1H2014 4G LTE-verkkojen sisätilakuuluvuusvertailu 1H2014 27. kesäkuuta 2014 Omnitele Ltd. Mäkitorpantie 3B P.O. Box 969, 00101 Helsinki Finland Puh: +358 9 695991 Fax: +358 9 177182 E-mail: contact@omnitele.fi

Lisätiedot

Uutta Terra-ohjelmissa

Uutta Terra-ohjelmissa www.terrasolid.com Uutta Terra-ohjelmissa Arttu Soininen 03.12.2015 Uutta tiekohteisiin viimeisinä vuosina Parannuksia mobiilidatan sijainnin parantamiseen Uusia työkaluja lopputuotteiden tekemiseen, esim.

Lisätiedot

Laserkeilauksen perusteita ja mittauksen suunnittelu

Laserkeilauksen perusteita ja mittauksen suunnittelu Laserkeilauksen perusteita ja mittauksen suunnittelu Vahur Joala Leica Nilomark Oy Sinimäentie 10 C, PL 111, 02631 Espoo Puh. (09) 615 3555, Fax (09) 502 2398 geo@leica.fi, www.leica.fi 1. Laserkeilain

Lisätiedot

Laserkeilaus suunnistuskartoituksessa

Laserkeilaus suunnistuskartoituksessa Laserkeilaus suunnistuskartoituksessa Uusi mahdollisuus pohjaaineistoksi Suunnistuskartoittajien talvipäivä 16.2.2008, Jussi Silvennoinen Laserkeilauksen periaate Laserkeilain muistuttaa tutkaa Keilain

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS TERMINATOR SIGNAALINKÄSITTELY KUVA VOIDAAN TULKITA KOORDINAATTIEN (X,Y) FUNKTIONA. LÄHDE: S. SEITZ VÄRIKUVA KOOSTUU KOLMESTA KOMPONENTISTA (R,G,B). ÄÄNI VASTAAVASTI MUUTTUJAN

Lisätiedot

SIMO tutkimuskäytössä. SIMO seminaari 23. maaliskuuta 2011 Antti Mäkinen Simosol Oy

SIMO tutkimuskäytössä. SIMO seminaari 23. maaliskuuta 2011 Antti Mäkinen Simosol Oy SIMO tutkimuskäytössä SIMO seminaari 23. maaliskuuta 2011 Antti Mäkinen Simosol Oy Alkuvaiheet SIMOn juuret Helsingin Yliopiston metsävarojen käytön laitoksella mahdollistivat ohjelmiston luontevan soveltamisen

Lisätiedot

Nurmisadon mittaamisen käytäntö ja nykyteknologia. Antti Suokannas Vihreä teknologia Automatisaatio ja digitaaliset ratkaisut

Nurmisadon mittaamisen käytäntö ja nykyteknologia. Antti Suokannas Vihreä teknologia Automatisaatio ja digitaaliset ratkaisut Nurmisadon mittaamisen käytäntö ja nykyteknologia Antti Suokannas Vihreä teknologia Automatisaatio ja digitaaliset ratkaisut Esityksen sisältö Yleistä mittaamisesta Sadon määrän lohkokohtainen mittaus

Lisätiedot

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset Luento 3 Kuvaus- ja mittauskalusto 1 Aiheita Mittakamerat Digitaaliset kamerat Komparaattorit Ohjelmistot 2 Photogrammetry 1907 27 stations 111 photographs 7 geodetic control points 3 Photogrammetric documentation

Lisätiedot

Maanmittauslaitoksen uusi valtakunnallinen korkeusmalli laserkeilaamalla

Maanmittauslaitoksen uusi valtakunnallinen korkeusmalli laserkeilaamalla Maanmittauslaitoksen uusi valtakunnallinen korkeusmalli laserkeilaamalla MML:n korkeusmalliprosessin taustalla: Yhteiskunnallinen tarve tarkemmalle korkeustiedolle Tulvadirektiivi, Meludirektiivi Lentokenttäkartat,

Lisätiedot

iwitness-harjoitus, kohteen mallinnus

iwitness-harjoitus, kohteen mallinnus Maa-57.1010, Johdanto valokuvaukseen, fotogrammetriaan ja kaukokartoitukseen iwitness-harjoitus, kohteen mallinnus Harjoituksen kulku tiivistettynä A. Aloitustilaisuus 29.1. klo 14.15. B. Mallinnuskuvien

Lisätiedot

Puun kasvu ja runkomuodon muutokset

Puun kasvu ja runkomuodon muutokset Puun kasvu ja runkomuodon muutokset Laserkeilaus metsätieteissä 6.10.2017 Ville Luoma Helsingin yliopisto Centre of Excellence in Laser Scanning Research Taustaa Päätöksentekijät tarvitsevat tarkkaa tietoa

Lisätiedot

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta Pasi Raumonen, Mikko Kaasalainen ja Markku Åkerblom Tampereen teknillinen ylipisto, Matematiikan laitos

Lisätiedot

Laserkeilaimen valinta lähifotogrammetrisiin mittaustehtäviin

Laserkeilaimen valinta lähifotogrammetrisiin mittaustehtäviin Maa-57.290 Fotogrammetrian erikoistyö Laserkeilaimen valinta lähifotogrammetrisiin mittaustehtäviin Lokakuu 2005 Antero Kukko Sisällys 1. Johdanto 4 2. Laserkeilaimet lähifotogrammetrisissa mittauksissa

Lisätiedot

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa

Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Gammaspektrometristen mittausten yhdistäminen testbed-dataan inversiotutkimuksessa Satu Kuukankorpi, Markku Pentikäinen ja Harri Toivonen STUK - Säteilyturvakeskus Testbed workshop, 6.4.2006, Ilmatieteen

Lisätiedot

Puulajitulkinta laserdatasta

Puulajitulkinta laserdatasta Ilmakuvien tarve metsäsuunnittelussa? Taksaattoriklubin seminaari, Paikkatietomarkkinat 2009 Puulajitulkinta laserdatasta Jari Vauhkonen Esityksen sisältöä Millaista (puulaji-)tietoa laserkeilaindata sisältää?

