Mittausten suunnittelu I

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Mittausten suunnittelu I"

Transkriptio

1 Mittausten suunnittelu I

2 Eteenpäinleikkaukseen perustuvan mittauksen tarkkuus riippuu kahdesta asiasta (C.S. Fraser, 1996): 1) kuvaus-/tähtäyssäteen määritystarkkuudesta 2) kuvausgeometriasta

3 Saavutettavaa tarkkuutta voidaan arvioida seuraavan kaavan avulla: c = q q d q s = = d a k k c k c kohdekoordinaatin keskivirhe s a mittakaavaluku kuvakoordinaatin keskivirhe kulmamittauksen keskivirhe q kuvausgeometriasta riippuva kerroin vahvalle geometrialle, 1.5 heikohkolle jne. kohteen keskimääräinen etäisyys kamerasta kameran polttoväli kuvien lukumäärä per kamera asema d c k

4 Taulukko: C. S. Fraser.

5 Suunnittelun reunaehdot: 1) Kuvamittakaava -- eteenpäinleikkauksen tarkkuus on suoraan verrannollinen kuvamittakaavaan (polttovälin suhde kohteen ja kameran väliseen etäisyyteen) -- tavoiteltaessa tiettyä tarkkuutta voidaan kameran maksimietäisyyttä kohteesta arvioida seuraavan kaavan avulla: c c k d max = q 2) Erotuskyky (resoluutio) -- erotuskyvyn pitää olla riittävä jotta kuvakoordinaattien mittaus on mahdollista halutulla tarkkuudella -- myös mitattavien kohteiden (tähysten tai muiden yksityiskohtien) on oltava kooltaan sopivia

6 Suunnittelun reunaehdot: 3) Tila -- jos kuvaamiseen käytettävä tila on hyvin rajallinen, voidaan joutua turvautumaan laajakulmaisempaan optiikkaan ja kamera-asemien lisäämiseen 4) Kameran syvyysterävyysalue -- tärkeä eteenkin ei-tasomaisissa kappaleissa -- kameran aukkoa pienentämällä saadaan lisää syvyysterävyyttä, mutta tällöin joudutaan pidentämään valotusaikaa tai lisäämään valaistusta 5) Tähtäyskulma (incidence angle) -- esim. ristinmuotoisten tähysten keskipisteen määrittäminen saattaa olla vaikeaa, jos ne on kuvattu hyvin viistosta kulmasta

7 Suunnittelun reunaehdot: 6) Pisteiden määrä ja jakauma kuvilla -- sitä parempi mitä enemmän pisteitä ja mitä tasaisemmin ne ovat jakautuneet koko kuvan alueelle -- tasainen jakautuminen on erityisen tärkeää, jos kameran kalibrointiparametrit määritetään kuvauksen yhteydessä (itsekalibrointi) 7) Kuvasäteiden leikkauskulma -- optimaalinen n. 110 ± 30 8) Kameran avauskulma -- vaikuttaa kuvausetäisyyteen ja kuvien lukumäärään -- mittaus on sitä taloudellisempaa mitä suurempi osa kaikista pisteistä yksittäisillä kuvilla näkyy 9) Näkyvyys -- katveet Kuva: C. S. Fraser.

8 Suunnittelun vaiheet: E. Grafarend on jakanut geodeettisten verkkojen suunnittelun neljään vaiheeseen: - zero-order design (ZOD) -- datum - first-order design (FOD) -- konfiguraatio - second-order design (SOD) -- painotus - third-order design (TOD) -- tihennys Samaa jakoa on ryhdytty käyttämään myös fotogrammetriassa. Tosin TOD ei ole lähifotogrammetriassa kovinkaan oleellinen, ja sekä ZOD että SOD ovat myös huomattavasti yksinkertaisempia kuin geodeettisissa verkoissa.

9 - yleensä mittauksessa on tärkeintä, että mitattujen pisteiden tarkkuus on mahdollisimman hyvä - estimaatit pisteiden tarkkuuksille saadaan muodostamalla ratkaistuille parametreille kovarianssimatriisi: T 1 C x= 0 A P A = C 1 C 12 C 21 C 2 - yllä olevassa yhtälössä C1 sisältää ulkoisen orientoinnin ja kameran parametrien varianssit ja C2 mitattujen pisteiden varianssit - mittausten suunnittelulla pyritään siis saamaan C2 halutunlaiseksi