Lisätiedot

Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI)

Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI) Forest Big Data (FBD) -tulosseminaari 8.3.2016 Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI) Markus Holopainen, Aluepohjaista inventointia vai yksinpuintulkintaa?

Lisätiedot

Puuston muutoksen määritys laserkeilauksen avulla

Puuston muutoksen määritys laserkeilauksen avulla Maa-57.270, Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Puuston muutoksen määritys laserkeilauksen avulla 2005 JYRKI PUUPPONEN Teknillinen korkeakoulu Maanmittausosasto jyrki.puupponen@hut.fi

Lisätiedot

Laserkeilaus puustotunnusten arvioinnissa

Laserkeilaus puustotunnusten arvioinnissa Uusi Teknologia mullistaa puun mittauksen Metsäpäivät 7.11.2008 Laserkeilaus puustotunnusten arvioinnissa Markus Holopainen Helsingin yliopisto Metsävarojen käytön laitos markus.holopainen@helsinki.fi

Lisätiedot

Analyysiraporttien kirjoittaminen SYN:n bibliometriikkaseminaari 2, Julkaisutoiminnan arviointi. Tampereen teknillinen yliopisto

Analyysiraporttien kirjoittaminen SYN:n bibliometriikkaseminaari 2, Julkaisutoiminnan arviointi. Tampereen teknillinen yliopisto Analyysiraporttien kirjoittaminen SYN:n bibliometriikkaseminaari 2, Julkaisutoiminnan arviointi Leena Huiku Tampereen teknillinen yliopisto 12.3.2013 TTY:n tutkimuksen arviointi TUT RAE 2010-2011 2 5 paneelia,

Lisätiedot

LASERKEILAUKSEN HYÖDYNTÄMINEN KUNNAN SUUNNITTELU- JA MITTAUSTOIMINNASSA

LASERKEILAUKSEN HYÖDYNTÄMINEN KUNNAN SUUNNITTELU- JA MITTAUSTOIMINNASSA OPINNÄYTETYÖ JUHO LAMPINEN 2011 LASERKEILAUKSEN HYÖDYNTÄMINEN KUNNAN SUUNNITTELU- JA MITTAUSTOIMINNASSA MAANMITTAUSTEKNIIKAN KOULUTUSOHJELMA ROVANIEMEN AMMATTIKORKEAKOULU TEKNIIKAN JA LIIKENTEEN ALA Maanmittaustekniikan

Lisätiedot

Maa Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Yhteensovitus ja kohdetiedon irrotus SAR- ja optisen alueen datasta

Maa Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Yhteensovitus ja kohdetiedon irrotus SAR- ja optisen alueen datasta Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Yhteensovitus ja kohdetiedon irrotus SAR- ja optisen alueen datasta Kevät 2006 Jonne Davidsson 1 Johdanto... 3 2 Aineistojen yhteensovitus

Lisätiedot

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 6: EUREF-FIN:n ja KKJ:n välinen kolmiulotteinen yhdenmuotoisuusmuunnos ja sen tarkkuus Versio: 1.0 / 3.2.2016

Lisätiedot

Maa-57.1030 Fotogrammetrian perusteet

Maa-57.1030 Fotogrammetrian perusteet Maa-57.1030 Fotogrammetrian perusteet Luento 8 Kartoitussovellukset Petri Rönnholm/Henrik Haggrén Mitä fotogrammetrisella kartoituksella tuotetaan? 3D koordinaatteja kohteesta Maaston korkeusmalli Topograafiset

Lisätiedot

TERRASOLID Point Cloud Intelligence

TERRASOLID Point Cloud Intelligence www.terrasolid.com TERRASOLID Point Cloud Intelligence Kaupunkimallin visualisointikäyttö Kimmo Soukki 22.8.2017 Sisältö Rakennusten teksturointi Renderöinnit yksittäisiin kuviin ja videoiksi Suunnitteluaineiston

Lisätiedot

PIKSELEITÄ JA PISTEPILVIÄ - KUVAUKSEN UUDET ULOTTUVUUDET

PIKSELEITÄ JA PISTEPILVIÄ - KUVAUKSEN UUDET ULOTTUVUUDET PIKSELEITÄ JA PISTEPILVIÄ - KUVAUKSEN UUDET ULOTTUVUUDET Maanmittaustieteiden päivien järjestelytoimikunta on valinnut tämän vuoden aiheeksi kuvauksen sen monissa eri muodoissa. Aiheet liittyvät ilmakuvaukseen,

Lisätiedot

Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus

Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus Janne Uuttera Metsätehon seminaari 8.5.2007 Metsävaratietojärjestelmien tulevaisuus Tausta Tietojohtamisen välineissä, kuten metsävaratietojärjestelmissä,

Lisätiedot

Kaukokartoitusmenetelmät jokiympäristössä

Kaukokartoitusmenetelmät jokiympäristössä Kaukokartoitusmenetelmät jokiympäristössä Claude Flener Fluvial Research Group Maantieteen ja Geologian laitos Turun Yliopisto Laaserikeilaus- ja korkeusmalliseminaari 2011 Korkeusmallit jokitutkimuksessa

Lisätiedot