10 ZOD (datumin valinta): -- 3D-pisteistöä voidaan siirtää, kiertää ja skaalata 7-parametrisella muunnoksella ilman, että sen muoto muuttuu -- nämä siirrot, kierrot ja mittakaava määrittävät pisteistön datumin -- ZOD tulee kysymykseen vain siinä tapauksessa, että datum on määritetty minimiehdoin (esim. kiinnitetään kaksi pistettä (X, Y ja Z) ja yksi korkeus) -- se seikka, mitkä pisteet on kiinnitetty vaikuttaa A-matriisiin, jolloin myös kovarianssimatriisi Cx muuttuu -- ZOD tähtää sellaiseen datumiin, missä Cx on halutunlainen (esim. niin, että tarkkuus on tietyissä pisteissä mahdollisimman hyvä tai että tarkkuus on mahdollisimman homogeeninen kaikissa pisteissä)

11 (esimerkki): - antenni (D=10m) - 6 (filmi)kameraa - kuvakoko 23cm x 23cm - hyvä kuvausgeometria - kaikki pisteet näkyvissä kaikille kameroille - kuvamittauksen keskivirheeksi oletettu 1.5 m Kuva: C. S. Fraser.

12 Vasemmassa sarakkeessa kahdesta ensimmäisestä pisteestä on kiinnitetty X, Y ja Z, ja kolmannesta Z. Kuva ja taulukko: C. S. Fraser.

13 Johtopäätökset: - optimaalinen tulos saadaan, kun kolmen kiinnitetyn pisteen (2*(XYZ)+Z) muodostaman kolmion keskipiste on pistejoukon keskipisteessä, kolmion pinta-ala on mahdollisimman suuri ja kun kahden XYZ-koordinaateiltaan kiinnitetyn pisteen välimatka on mahdollisimman suuri - datumin muuttaminen aiheuttaa myös vaihtelua varianssien homogeenisuuteen (paras tulos vapaan verkon tapauksessa) -- varianssit pienimpiä kiinnitettyjen pisteiden lähellä ja suurimpia pisteissä jotka ovat niistä kauimpana

14 FOD (konfiguraatio): 1) Kuvausgeometria -- ohessa on esitetty eri konvergenssikulmien ja kamera-asemien lukumäärän vaikutus saavutettavaan tarkkuuteen Kuvat: C. S. Fraser.

15 2) Kantasuhde -- kannan kasvattaminen parantaa syvyyssunnassa saavutettavaa tarkkuutta edullisemman leikkauskulman ansiosta 3) Kamera-asemien lukumäärä -- kamera-asemien lisääminen parantaa tarkkuutta ja luotettavuutta -- vaikuttaa kuvausgeometrian suunnitteluun -- jos käytössä on m kameraa, on saavutettava tarkkuus m1/2 parempi kuin kahta kameraa käyttämällä 4) Kuvien lukumäärä / kamera-asema -- tärkeä videokameroita käytettäessä (satunnaisten kuvavirheiden kompensointi)

16 5) Pisteiden lukumäärä ja jakauma -- kts. suunnittelun reunaehdot 6) Kuvamittakaava ja polttoväli -- kuvamittakaavan ja mitattujen pisteiden tarkkuuden välillä on lineaarinen riippuvuus -- kts. suunnittelun reunaehdot 7) Kalibrointiparametrit -- yliparametrisointia varottava -- vankka geometria ja riittävä määrä pisteitä auttavat erottamaan tilastollisesti merkittävät ja merkityksettömät parametrit

17 SOD (painotus): Fotogrammetrisissa mittauksissa kuvahavainnoilla on yleensä sama paino: P= I 2 Painoyksikön keskivirheeseen (kuvamittauksen tarkkuuteen) voi vaikuttaa: -- tähysten valinnalla -- lisäämällä kuvien lukumäärää / kuva-asema (keskiarvoistus) -- resoluution lisäämisellä -- filmimittauksissa käyttämällä tarkempaa komparaattoria -- jne. TOD (tihennys): Fotogrammetrisissa mittauksissa TOD voidaan katsoa olevan osa FOD:ia.

18 Simulointi: Kuva: C. S. Fraser.

19 Tähysten valinta: A) Muoto Pyöreä tähys soveltuu automaattiseen mittaamiseen paremmin kuin esim. ristin muotoinen. B) Koko - vain muutaman pikselin kokoisen tähyksen keskipisteen paikka on hankala määrittää - liian suurta tähystä vääristävät piirtovirheet

20 C) Materiaali ja väri - hyviä vaihtoehtoja ovat mattapintaiset tai heijastavapintaiset tähykset - kiiltäväpintaisia tulee välttää - tähyksen erottamiseksi taustasta voi olla hyvä käyttää sopivan väristä taustalevyä - väriyhdistelmistä esim. musta ja valkoinen tai musta ja keltainen ovat hyviä - heijastavia tähyksiä käytettäessä on varottava ylivalottumista Liian voimakas valo aiheuttaa heijastavien tähysten ylivalottumisen.

21 D) Nimikointi - numero tai muu koodaus Kuva: F. A. van den Heuvel et al. Kuva: S. Hattori et al. Kuva: R. Goudard et al. Kuva: S. Hattori et al.

22 Pisteen numero: 20+23=9

23 E) Laserpiste - kätevä tapa osoittaa suuri määrä pisteitä kohteen pinnasta - laserpisteen muoto on riippuvainen pinnanmuodosta - häilyntä (speckle) tekee pisteestä epähomogeenisen

24 Kynnystys: - kynnystys vaikuttaa tähyksen keskipisteen sijaintiin Vasemmanpuoleisessa kuvassa kynnysarvo on 40 ja oikeanpuoleisessa 85.

25 Vasemmanpuoleisessa kuvassa kynnysarvo on 140 ja oikeanpuoleisessa 185.

26 Pisteen keskikohdan x- ja y-koordinaatin muuttuminen kynnysarvon funktiona.

27 Keskipisteen liike kynnysarvoa muutettaessa. Oikea arvo lienee oikeassa alakulmassa.

28 Valaistuksen säätö: - alivalottuneista kuvista tulee kohinaisia - suurempi aukko pienentää syvyysterävyysaluetta - pitkä valotusaika vaatii vakaan kameran - heijastavia tähyksiä käytettäessä voidaan tausta häivyttää alivalottamalla kuva (tähykset kuitenkin näkyvät kirkkaina) Oikeanpuoleinen kuva on selvästi alivalottunut ja siitä johtuen kohinainen.

29 Tiivistys: - jos käytetään tiivistysmenetelmiä, joissa kuva ei säily täysin alkuperäisen kaltaisena (esim. jpeg), on liiallista tiivistämistä syytä välttää Vasemmanpuoleisen kuvan tiivistyssuhde on 1:4 ja oikeanpuoleisen 1:80.

30 Orientointiparametrien likiarvojen hankinta: - kameroiden likimääräiset paikat voidaan määrittää esim. takymetrillä - yleensä kuitenkin käytetään tunnettuja pisteitä (joko likimääräisiä tai tarkkoja) ja esim. DLT:tä orientointien ratkaisuun - jos kuvausgeometria on hyvä, riittää kun projektiokeskusten likiarvosijainnit ovat kohteen oikealla puolella ja kierrot ovat n. 45 asteen tarkkuudella oikeat Kuva: S. Hattori et al. Kuva:

31 Kohteen näkyvöitys: - piste, pisteistö, viivasto, ruudusto, muu tekstuuri - läpinäkyvät kohteet hankalia -- esim. tuulilasin sisään jäävä piimaakerros saadaan näkyviin tietyllä valon aallonpituudella

32 Lähteet: C. S. Fraser: Network design, Close-Range Photogrammetry and Machine Vision, K. B. Atkinson (Ed), Whittles Publishing, 1996, pp C. S. Fraser: Optimization of Networks in Non-Topographic Photogrammetry, NonTopographic Photogrammetry, H. M. Karara (Ed.), Second Edition, ASPRS, 1989, pp C. S. Fraser: Network Design Consideration for Non-Topographic Photogrammetry, Photogrammetric Engineering and Remote Sensing, Vol. 50, No. 8, August 1984, pp F. A. van den Heuvel, R. J. G. A. Kroon, R. S. Le Poole: Digital Close-Range Photogrammetry Using Artificial Targets, 17th ISPRS Congress, Proceedings, Commission V, Washington, USA. R. Goudard, C. Lasseur, D. Mergelkuhl: Digital Photogrammetry Applied to Large Physics Detectors, Surveying in Industry and Construction, WorkingWeek 2003, Paris, France. S. Hattori, K. Akimoto, C. Fraser, H. Imoto: Automated Procedures with Coded Targets in Industrial Vision Metrology, Photogrammetric Engineering and Remote Sensing, Vol. 68, No. 5, May 2002.

Luento 6 Mittausten suunnittelu II. erikoissovellukset

Luento 6 Mittausten suunnittelu II. erikoissovellukset Luento 6 Mittausten suunnittelu II 1 Aiheita Mittausongelman määrittely Tarkkuusluvut Suhteellinen tarkkuusluku Suhteellinen tarkkuus Tarkkuuden arvioiminen Kuvahavainnon keskivirhe Verkon rakennevakio

Lisätiedot

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP

Maa-57.260. Kameran kalibrointi. TKK/Fotogrammetria/PP Kameran kalibrointi Kameran kalibroinnilla tarkoitetaan sen kameravakion, pääpisteen paikan sekä optiikan aiheuttamien virheiden määrittämistä. Virheillä tarkoitetaan poikkeamaa ideaalisesta keskusprojektiokuvasta.

Lisätiedot

Luento 6: 3-D koordinaatit

Luento 6: 3-D koordinaatit Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 6: 3-D koordinaatit AIHEITA (Alkuperäinen luento: Henrik Haggrén, 16.2.2003, Päivityksiä: Katri Koistinen 5.2.2004

Lisätiedot

Luento 4 Georeferointi

Luento 4 Georeferointi Luento 4 Georeferointi 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 7: Fotogrammetrinen mittausprosessi

Luento 7: Fotogrammetrinen mittausprosessi 7Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 7.2.2003, Päivityksiä: Katri Koistinen, 5.2.2004 ) Luento 7: Fotogrammetrinen mittausprosessi

Lisätiedot

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1

Luento 4 Georeferointi Maa Fotogrammetrian perusteet 1 Luento 4 Georeferointi 2007 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Georeferointi käsitteenä Orientoinnit Stereokuvaparin mittaus Stereomallin ulkoinen orientointi (= absoluuttinen orientointi)

Lisätiedot

Luento 5: Stereoskooppinen mittaaminen

Luento 5: Stereoskooppinen mittaaminen Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 5: Stereoskooppinen mittaaminen AIHEITA Etäisyysmittaus stereokuvaparilla Esimerkki: "TKK" Esimerkki: "Ritarihuone"

Lisätiedot

Fotogrammetrian termistöä

Fotogrammetrian termistöä Fotogrammetrian termistöä Petri Rönnholm, Henrik Haggrén, 2015 Hei. Sain eilen valmiiksi mukavan mittausprojektin. Kiinnostaako kuulla yksityiskohtia? Totta kai! (Haluan tehdä vaikutuksen tähän kaveriin,

Lisätiedot

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1

Luento 2 Stereokuvan laskeminen. 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Luento 2 Stereokuvan laskeminen 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Aiheet Stereokuvan laskeminen stereokuvan piirto synteettisen stereokuvaparin tuottaminen laskemalla stereoelokuva kollineaarisuusyhtälöt

Lisätiedot

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry)

Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) Maa-57.260 Fotogrammetrian erikoissovellutukset (Close-Range Photogrammetry) -luennot: --ti 12-14 M5, to 12-14 M5 --Henrik Haggrén (HH), Petteri Pöntinen (PP) 1. Johdanto ja teoreettisia perusteita I,

Lisätiedot

Luento Fotogrammetrian perusteet. Henrik Haggrén

Luento Fotogrammetrian perusteet. Henrik Haggrén Luento 8 6.5.2016 Fotogrammetrian perusteet Henrik Haggrén Sisältö Fotogrammetrinen kuvaaminen Avaruussuorat ja sädekimput Sisäinen ja ulkoinen orientointi Kollineaarisuusehto kohteen ja kuvan välillä

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 6 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 6 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen

Luento 9 3-D mittaus. fotogrammetriaan ja kaukokartoitukseen Luento 9 3-D mittaus 1 Luennot 2008 JOHDANTO Koko joukko kuvia! Kuvien moniulotteisuus. LUENNOT I. Kuvien ottaminen Mitä kuvia ja miten? Mitä kuvista nähdään? II. III. IV. Kuvien esikäsittely Miten kartoituskuvat

Lisätiedot

Luento 7: Kuvan ulkoinen orientointi

Luento 7: Kuvan ulkoinen orientointi Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 6.10.2004) Luento 7: Kuvan ulkoinen orientointi AIHEITA Ulkoinen orientointi Suora ratkaisu Epäsuora

Lisätiedot

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10

Luento 8: Kolmiointi AIHEITA. Kolmiointi. Maa-57.301 Fotogrammetrian yleiskurssi. Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 12.10.2004) Luento 8: Kolmiointi AIHEITA Kolmiointi Nyrkkisääntöjä Kuvablokki Blokin pisteet Komparaattorit

Lisätiedot

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen

Luento 5 Mittakuva. fotogrammetriaan ja kaukokartoitukseen Luento 5 Mittakuva 1 Aiheita Mittakuva Muunnokset informaatiokanavassa. Geometrisen tulkinnan vaihtoehdot. Stereokuva, konvergentti kuva. Koordinaatistot. Kuvien orientoinnit. Sisäinen orientointi. Ulkoinen

Lisätiedot

Luento 6: Stereo- ja jonomallin muodostaminen

Luento 6: Stereo- ja jonomallin muodostaminen Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 5.10.2004) Luento 6: Stereo- ja jonomallin muodostaminen AIHEITA Keskinäinen orientointi Esimerkki

Lisätiedot

TTY Mittausten koekenttä. Käyttö. Sijainti

TTY Mittausten koekenttä. Käyttö. Sijainti TTY Mittausten koekenttä Käyttö Tampereen teknillisen yliopiston mittausten koekenttä sijaitsee Tampereen teknillisen yliopiston välittömässä läheisyydessä. Koekenttä koostuu kuudesta pilaripisteestä (

Lisätiedot

Luento 4: Kiertomatriisi

Luento 4: Kiertomatriisi Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 28.9.2004) Luento 4: Kiertomatriisi Mitä pitäisi oppia? ymmärtää, että kiertomatriisilla voidaan kiertää koordinaatistoa ymmärtää, että

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta

JUHTA - Julkisen hallinnon tietohallinnon neuvottelukunta JHS 197 EUREF-FIN -koordinaattijärjestelmät, niihin liittyvät muunnokset ja karttalehtijako Liite 6: EUREF-FIN:n ja KKJ:n välinen kolmiulotteinen yhdenmuotoisuusmuunnos ja sen tarkkuus Versio: 1.0 / 3.2.2016

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI. VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn

Lisätiedot

Suuriformaattiset digitaaliset ilmakuvakamerat

Suuriformaattiset digitaaliset ilmakuvakamerat Maa 57.270, Fotogrammetrian, kaukokartoituksen ja kuvantulkinnan seminaari Suuriformaattiset digitaaliset ilmakuvakamerat 2007 Lauri Saarinen Sisällysluettelo 1 Johdanto...3 2 Digitaalinen ilmakuvakamera...3

Lisätiedot

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta

Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Raidegeometrian geodeettiset mittaukset osana radan elinkaarta Suunnittelija (Maanmittaus DI) 24.1.2018 Raidegeometrian geodeettisen mittaukset osana radan elinkaarta Raidegeometrian geodeettisilla mittauksilla

Lisätiedot

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1

Luento 5. Stereomittauksen tarkkuus Maa Fotogrammetrian perusteet 1 Luento 5 Stereomittauksen tarkkuus 2008 Maa-57.1030 Fotogrammetrian perusteet 1 Sisältö Stereokuvauksen * tarkkuuteen vaikuttavat asiat tarkkuuden arviointi, kuvauksen suunnittelu ja simulointi stereomallin

Lisätiedot

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus

Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 27.9.2005) Luento 5: Kuvakoordinaattien laskeminen ja eteenpäinleikkaus Mitä pitäsi oppia? Nyt pitäisi viimeistään ymmärtää, miten kollineaarisuusyhtälöillä

Lisätiedot

Luento 11: Stereomallin ulkoinen orientointi

Luento 11: Stereomallin ulkoinen orientointi Maa-57.300 Fotogrammetrian perusteet Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 (Alkuperäinen luento: Henrik Haggrén, 17.2.2003, Päivityksiä: Katri Koistinen, 23.2.2004 ) Luento 11: Stereomallin ulkoinen

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Luento 3: Kuvahavainnot

Luento 3: Kuvahavainnot Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 22.9.2004) Luento 3: Kuvahavainnot Mitä pitäsi oppia? Viimeistään nyt pitäisi ymmärtää kuva-, komparaattori- ja kamerakoordinaatistojen

Lisätiedot

KUVAMUOKKAUS HARJOITUS

KUVAMUOKKAUS HARJOITUS KUVAMUOKKAUS HARJOITUS PUNASILMÄISYYS, VÄRI, KUVAKOKO, RAJAUS PUNASILMÄISYYS Kuvien punasilmäisyyden joutuu kohtaamaan usein huolimatta kameroiden hyvistä ominaisuuksista. Ohjelma tarjoaa hyvän työvälineen

Lisätiedot

Otannasta ja mittaamisesta

Otannasta ja mittaamisesta Otannasta ja mittaamisesta Tilastotiede käytännön tutkimuksessa - kurssi, kesä 2001 Reijo Sund Aineistot Kvantitatiivisen tutkimuksen aineistoksi kelpaa periaatteessa kaikki havaintoihin perustuva informaatio,

Lisätiedot

Tehdään laadukas painotuote

Tehdään laadukas painotuote Tehdään laadukas painotuote 8 vinkkiä valokuvien ottamisesta ja toimittamiseen painotuotteisiin 1. Kuvaa kameran parhailla asetuksilla Kuvien tarkkuuden ja tiedostopakkauksen vaikutukset ovat korostuneet

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Mittalaitteiden staattiset ominaisuudet Mittalaitteita kuvaavat tunnusluvut voidaan jakaa kahteen luokkaan Staattisiin

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

Digikuvan peruskäsittelyn. sittelyn työnkulku. Soukan Kamerat 22.1.2007. Soukan Kamerat/SV

Digikuvan peruskäsittelyn. sittelyn työnkulku. Soukan Kamerat 22.1.2007. Soukan Kamerat/SV Digikuvan peruskäsittelyn sittelyn työnkulku Soukan Kamerat 22.1.2007 Sisält ltö Digikuvan siirtäminen kamerasta tietokoneelle Skannaus Kuvan kääntäminen Värien säätö Sävyjen säätö Kuvan koko ja resoluutio

Lisätiedot

Stereopaikannusjärjestelmän tarkkuus (3 op)

Stereopaikannusjärjestelmän tarkkuus (3 op) Teknillinen korkeakoulu AS 0.3200 Automaatio ja systeemitekniikan projektityöt Stereopaikannusjärjestelmän tarkkuus (3 op) 19.9.2008 14.01.2009 Työn ohjaaja: DI Matti Öhman Mikko Seppälä 1 Työn esittely

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg

3D-kuvauksen tekniikat ja sovelluskohteet. Mikael Hornborg 3D-kuvauksen tekniikat ja sovelluskohteet Mikael Hornborg Luennon sisältö 1. Optiset koordinaattimittauskoneet 2. 3D skannerit 3. Sovelluskohteet Johdanto Optiset mittaustekniikat perustuvat valoon ja

Lisätiedot

PIKSELIT JA RESOLUUTIO

PIKSELIT JA RESOLUUTIO PIKSELIT JA RESOLUUTIO 22.2.2015 ATK Seniorit Mukanetti ry / Tuula P 2 Pikselit ja resoluutio Outoja sanoja Outoja käsitteitä Mikä resoluutio? Mikä pikseli? Mitä tarkoittavat? Miksi niitä on? Milloin tarvitaan?

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

I AM YOUR 1 NIKKOR FINDER

I AM YOUR 1 NIKKOR FINDER I AM YOUR FINDER I AM VISUAL PERFECTION Nikon 1 -järjestelmäkameroilla elämäsi vauhdikkaimpien hetkien ikuistaminen onnistuu kätevästi. Vaihdettavalla objektiivilla varustetut Nikon 1 -kamerat ovat erittäin

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Mittaushavaintojen täsmällinen käsittelymenenetelmä

Mittaushavaintojen täsmällinen käsittelymenenetelmä Tasoituslaskun periaate Kun mittauksia on tehty enemmän kuin on toisistaan teoreettisesti riippumattomia suureita, niin tasoituslaskun tehtävänä ja päätarkoituksena on johtaa tuntemattomille sellaiset

Lisätiedot

SINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy

SINI- JA KOSINILAUSE. Laskentamenetelmät Geodeettinen laskenta - 1-1988-1999 M-Mies Oy SINI- JA KOSINILAUSE SINILAUSE: Kolmiossa kulman sinien suhde on sama kuin kulman vastaisten sivujen suhde. Toisin sanoen samassa kolmiossa SIN Kulma / Sivu = Vakio (Jos > 100 gon: Kulma = 200 kulma).

Lisätiedot

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat: Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva

Lisätiedot

Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus

Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus Deformoituvan metallirakenteen fotogrammetrinen muodonmuutosmittaus Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten. Espoo, huhtikuu 2015 Tekniikan kandidaatti

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Casion fx-cg20 ylioppilaskirjoituksissa apuna

Casion fx-cg20 ylioppilaskirjoituksissa apuna Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin

Lisätiedot

7.4 PERUSPISTEIDEN SIJAINTI

7.4 PERUSPISTEIDEN SIJAINTI 67 7.4 PERUSPISTEIDEN SIJAINTI Optisen systeemin peruspisteet saadaan systeemimatriisista. Käytetään seuraavan kuvan merkintöjä: Kuvassa sisäänmenotaso on ensimmäisen linssin ensimmäisessä pinnassa eli

Lisätiedot

Luento 10: Optinen 3-D mittaus ja laserkeilaus

Luento 10: Optinen 3-D mittaus ja laserkeilaus Maa-57.301 Fotogrammetrian yleiskurssi Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 (P. Rönnholm / H. Haggrén, 19.10.2004) Luento 10: Optinen 3-D mittaus ja laserkeilaus AIHEITA Optinen 3-D digitointi Etäisyydenmittaus

Lisätiedot

Erikoistekniikoita. Moiré - shadow-moiré - projection-moiré. Rasterifotogrammetria - yhden juovan menetelmä - monen juovan menetelmä

Erikoistekniikoita. Moiré - shadow-moiré - projection-moiré. Rasterifotogrammetria - yhden juovan menetelmä - monen juovan menetelmä Erikoistekniikoita Moiré - shadow-moiré - projection-moiré Rasterifotogrammetria - yhden juovan menetelmä - monen juovan menetelmä Tomografia - periaate Hologrammetria - periaate Motografia Moiré-tekniikka

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

Leica Sprinter Siitä vain... Paina nappia

Leica Sprinter Siitä vain... Paina nappia Sprinter Siitä vain... Paina nappia Sprinter 50 Tähtää, paina nappia, lue tulos Pölyn ja veden kestävä Kompakti ja kevyt muotoilu Virheettömät korkeuden ja etäisyyden lukemat Toiminnot yhdellä painikkeella

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

MAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5

Lisätiedot

www.terrasolid.com Kaupunkimallit

www.terrasolid.com Kaupunkimallit www.terrasolid.com Kaupunkimallit Arttu Soininen 03.12.2015 Vuonna 1993 Isoja askeleita 1993-2015 Laserkeilaus helikopterilla/lentokoneella Laserkeilaus paikaltaan GPS+IMU yleistynyt kaikkeen ilmasta mittaukseen

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset

Luento 3 Kuvaus- ja mittauskalusto. erikoissovellukset Luento 3 Kuvaus- ja mittauskalusto 1 Aiheita Mittakamerat Digitaaliset kamerat Komparaattorit Ohjelmistot 2 Photogrammetry 1907 27 stations 111 photographs 7 geodetic control points 3 Photogrammetric documentation

Lisätiedot

Rihtausohje. J.Puhakka

Rihtausohje. J.Puhakka Rihtausohje Pyörän vanteen pinnoitus (rihtaus) on aikaa vievä toimenpide, joka vaatii kärsivällisyyttä tekijältään. Tässä on ohje, joka toivottavasti helpottaa osaltaan työn onnistumista. J.Puhakka 1 Pinnat

Lisätiedot

Luento 2: Kuvakoordinaattien mittaus

Luento 2: Kuvakoordinaattien mittaus Maa-57.301 Fotogrammetrian yleiskurssi (P. Rönnholm / H. Haggrén, 14.9.2005) Luento 2: Kuvakoordinaattien mittaus Mitä pitäisi oppia? Muunnokset informaatiokanavassa (osin kertausta) Erotella kuvaan ja

Lisätiedot

Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Liikennejärjestelmien kuvaaminen laserkeilauksen avulla

Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Liikennejärjestelmien kuvaaminen laserkeilauksen avulla Maa-57.270 Fotogrammetrian, kuvatulkinnan ja kaukokartoituksen seminaari Liikennejärjestelmien kuvaaminen laserkeilauksen avulla Paula Ylönen 60375P paula.ylonen(a)tkk.fi Sisällys 1 Johdanto s. 2 2 Laserkeilain

Lisätiedot

KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619

KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619 KÄYTTÖOHJE LÄMPÖTILA-ANEMOMETRI DT-619 2007 S&A MATINTUPA 1. ILMAVIRTAUKSEN MITTAUS Suora, 1:n pisteen mittaus a) Kytke mittalaitteeseen virta. b) Paina UNITS - näppäintä ja valitse haluttu mittayksikkö

Lisätiedot

Geodeettisen laitoksen koordinaattimuunnospalvelu

Geodeettisen laitoksen koordinaattimuunnospalvelu Geodeettisen laitoksen koordinaattimuunnospalvelu Janne Kovanen Geodeettinen laitos 10.3.2010 Koordinaattimuunnospalvelusta lyhyesti Ilmainen palvelu on ollut tarjolla syksystä 2008 lähtien. Web-sovellus

Lisätiedot

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava

Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava Leica ScanStation 2 Poikkeuksellisen nopea, uskomattoman joustava Leica ScanStation 2 Laserkeilainten joustavuuden ja nopeuden uusi taso 10-kertainen maksimimittausnopeuden kasvu ja takymetreistä tuttu

Lisätiedot

Jani Sipola & Timo Kauppi. Konenäkö putkiprofiilien dimensiomittauksissa

Jani Sipola & Timo Kauppi. Konenäkö putkiprofiilien dimensiomittauksissa Jani Sipola & Timo Kauppi Konenäkö putkiprofiilien dimensiomittauksissa Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja E. Työpapereita 2/2010 Jani Sipola & Timo Kauppi Konenäkö putkiprofiilien dimensiomittauksissa

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

Luento 4: Kolmiointihavainnot

Luento 4: Kolmiointihavainnot Maa-57.220 Fotogrammetrinen kartoitus Luento-ohjelma 1 2 3 4 5 6 7 8 9 10 11 12 13 Luento 4: Kolmiointihavainnot Luento 4: Kolmiointihavainnot Reconstruction procedure Kuvahavainnot Kollineaarisuusyhtälö

Lisätiedot

LED VALON KÄYTTÖSOVELLUKSIA.

LED VALON KÄYTTÖSOVELLUKSIA. LED VALON KÄYTTÖSOVELLUKSIA. PALJONKO LED VALO ANTAA VALOA? MITÄ EROJA ON ERI LINSSEILLÄ? Onko LED -valosta haastajaksi halogeenivalolle? Linssien avautumiskulma ja valoteho 8 (LED 3K, LED 6K ja halogeeni

Lisätiedot

Todellinen 3D-ohjauksensuuntauslaite

Todellinen 3D-ohjauksensuuntauslaite geoliner 680 ja geoliner 780 Huipputarkka Kaikki ajoneuvojen säätöarvot tulevat suoraan autovalmistajilta ja ovat tarkkoja ja luotettavia. Kehittynyt kamerajärjestelmä on erittäin tarkka ja takaa luotettavan

Lisätiedot

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3. Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.2009 Tietosuoja - lähtökohdat! Periaatteena on estää yksiköiden suora

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Mittausjärjestelmän kalibrointi ja mittausepävarmuus

Mittausjärjestelmän kalibrointi ja mittausepävarmuus Mittausjärjestelmän kalibrointi ja mittausepävarmuus Kalibrointi kalibroinnin merkitys kansainvälinen ja kansallinen mittanormaalijärjestelmä kalibroinnin määritelmä mittausjärjestelmän kalibrointivaihtoehdot

Lisätiedot

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on

ja J r ovat vektoreita ja että niiden tulee olla otettu saman pyörimisakselin suhteen. Massapisteen hitausmomentti on FYSA210 / K1 HITAUSMOMENTTI Työn tavoitteena on opetella määrittämään kappaleen hitausmomentti kappaletta pyörittämällä ja samalla havainnollistaa kitkan vaikutusta. Massapisteinä toimivat keskipisteestään

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Laserkeilauksen ja kuvauksen tilaaminen

Laserkeilauksen ja kuvauksen tilaaminen www.terrasolid.com Laserkeilauksen ja kuvauksen tilaaminen Arttu Soininen 22.08.2017 Käsiteltävät aiheet Tarjouspyynnössä määrättävät asiat Laserkeilaustyön jakaminen osiin Ajankohdan vaikutus laserkeilaukseen

Lisätiedot

Puun geometrisen laatutiedon mittaukset monikameramenetelmällä

Puun geometrisen laatutiedon mittaukset monikameramenetelmällä Metsätehon raportti 183 11.3.2005 Rajoitettu jakelu Järvi-Suomen Uittoyhdistys Kuhmo Oy Metsähallitus Metsäliitto Osuuskunta Metsäteollisuus ry Pölkky Oy Stora Enso Oyj UPM-Kymmene Oyj Vapo Timber Oy Visuvesi

Lisätiedot

Korkeusmallien vertailua ja käyttö nitraattiasetuksen soveltamisessa

Korkeusmallien vertailua ja käyttö nitraattiasetuksen soveltamisessa Korkeusmallien vertailua ja käyttö nitraattiasetuksen soveltamisessa Valtakunnallisesti kattavaa laserkeilausaineistoa ei vielä ole. Kaltevuusmallit perustuvat tällä hetkellä digitaalisen korkeusmallin

Lisätiedot

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste

Geometrinen optiikka. Tasopeili. P = esinepiste P = kuvapiste Geometrinen optiikka Tasopeili P = esinepiste P = kuvapiste Valekuva eli virtuaalinen kuva koska säteiden jatkeet leikkaavat (vs. todellinen kuva, joka muodostuu itse säteiden leikkauspisteeseen) Tasomainen

Lisätiedot

Tutustu kameraasi käyttöohjeen avulla, syksy2011 osa 2

Tutustu kameraasi käyttöohjeen avulla, syksy2011 osa 2 Digikamerasta kuvakirjaan Tutustu kameraasi käyttöohjeen avulla, syksy2011 osa 2 Hannu Räisänen 2011 Akun ja kortin poisto Akun ja kortin poisto Sisäinen muisti Kamerassa saattaa olla myös sisäinen muisti

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen

Lisätiedot

S11-04 Kompaktikamerat stereokamerajärjestelmässä. Projektisuunnitelma

S11-04 Kompaktikamerat stereokamerajärjestelmässä. Projektisuunnitelma AS-0.3200 Automaatio- ja systeemitekniikan projektityöt S11-04 Kompaktikamerat stereokamerajärjestelmässä Projektisuunnitelma Ari-Matti Reinsalo Anssi Niemi 28.1.2011 Projektityön tavoite Projektityössä

Lisätiedot

Nurmijärven golfkentän korjaussuunnitelma. Visio 2020. Tilander Golf Design Oy, 2008

Nurmijärven golfkentän korjaussuunnitelma. Visio 2020. Tilander Golf Design Oy, 2008 Nurmijärven golfkentän korjaussuunnitelma Visio 2020 Tilander Golf Design Oy, 2008 Seuraavilla sivuilla on esitetty järjestyksessä kaikki Nurmijärven Golfkeskuksen reiät ja niille tehtävät korjaus-/muutosehdotukset.

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Jan Biström TerraTec Oy TerraTec-ryhmä Emoyhtiö norjalainen TerraTec AS Liikevaihto 2015 noin 13 miljoonaa euroa ja noin 90 työntekijää

Lisätiedot

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset 4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot