Kuvan 9.1 mukaisessa ajatuskokeessa varataan kondensaattoria sähkövirralla I. Ampèren lain mukaan
|
|
- Matilda Hiltunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luku 9 Maxwellin yhtälöt Nyt meillä on koossa elektrodynamiikan peruspilarit sillä tasolla, jolla ne tunnettiin 1860-luvun alussa. Maxwell huomasi yhtälöissä piilevän teoreettisen ongelman: Mitä tapahtuu, jos varaustiheys ja siten sähkökenttä muuttuvat ajallisesti? Ampèren laki pätee vain staattiselle systeemille ja ottamalla siitä divergenssi nähdään, että J = 0. Varaustiheyden muuttuessa ajallisesti pitäisi kuitenkin jatkuvuusyhtälön J+ ρ/ = 0 olla voimassa. 9.1 Siirrosvirta Kuvan 9.1 mukaisessa ajatuskokeessa varataan kondensaattoria sähkövirralla I. Ampèren lain mukaan H dl = J n ds = I 9.1) C S 1 missä S 1 on pinta, jonka läpi virta I kulkee. Nyt kuitenkaan mikään ei määrää, missä silmukan C rajoittaman yhdesti yhtenäisen pinnan tulisi olla. Pinnaksi voidaan valita myös kondensaattorin levyjen välisen alueen kautta piirretty pinta S 2, joka ei leikkaa virtaa missään ja H dl = J n ds = 0 9.2) C S 2 Molemmat integraalit ovat matemaattisesti oikein, joten ongelma on puutteellisesti ymmärretyssä fysiikassa. Ratkaisu on siinä, että virta I tuo varausta kondensaattorin levylle eikä varaus poistu systeemistä samaan tahtiin. Virralla on siis divergenssiä pintojen S 1 ja S 2 rajaamassa tilavuudessa. Lähdetään liikkeelle varauksen jatkuvuusyhtälöstä J + ρ = 0 9.3) 109
2 110 LUKU 9. MAXWELLIN YHTÄLÖT C kondensaattorilevyt S 2 It) S 1 Kuva 9.1: Ampèren laki varattaessa kondensaattoria. Pinta S 1 on kondensaattorin ulkopuolella, kun taas pinta S 2 kulkee levyjen välistä. Pinnoilla on yhteinen reunakäyrä C. Varaustiheys voidaan ilmaista Gaussin lain avulla: joten jatkuvuusyhtälö voidaan kirjoittaa muotoon D = ρ 9.4) J + D ) = 0 9.5) Maxwellin oivallus oli korvata virrantiheys Ampèren laissa ylläolevalla sulkulausekkeella ja tuloksena oli neljäs Maxwellin laeista H = J + D 9.6) jota voi hyvällä syyllä kutsua Ampèren ja Maxwellin laiksi. Termiä D/ kutsutaan kentänmuutosvirraksi, kenttävirraksi tai siirrosvirraksi. Maxwellin idea siirrosvirrasta oli puhtaasti teoreettinen, sillä sen vaikutus on niin pieni, että mikään tuolloinen mittaus ei ollut ristiriidassa Ampèren lain kanssa. Siirrosvirta alkaa olla verrattavissa johtavuusvirtaan vasta, kun ωɛ/σ > 0.01 eli johteiden tapauksessa taajuuksien on oltava erittäin korkeita. Eristeissä tilanne on toinen ja jo tavallisessa 50 Hz vaihtovirtapiirissä olevan kondensaattorin läpi kulkeva virta on siirrosvirtaa. Kondensaattorin sisäistä virtaa ei tosin useinkaan tarvitse tarkastella virtapiirianalyysissä, kuten RCL-piiriä koskeneessa esimerkissä. Koska siirrosvirta tulee tyypillisesti näkyviin vasta suurilla taajuuksilla, se liittyy sähkömagneettiseen aaltoliikkeeseen luonnollisella tavalla. Hertz todensi vuonna 1888 siirrosvirran olemassaolon tutkiessaan sähkömagneettisia aaltoja. Tällöin myös Maxwellin alunperin teoreettinen oivallus sai kokeellisen perustan.
3 9.2. MAXWELLIN YHTÄLÖT 111 Varauksen jatkuvuusyhtälö seuraa nyt Ampèren ja Maxwellin laista yhdessä Gaussin lain kanssa, joten sitä ei tarvitse ottaa erillisenä mukaan. Tämä ei kuitenkaan tarkoita, että varauksen säilymislaki seuraisi Maxwellin yhtälöistä, vaan sitä, että annetussa tilavuudessa varauksen ajallinen muutos kompensoituu alueeseen tulevalla tai siitä poistuvalla sähkövirralla, koska varaus säilyy. 9.2 Maxwellin yhtälöt Nyt meillä on koossa koko Maxwellin yhtälöiden ryhmä D = ρ B = 0 E = B H = J + D 9.7) Tässä lähdetermeinä ovat ulkoiset vapaat ) varaukset ρ ja ulkoiset vapaat ) virrat J. Sidotut varaukset ja virrat on kätketty kenttiin D ja H. Mikäli kyseessä on tyhjöä monimutkaisempi väliaine, tarvitaan lisäksi rakenneyhtälöt D = DE, B), H = HE, B) ja J = JE, B). Yhtälöryhmä 9.7 ei kuitenkaan ole sen yleisempi tai rajoitetumpi kuin tyhjömuodossa kirjoitettu yhtälöryhmä E = ρ/ɛ 0 B = 0 E = B E B = µ 0 J + µ 0 ɛ 0 9.8) missä ρ ja J kuvaavat kaikkia varauksia ja virtoja. Esitysmuoto 9.7 on joitain merkintöjä vaille sama, jossa Maxwell itse esitti yhtälönsä. Muotoa 9.8 voi kuitenkin pitää jossain mielessä perustavampana, koska se ei ota mitään kantaa mahdollisen väliaineen sähköisiin tai magneettisiin ominaisuuksiin. Vaikka usein puhutaan neljästä Maxwellin yhtälöstä, yhtälöryhmässä 9.8 on kuitenkin 8 yhtälöä 2 skalaariyhtälöä ja 6 vektoriyhtälöiden komponenttia). Yhtälöryhmä on lineaarinen, joten ratkaisuille pätee yhteenlaskuperiaate. Mikäli lähdetermit ρ ja J tunnetaan, on jäljellä 6 tuntematonta ja yhtälöryhmä riittää E:n ja B:n määrittämiseen. Jos etsitään itsekonsistentteja ratkaisuja, tuntemattomia on 10 kpl E, B, J ja ρ), joten tarvitaan lisätietoa. Sellaiseksi kelpaa esimerkiksi Ohmin laki J = σe). Differentiaaliyhtälöitä ratkottaessa myös reunaehdot täytyy määrittää oikein.
4 112 LUKU 9. MAXWELLIN YHTÄLÖT 9.3 Sähkömagneettinen kenttä rajapinnalla Luvuissa 3 ja 6 käsiteltiin staattisten sähkö- ja magneettikenttien reunaehtoja kahden aineen rajapinnalla. Magneettivuon tiheydelle saatiin yhtälöstä B = 0 normaalikomponentin jatkuvuusehto, joka pätee edelleen: B 1n = B 2n 9.9) Sähköstaattisen yhtälön E = 0 sijasta on käytettävä Faradayn lakia E = B 9.10) Tehdään samanlainen suorakulmainen silmukka kuin luvussa 3 ja integroidaan silmukan sulkeman pinnan yli: B E n ds = n ds 9.11) S Sovelletaan Stokesin teoreemaa lausekkeen ja lasketaan viivaintegraalit: le 1t le 2t + h 1 E 1n + h 2 E 2n h 1 E 1n h 2 E 2n B = n ds 9.12) missä l on silmukan pituus rajapinnan suunnassa, h 1 ja h 2 ovat silmukan etäisyydet rajapinnasta kummankin väliaineen puolella ja E in ja E in ottavat huomioon, että normaalikomponentit saattavat poiketa toisistaan eri päissä. Kun silmukan korkeus litistetään mitättömäksi, häviävät sähkökentän normaalikomponentteja sisältävät termit ja samoin yhtälön oikea puoli, jos B/ pysyy äärellisenä. Jäljelle jää sama jatkuvuusehto kuin statiikassa: S E 1t = E 2t 9.13) Sähkövuon tiheyden normaalikomponentin reunaehto on monimutkaisempi, koska nyt pintavaraustiheys voi muuttua. Sekaannusten välttämiseksi merkitään johtavuutta σ:lla ja pintavaraustiheyttä σ s :llä. Yhtälöstä D = ρ saadaan pillerirasialla samannäköinen tulos kuin sähköstatiikassa: D 2n D 1n = σ s 9.14) missä D n = D n ja pinnan normaalivektori n osoittaa aineesta 1 aineeseen 2. Toisaalta varaustiheyden muutosta kontrolloi jatkuvuusyhtälö S josta seuraa analogisesti J = ρ J 2n J 1n = σ s 9.15) 9.16)
5 9.3. SÄHKÖMAGNEETTINEN KENTTÄ RAJAPINNALLA 113 Sovelletaan tätä yksinkertaiseen aaltoliikkeeseen eli oletetaan sähkökentän olevan muotoa Et) = E 0 e iωt. Tällöin voidaan korvata / iω. Olettamalla lineaarinen väliaine ja käyttämällä rakenneyhtälöitä D = ɛe ja J = σe voidaan D n :n ja J n :n reunaehdot kirjoittaa yhtälöparina ɛ 2 E 2n ɛ 1 E 1n = σ s σ 2 E 2n σ 1 E 1n = iωσ s 9.17) Jos pintavaraustiheys häviää, on oltava ɛ 1 /σ 1 = ɛ 2 /σ 2, mikä voidaan saada aikaan valitsemalla sopivat väliaineet. Yleisesti σ s ei häviä, joten se voidaan ratkaista yhtälöparista ja sähkökentän normaalikomponentille saadaan ɛ 1 + i σ 1 ω ) E 1n = ɛ 2 + i σ 2 ω ) E 2n 9.18) Tarkasteltaessa H-vektorin tangentiaalikomponenttia täytyy kentänmuutosvirta huomioida: H = J + D 9.19) Tangentiaalikomponentin reunehto löytyy jälleen suorakulmaisesta silmukasta. Silmukkaa kutistettaessa oletetaan D/:n pysyvän äärellisenä, jolloin jäljelle jää magnetostatiikasta tuttu reunaehto n H 2 H 1 ) = K 9.20) missä K on pintavirran tiheys ja pinnan normaalivektori n osoittaa alueesta 1 alueeseen 2. Pintavirran tiheys on nolla, jos väliaineen johtavuus on äärellinen. Siis ellei väliaineen johtavuus ole ääretön, magneettikentän tangentiaalikomponentti on jatkuva. Tarkastellaan lopuksi tilannetta, jossa väliaineen 2 johtavuus on ääretön. Ampèren ja Maxwellin laki väliaineelle 2 on H 2 = J 2 + D ) Olettamalla harmoninen aikariippuvuus e iωt ja käyttämällä rakenneyhtälöitä saadaan 1 E 2 = H ) σ 2 iωɛ 2 Jos H 2 on rajoitettu, niin ehto σ 2 edellyttää, että E 2 = 0. Olettaen myös H 2 :n aikariippuvuus harmoniseksi Faradayn laki ja lineaarinen rakenneyhtälö B = µh antavat H 2 = 1 iωµ 2 E ) ja siten myös H 2 häviää. Tämä kaikki tarkoittaa sitä, että sähkömagneettinen aalto ei etene äärettömän hyvään johteeseen.
6 114 LUKU 9. MAXWELLIN YHTÄLÖT 9.4 Sähkömagneettinen energia ja liikemäärä Periaatteessa koko elektrodynamiikka on nyt hallinnassa. Kurssin alkuosassa tuli kuitenkin esille ongelmia liikemäärän ja liikemäärämomentin säilymislakien kanssa. Samoin jäi epäselväksi, mille oliolle esimerkiksi sähköstaattinen energia oikein kuuluu Poyntingin teoreema: energian säilyminen Sähkömagneettisessa kentässä liikkuvaan yksittäiseen varaukselliseen hiukkaseen vaikuttaa Lorentzin voima F = qe+v B). Mekaniikassa on opittu, että voima tekee työtä teholla F v, joten hiukkasen mekaanisen energian muutosnopeuden määrää sähkökenttä, koska magneettikenttä ei tee työtä: dw mek dt = qv E 9.24) Muita kuin sähkömagneettisia voimia ei tässä yhteydessä oteta huomioon. Yleistys jatkuvalle virrantiheydelle alueessa V antaa hiukkassysteemin mekaanisen energian muutosnopeudeksi dw mek dt = V J E dv 9.25) Aletaan muokata pistetuloa J E käyttäen Maxwellin yhtälöitä väliainemuodossa. Ampèren ja Maxwellin laki antaa J E = E H E D 9.26) Oikean puolen ensimmäinen termi houkuttelee käyttämään tulon derivoimiskaavaa E H) = H E E H, josta Faradayn lakia käyttäen tulee E H) = H B E H 9.27) Tähän mennessä on siis saatu J E = E H) E D + H B ) 9.28) Oletetaan väliaine lineaariseksi ja isotrooppiseksi, jolloin J E = E H) 1 2 D E + 1 B H) 9.29) 2 Statiikassa opitun perusteella on luonnollista tulkita, että jälkimmäisen sulkulausekkeen sisällä on sähkömagneettisen kentän energiatiheys w em = 1 2 D E B H 9.30)
7 9.4. SÄHKÖMAGNEETTINEN ENERGIA JA LIIKEMÄÄRÄ 115 Kun vielä määritellään Poyntingin vektori S = E H 9.31) saadaan Poyntingin teoreema differentiaalimuodossa jatkuvuusyhtälönä w em + S = J E 9.32) Tulkintaa helpottaa vertailu varauksen jatkuvuusyhtälöön ρ/+ J = 0, joka seuraa varauksen säilymislaista. Poyntingin teoreema on siis hiukkasten ja kentän muodostaman systeemin energian säilymislaki. Sähkömagneettista kenttää voidaan siis pitää itsenäisenä fysikaalisena oliona. Tämä tulkinta vahvistuu muiden säilymislakien yhteydessä. Termi J E ilmaisee sen, että kenttä ja hiukkaset voivat vaihtaa energiaa keskenään. Integroimalla jatkuvuusyhtälö alueen V yli ja käyttämällä divergenssiteoreemaa saadaan Poyntingin teoreema havainnolliseen integraalimuotoon d dt W mek + W em ) = S da 9.33) Tämän perusteella voidaan kvalitatiivisesti ajatella, että Poyntingin vektori kuljettaa energiaa yksikkö on J/m 2 s) eli energiavuon yksikkö). Tällainen tulkinta johtaa kuitenkin erikoiselta vaikuttaviin tilanteisiin yksinkertaisissakin esimerkeissä, kuten tasavirtajohtimessa. Ei ole itsestään selvää, että Poyntingin vektorin oikea lauseke on Poyntingin teoreeman differentiaalimuodon perusteella vektoriin S voitaisiin lisätä roottorikenttä. Monimutkaisempiakin muunnelmia on olemassa, mutta silloin myös energiatiheyden lauseketta on muutettava. Oleellista on, että energian säilymislain muoto ei muutu. Pohjimmiltaan kyse on siitä, ettei sähkömagneettisen kentän energiaa voida paikallistaa. V Maxwellin jännitystensori Palataan kuvan 5.3 tilanteeseen: rikkooko elektrodynamiikka liikemäärän säilymislakia? Vastaus on kielteinen. Ratkaisu on siinä, että sähkömagneettisella kentällä on energian lisäksi liikemäärää. Säilyvä suure on hiukkasten ja kenttien yhteenlaskettu liikemäärä. Oletetaan väliaine tyhjön kaltaiseksi. Kaikkien tilavuudessa V olevien hiukkasten liikemäärien summa p mek noudattaa Newtonin toista lakia F = dp mek = ρe + v B) dv = ρe + J B) dv 9.34) dt joten voimatiheys on V V f = ρe + J B 9.35)
8 116 LUKU 9. MAXWELLIN YHTÄLÖT Eliminoidaan ρ ja J Maxwellin yhtälöiden avulla, jolloin ) 1 E f = ɛ 0 E)E + B ɛ 0 B 9.36) µ 0 Nyt E B = E B) + E E) 9.37) missä viimeisessä termissä on käytetty Faradayn lakia. Voimatiheys on siten f = ɛ 0 [ E)E E E)] 1 [B B)] ɛ 0 E B) 9.38) µ 0 Lauseke saadaan symmetrisemmäksi lisäämällä termi B)B/µ 0, joka on aina nolla. Kenttien roottorilausekkeet voi kirjoittaa auki kaavalla HT) E E) = 1 2 E2 ) E )E 9.39) ja samoin B:lle. Näin voimatiheys on saadaan muotoon f = ɛ 0 [ E)E + E )E] + 1 µ 0 [ B)B + B )B] 1 2 ɛ 0 E ) B 2 ɛ 0 E B) 9.40) µ 0 Tämä siistiytyy määrittelemällä Maxwellin jännitystensori T : T ij = ɛ 0 E i E j 1 ) 2 δ ije B i B j 1 ) µ 0 2 δ ijb ) Tensorin T divergenssi on vektori, jonka komponentit ovat [ T ) j = ɛ 0 E)E j + E )E j 1 ] 2 je µ 0 [ B)B j + B )B j 1 2 jb 2 ] 9.42) Nämä ovat Poyntingin vektorin aikaderivaattaa vaille voimatiheyden komponentit, joten S f = T ɛ 0 µ ) Integroidaan tämä tilavuuden V yli ja kirjoitetaan jännitystensorista riippuva osa pintaintegraaliksi. Tällöin kokonaisvoima on d F = T n da ɛ 0 µ 0 S dv 9.44) V dt V Staattisessa tilanteessa sähkömagneettinen kokonaisvoima määräytyy jännitystensorista pelkästään tarkasteltavan alueen reunalla. Siis T laskettuna alueen reunalla jotenkin sisältää voimien kannalta olennaisen tiedon kentistä koko alueessa. Voimien laskeminen jännitystensorista ei rajoitu elektrodynamiikkaan. Mekaniikasta tuttu energia-impulssitensori on formaalisti samanlainen otus, yleinen suhteellisuusteoria formuloidaan Einsteinin tensorin avulla jne.
9 9.5. AALTOYHTÄLÖ JA KENTTIEN LÄHTEET Liikemäärän ja liikemäärämomentin säilyminen Palataan sitten liikemäärän säilymiseen. Newtonin toisen lain mukaan hiukkaseen vaikuttava voima on yhtä suuri kuin sen liikemäärän aikaderivaatta: F = dp mek dt 9.45) missä alaindeksi mek viittaa mekaaniseen liiketilan muutokseen. Toisaalta dp mek d = T n da ɛ 0 µ 0 S dv 9.46) dt dt V Tämän voi tulkita samaan tapaan kuin Poyntingin teoreeman. Oikean puolen ensimmäinen termi kertoo liikemäärän virtauksen aikayksikössä pinnan V läpi ja jälkimmäinen termi puolestaan kenttiin kertyneen liikemäärän muutoksen. Siis sähkömagneettisen kentän liikemäärä on p em = ɛ 0 µ 0 S dv 9.47) Yhteenlasketun sähkömagneettisen ja mekaanisen liikemäärän muutos vastaa tarkastelualueeseen kenttien mukanaan tuomaa liikemäärää. Olkoon ˆp mek mekaaninen liikemäärätiheys. Määritellään vastaavasti sähkömagneettisen kentän liikemäärätiheys V V ˆp em = ɛ 0 µ 0 S 9.48) Tällöin liikemäärän säilyminen voidaan ilmaista differentiaalimuodossa ˆp mek + ˆp em ) = T 9.49) Todetaan vielä lopuksi, että sähkömagneettisella kentällä on myös liikemäärämomenttia eli impulssimomenttia. Sen tiheys määritellään ˆlem = r ˆp em = ɛ 0 µ 0 r S 9.50) Myös kokonaisimpulssimomentti on säilyvä suure. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Siirrosvirtatermin ansiosta Maxwellin yhtälöillä on ratkaisunaan sähkömagneettinen aaltoliike. Tarkastellaan tilannetta ensiksi tyhjössä ρ = 0, J = 0). Ottamalla roottori Ampèren ja Maxwellin laista saadaan B = ɛ 0 µ 0 E) = ɛ 0 µ 0 2 B )
10 118 LUKU 9. MAXWELLIN YHTÄLÖT josta kirjoittamalla vasemman puolen roottorit auki ja käyttämällä magneettikentän lähteettömyyttä saadaan aaltoyhtälö 2 B ɛ 0 µ 0 2 B 2 = ) Ottamalla puolestaan roottori Faradayn laista ja huomioimalla, että sähkökentälläkään ei ole tyhjössä lähteitä, saadaan sähkökentälle sama yhtälö 2 E ɛ 0 µ 0 2 E 2 = ) Tällainen aalto etenee nopeudella c = 1/ ɛ 0 µ 0 eli valon nopeudella Potentiaaliesitys Ratkaistaan Maxwellin yhtälöt, kun kenttien lähteet ρ ja J oletetaan tunnetuiksi. Rajoitutaan tyhjönkaltaiseen väliaineeseen ɛ 0, µ 0 ), josta siirtyminen lineaariseen väliaineeseen on suoraviivaista. Tehokkainta on käyttää skalaari- ja vektoripotentiaaleja φ ja A. Yhtälöstä B = 0 seuraa, että magneettivuon tiheys voidaan esittää muodossa B = A. Sijoittamalla tämä Faradayn lakiin saadaan E + A = ) Fysikaalisen siisteille kentille aika- ja paikkaderivaattojen järjestyksen voi vaihtaa, joten E + A ) = ) eli voidaan kirjoittaa E + A/ = ϕ. Sähkökenttä on siis muotoa E = ϕ A 9.56) eli sähköstaattisen potentiaalin lisäksi Faradayn laki tuo vektoripotentiaalin aikamuutoksesta johtuvan osuuden sähkökenttään. Näin kenttien kuusi komponenttia on ilmaistu neljän muuttujan ϕ, A) avulla. Tähän on tarvittu neljä Maxwellin yhtälöiden kahdeksasta skalaarikomponentista, joten jäljellä on neljä yhtälöä neljän tuntemattoman ratkaisemiseen. Coulombin ja Ampèren ja Maxwellin lait saadaan muotoon 2 A) ϕ + = ρ/ɛ ) 2 A 1 2 A c 2 2 A + 1 ) ϕ c 2 = µ 0 J 9.58)
11 9.5. AALTOYHTÄLÖ JA KENTTIEN LÄHTEET 119 Pahan näköiselle yhtälöryhmälle löytyy käteviä ratkaisumenetelmiä. Koska kentät B ja E muodostuvat potentiaalien derivaatoista, voidaan potentiaaleihin lisätä sellaisia tekijöitä, jotka katoavat derivoitaessa. On helppo nähdä, että seuraava muunnos ei vaikuta kenttiin: A A = A + Ψ 9.59) ϕ ϕ = ϕ Ψ/ 9.60) Näitä mittamuunnoksia käsitellään tarkemmin luvussa 9.6. Yksi tapa säilyttää alkuperäiset kentät on käyttää Lorenzin mittaehtoa 1 A + 1 c 2 ϕ = ) Jäljellä olevat yhtälöt yksinkertaistuvat epähomogeenisiksi aaltoyhtälöiksi 2 1 ) 2 c 2 2 ϕ = ρ/ɛ ) 2 1 ) 2 c 2 2 A = µ 0 J 9.63) Viivästyneet potentiaalit Löydettiin siis neljä karteesisissa koordinaateissa toisistaan riippumatonta samanmuotoista skalaariyhtälöä, joten riittää tarkastella yhtälöä ϕ:lle. Staattisessa tapauksessa kyseessä olisi Poissonin yhtälö, jonka ratkaisuja ovat Laplacen yhtälön yleiset ratkaisut sekä jokin Poissonin yhtälön erikoisratkaisu. Ratkaistaan aaltoyhtälö ensin yhdelle varaukselle, joka on sijoitettu origoon. Tällöin homogeeninen aaltoyhtälö ) c 2 2 ϕ = ) pätee kaikkialla muualla kuin origossa. Pallosymmetrian vuoksi ϕ = ϕr) ja homogeeninen aaltoyhtälö voidaan kirjoittaa pallokoordinaatistossa 2 rϕ) r 2 Tällä on tutut ±r-suuntiin etenevät ratkaisut 1 c 2 2 rϕ) 2 = ) rϕ = fr ct) + gr + ct) 9.66) 1 Kyseessä on todellakin Lorenzin mitta eikä Lorentzin mitta. Lorenz oli tanskalainen ja Lorentz hollantilainen fyysikko.
12 120 LUKU 9. MAXWELLIN YHTÄLÖT Näistä fr ct) etenee poispäin varauksesta ja gr + ct) kohti varausta. Koska halutaan ymmärtää varauksen vaikutus ympäristöönsä, tarkastellaan ratkaisua f. On siis löydetty homogeeniselle aaltoyhtälölle pallosymmetrinen ratkaisu ϕ = fr ct) r ja nyt on määritettävä funktio f. Staattisessa tapauksessa potentiaali on ϕ = q 4πɛ 0 r 9.67) 9.68) ja nyt ilmeisesti q = qt). Kirjoitetaan f ajan funktiona ft r/c), missä vakio c sisältyy määrättävään funktioon itseensä. Hetkellä t r/c pätee ft r/c) = qt r/c) 4πɛ ) ja yksittäisen varauksen epähomogeenisella aaltoyhtälöllä on ratkaisu ϕr, t) = qt r/c) 4πɛ 0 r Integroimalla kaikkien varausten yli saadaan ϕr, t) = 1 ρr, t ) 4πɛ 0 V r r dv = 1 ρr, t r r /c) 4πɛ 0 V r r missä 9.70) dv 9.71) t = t r r /c 9.72) on viivästynyt aika. Potentiaalia ϕ kutsutaan viivästyneeksi skalaaripotentiaaliksi, koska se huomioi ajan, joka kuluu kustakin pisteestä tarkastelupisteeseen nopeudella c etenevältä signaalilta HT: piirrä kuva). HT: Tarkka lukija lienee ihmetellyt ajasta riippuvaa pistevarausta, koska varauksenhan pitäisi säilyä. Millä tavalla ristiriidasta selvitään helpoimmin? Nyt osataan välittömästi kirjoittaa viivästynyt vektoripotentiaali Ar, t) = µ 0 Jr, t ) 4π r r dv = µ 0 Jr, t r r /c) 4π r r dv 9.73) V Sähkö- ja magneettikentät saadaan derivoimalla. Käytännössä derivaattojen laskeminen on usein työlästä. Sitä kannattaa kokeilla sijoittamalla potentiaalien integraalilausekkeet takaisin aaltoyhtälöön. Suppeammassa suhteellisuusteoriassa vektori- ja skalaaripotentiaalien aaltoyhtälöt kootaan nelipotentiaalin A α = ϕ, A) aaltoyhtälöksi ) c 2 2 A α = j α 9.74) V
13 9.5. AALTOYHTÄLÖ JA KENTTIEN LÄHTEET 121 missä nelivirran j α komponentit ovat ρ/ɛ 0, µ 0 J). Osoittautuu, että Maxwellin yhtälöt ovat Lorentz-kovariantteja 2 eli valmiiksi kelvollisia suhteellisuusteorian pätevyysalueelle Aaltoyhtälön Greenin funktio 3 Ratkaistaan aaltoyhtälö käyttämällä luvussa 2.10 esitettyä Greenin funktion ideaa. Sekä A:n että ϕ:n aaltoyhtälöt ovat muotoa 2 ψ 1 2 ψ c 2 = 4πfr, t) 9.75) 2 missä fr, t) on tunnettu lähdetermi. Tehdään sekä ψ:lle että f:lle Fouriermuunnos ajan suhteen: ψr, t) = 1 2π ψr, ω)e iωt dω ; fr, t) = 1 2π fr, ω)e iωt dω 9.76) Sijoittamalla nämä aaltoyhtälöön ja merkitsemällä k = ω/c saadaan Fourierkomponenteille epähomogeeninen Helmholtzin aaltoyhtälö 2 + k 2 ) ψr, ω) = 4πfr, ω) 9.77) Tapauksessa k = 0 tämä palautuu Poissonin yhtälöksi. Sen Greenin funktion täytyy toteuttaa yhtälö 2 + k 2 )G k r; r ) = 4π δr r ) 9.78) Epähomogeenisen aaltoyhtälön ratkaisu on silloin ψr, ω) = G k r, r, ω)fr, ω) dv 9.79) johon voidaan lisätä homogeenisen aaltoyhtälön ratkaisuja. Koska aaltoyhtälö ratkotaan käytännössä heijastavien reunojen, aaltoputkien jne. yhteydessä, Greenin funktion muoto riippuu ongelman reunaehdoista vrt. pallo luvussa 2.10). Reunattomassa avaruudessa G k on pallosymmetrinen ja riippuu ainoastaan tarkastelupisteen ja lähdepisteen etäisyydestä R = r r, joten pallokoordinaateissa 2 G k = 1 R 2 R 2 G k R R ) = 1 R 2 R 2 R G k) 9.80) 2 Mitta on Lorenzin, mutta kovarianssi Lorentzin. 3 Tämä luku kuuluu yleissivistykseen. Perusidea on kuitenkin ymmärrettävä, koska menetelmää tarvitaan myöhemmin laskettaessa liikkuvan varauksen kentät.
14 122 LUKU 9. MAXWELLIN YHTÄLÖT Koska R on ainoa muuttuja, voidaan käyttää kokonaisderivaattaa: 1 d 2 R dr 2 R G k) + k 2 G k = 4πδr r ) 9.81) Muualla kuin pisteessä R = 0 tämä yksinkertaistuu yhtälöksi jonka ratkaisut ovat d 2 dr 2 R G k) + k 2 R G k ) = ) R G k = A e ikr + B e ikr 9.83) Rajalla R 0 pätee kr 1 ja 9.81 palautuu Poissonin yhtälöksi, jonka ratkaisu käyttäytyy kuten 1/R. Tämä antaa sidosehdon A + B = 1 ja Greenin funktio on muotoa G k R) = A G + k R) + B G k R) 9.84) missä G ± k = e±ikr /R. G + k kuvaa origosta poispäin etenevää palloaaltoa ja G k origoon tulevaa palloaaltoa. A ja B määräytyvät reunaehdoista ajan suhteen. Jos lähde on hiljaa hetkeen t = 0 asti ja alkaa sitten vaikuttaa, ulospäin etenevä ratkaisu A G + k on fysikaalisesti mielekäs valinta. Koska Ajasta riippuva Greenin funktio toteuttaa yhtälön ) c 2 2 G ± r, t; r, t ) = 4πδr r )δt t ) 9.85) δt t ) = 1 2π dω e iwt e iwt 9.86) voidaan lähdetermi yhtälössä 9.78 kirjoittaa muodossa 4πδr r )e iωt ja G ± R, τ) = 1 2π e ±ikr R e iωτ dω 9.87) missä τ = t t. Äärettömän avaruuden Greenin funktio riippuu siis vain lähteen ja havaitsijan välisestä etäisyydestä R ja aikaerosta t t. Koska k = ω/c, voidaan ω-integraali laskea HT) ja lopputulos on G ± r, t; r, t ) = 1 r r δt [t r r /c]) 9.88) Nyt G + on viivästynyt ja G edistynyt Greenin funktio. Epähomogeenisen aaltoyhtälön ratkaisu on siis ψ ± r, t) = G ± r, t; r, t )fr, t ) dv dt 9.89)
15 9.6. MITTAINVARIANSSI 123 johon voi lisätä homogeenisen aaltoyhtälön ratkaisuja. Viivästyneelle Greenin funktiolle ratkaisu on tietenkin sama kuin edellä suoremmalla laskulla löytynyt ratkaisu. Tässä esitetty menetelmä on kuitenkin yleisempi ja käyttökelpoisempi tarkasteltaessa monimutkaisempia olosuhteita kuin yksinkertaista lähdettä reunattomassa avaruudessa. 9.6 Mittainvarianssi Aaltoyhtälön ratkaisu helpottui valitsemalla sopiva mitta. Tämän teki mahdolliseksi Maxwellin yhtälöiden tärkeä ominaisuus: mittainvarianssi. Kenttien potentiaaleja voidaan muuttaa tietyllä yleisellä tavalla ilman, että kentät itse muuttuvat. Elektrodynamiikan mittamuunnokset ovat muotoa A A = A + Ψ 9.90) ϕ ϕ = ϕ Ψ/ 9.91) Funktiota Ψ kutsutaan mittafunktioksi ja se voidaan valita usealla eri tavalla. Yksi näistä on edellä käytetty Lorenzin mittaehto A + 1 c 2 ϕ Tällöin mittafunktion Ψ on toteutettava aaltoyhtälö 2 Ψ 1 c 2 2 Ψ 2 = ) = A 1 c 2 ϕ 9.93) Jos siis potentiaalit A ja ϕ eivät toteuttaisi Lorenzin mittaehtoa, niin uudet potentiaalit A ja ϕ toteuttavat sen, jos Ψ voidaan ratkaista aaltoyhtälöstä. Lorenzin mittaehdon toteuttava funktio Ψ on aina olemassa, mutta se ei ole yksikäsitteinen. Mitan etu on, että yhtälöiden Lorentz-kovarianssi näkyy eksplisiittisesti ja tulokset on suoraviivaista siirtää koordinaatistosta toiseen. Käytännön laskut voivat kuitenkin olla hyvin monimutkaisia. Useissa tapauksissa laskennallisesti yksinkertaisempi vaihtoehto on Coulombin mitta, jonka mittaehto on Vektoripotentiaali saadaan muunnoksella A = ) 2 Ψ = A 9.95) joka määrittää mittafunktion additiivista vakiota vaille yksikäsitteisesti, jos A 0 ja ϕ 0, kun r. Coulombin mitassa skalaaripotentiaali ratkaistaan yhtälöstä 9.57 ϕr, t) = 1 4πɛ 0 V ρr, t) r r dv 9.96)
16 124 LUKU 9. MAXWELLIN YHTÄLÖT Aika ei ole viivästetty, vaan skalaaripotentiaali määräytyy samanaikaisesta varausjakautumasta kaikkialla. Coulombin mitta ei ole Lorentz-kovariantti. Mitta on silti kelvollinen Maxwellin yhtälöille, joten tästä ei seuraa ristiriitaa kenttien E ja B osalta. Koordinaatistomuunnosten kanssa on kuitenkin oltava tarkkana. Coulombin mitassa vektoripotentiaali toteuttaa aaltoyhtälön 2 A 1 c 2 2 A 2 = 1 c 2 ϕ µ 0J 9.97) Oikean puolen ensimmäinen termi on pyörteetön. Helmholtzin teoreeman mukaan vektorikenttä F voidaan jakaa pyörteettömään ja lähteettömään osaan: F = F l + F t ; F l = 0 ; F t = 0 missä l viittaa pitkittäiseen longitudinaaliseen, pyörteettömään) ja t poikittaiseen transversaaliseen, lähteettömään) osuuteen. Käyttämällä virran jatkuvuusyhtälöä aaltoyhtälö saadaan muotoon ks. esim. Jackson) 2 A 1 c 2 2 A 2 = µ 0J t 9.98) Koska vektoripotentiaali määräytyy vain virran poikittaisesta komponentista, Coulombin mittaa kutsutaan usein poikittaismitaksi. Se tunnetaan myös nimellä säteilymitta, koska sähkömagneettiset säteilykentät saadaan lasketuksi viivästyneestä vektoripotentiaalista Ar, t) = µ 0 Jt r, t r r /c) 4π r r dv 9.99) mikä on olennaisesti helpompaa kuin säteilykenttien laskeminen Lorenzin mitassa. Coulombin mitta erottelee annetussa koordinaatistossa sähkökentän staattiseen s) ja induktiiviseen i) osaan: E s = ϕ ; E i = A/ 9.100) Klassinen elektrodynamiikka on ensimmäinen esimerkki mittainvarianteista fysiikan perusteorioista. Mittakentän käsitteestä on tullut erittäin keskeinen osa fysiikan perusteorioissa kuten kvanttielektrodynamiikassa, sähköheikon vuorovaikutuksen teoriassa, kvanttikromodynamiikassa ja näitä yhdistävissä yhtenäiskenttäteorioissa. Esimerkkinä olkoon vuoden 1999 Nobelin palkinto, jonka saivat Gerardus t Hooft ja Martinus Veltman töistään kvanttikromodynamiikan ei-abelisten mittakenttien parissa.
9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit
9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset
Luku Siirrosvirta
Luku 9 Maxwellin yhtälöt Nyt meillä on koossa elektrodynamiikan peruspilarit sillä tasolla, jolla ne tunnettiin 1860-luvun alussa. Maxwell huomasi yhtälöissä piilevän teoreettisen ongelman: Mitä tapahtuu,
Maxwellin yhtälöt. Luku Siirrosvirta
Luku 9 Maxwellin yhtälöt Nyt meillä on koossa elektrodynamiikan peruspilarit sillä tasolla, jolla ne tunnettiin 1860-luvun alussa. Maxwell huomasi yhtälöissä piilevän teoreettisen ongelman: Mitä tapahtuu,
Kuvan 9.1 mukaisessa ajatuskokeessa varataan kondensaattoria sähkövirralla I. Ampèren lain mukaan S 1. kondensaattorilevyt
Luku 9 Maxwellin yhtälöt Nyt meillä on koossa elektrodynamiikan peruspilarit sillä tasolla, jolla ne tunnettiin 1860-luvun alussa. Maxwell huomasi yhtälöissä piilevän teoreettisen ongelman: Mitä tapahtuu,
Maxwellin yhtälöt. Luku Siirrosvirta
Luku 9 Maxwellin yhtälöt Oppimateriaali RMC luku 16 ja CL luvut 8 9; esitiedot KSII luku 7 ja KSIII luku 5. Nyt meillä on koossa elektrodynamiikan peruspilarit sillä tasolla, jolla ne tunnettiin 1860-luvun
2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 5 1.4 Pari sanaa laskennasta......................
1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8
Sisältö 1 Johdanto 3 1.1 Mikä tämä kurssi on....................... 3 1.2 Hieman taustaa.......................... 4 1.3 Elektrodynamiikan perusrakenne................ 6 1.4 Kirjallisuutta...........................
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Sähköstatiikka Coulombin laki ja sähkökentän
Elektrodynamiikka, kevät 2008
Elektrodynamiikka, kevät 2008 Painovirheiden ja epätäsmällisyyksien korjauksia sekä pieniä lisäyksiä luentomonisteeseen Sivunumerot viittaavat vuoden 2007 luentomonisteeseen. Sivun 18 loppu: Vaikka esimerkissä
Liikkuvan varauksen kenttä
Luku 13 Liikkuvan varauksen kenttä Tässä luvussa tutustutaan liikkuvan varauksen aiheuttamaan kenttään. Jokaisen sähködynaamikon on laskettava ainakin kerran elämässään Liénardin ja Wiechertin potentiaalit
4. Gaussin laki. (15.4)
Luku 15 Maxwellin yhtälöt 15.1 iirrosvirta Voidaan osoittaa, että vektorikenttä on yksikäsitteisesti määrätty, jos tunnetaan sen divergenssi, roottori ja reunaehdot. Tämän vuoksi sähkö- ja magneettikenttien
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 26. syyskuuta 2016 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali Dipolin potentiaali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali
Liikkuvan varauksen kenttä
Luku 14 Liikkuvan varauksen kenttä Tässä luvussa tutustutaan liikkuvan varauksen aiheuttamaan kenttään. Asiaa on käsitelty RMC:n luvussa 21 ja CL:n luvussa 13. Jokaisen sähködynaamikon on laskettava ainakin
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén Luentoviikko 5 / versio 7. lokakuuta 2016 Luentoviikko 5 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 6 / versio 14. lokakuuta 2015 Magnetostatiikka (Ulaby, luku 5) Magneettiset voimat ja vääntömomentit Biot Savartin laki Magnetostaattiset
Elektrodynamiikan tenttitehtäviä kl 2018
Elektrodynamiikan tenttitehtäviä kl 2018 Seuraavista 30 tehtävästä viisi tulee Elektrodynamiikka I:n loppukokeeseen 6.3.2018. Koska nämä tehtävät ovat kurssin koetehtäviä, vihjeitä niiden ratkaisemiseen
Magneettikenttä väliaineessa
Luku 6 Magneettikenttä väliaineessa Tässä luvussa käsitellään magneettikentän ominaisuuksia väliaineessa (RMC luku 9 osittain; CL luku 7 osittain; esitiedot KII luku 4). 6.1 Magnetoituma Edellä rajoituttiin
Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.
Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus
Sähköstaattinen energia
Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,
Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.
Luku 14 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan
Elektrodynamiikka, kevät 2002
Elektrodynamiikka, kevät 2002 Painovirheiden ja epätäsmällisyyksien korjauksia sekä muita pieniä lisäyksiä luentomonisteeseen Tähän on korjattu sellaiset painovirheet ja epämääräisyydet, joista voi olla
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 1 Maxwellin & Kirchhoffin laeista Piirimallin
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Johdanto (Ulaby 1.2 1.3) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Vektorit ja koordinaatistot
Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 7 / versio 28. lokakuuta 2015 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Moottori ja
Sähköstaattinen energia
Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,
Elektrodynamiikka 2010 Luennot Elina Keihänen
Elektrodynamiikka 2010 Luennot 11.2.2010 Elina Keihänen Staattinen sähkökenttä - Eristepalkki levykondensaattorissa - Eristekappaleen energia - Maxwellin jännitystensori Staattinen magneettikenttä - Stationaariset
Luku Sähköinen polarisoituma
Luku 3 Sähkökenttä väliaineessa Tässä luvussa tutustutaan sähkökenttään väliaineessa (RMC luku 4, CL luku 4; esitiedot KSII luku 2, osa 2.9). Väliaineiden sähköisiin ja magneettisiin ominaisuuksiin tutustutaan
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
a P en.pdf KOKEET;
Tässä on vanhoja Sähkömagnetismin kesäkurssin tenttejä ratkaisuineen. Tentaattorina on ollut Hanna Pulkkinen. Huomaa, että tämän kurssin sisältö on hiukan eri kuin Soveltavassa sähkömagnetiikassa, joten
Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C
Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,
Sähköstaattinen energia
Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,
Gaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Elektrodynamiikka 2010 Luennot Elina Keihänen Magneettinen energia
Elektrodynamiikka 2010 Luennot 18.3.2010 Elina Keihänen Magneettinen energia Mainos Kesätyöpaikkoja tarjolla Planck-satelliittiprojektissa. Googlaa Planck kesätyöt Pääasiassa kolme vuotta tai kauemmin
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
VAASAN YLIOPISTO SATE.2010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE 2: AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT
VAAAN YLIOPITO TEKNILLINEN TIEDEKUNTA ÄHKÖTEKNIIKKA Maarit Vesapuisto ATE.010 DYNAAMINEN KENTTÄTEORIA: KAPPALE 1: JOHDANTO KAPPALE : AJAN MUKAAN MUUTTUVAT KENTÄT JA MAXWELLIN YHTÄLÖT Opetusmoniste (Raaka
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
Tarkastellaan yksinkertaista virtasilmukkaa, jossa kulkee virta I ja jonka V + E = IR (8.1)
Luku 8 Magneettinen energia Oppimateriaali RMC Luku 1 ja CL 7.3; esitiedot KSII luvut 4 ja 5. Luvussa 4 todettiin, että staattiseen sähkökenttään liittyy tietty energia. Näin on myös magneettikentän laita,
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet
VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT
VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT 1/32 2 VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT Kenttäilmiöt Sähkö- ja magneettikentät Vaikeasti havaittavissa ihmisen aistein!
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
Aaltoputket ja mikroliuska rakenteet
Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa
Varatun hiukkasen liike
Luku 17 Varatun hiukkasen liike SM-kentässä Tarkastellaan tässä luvussa varatun hiukkasen liikettä sähkömagneettisessa kentässä. Asiaa on käsitelty RMC:n luvussa 14 ja CL käsittelee Hamiltonin formalismia
Staattinen magneettikenttä
Luku 5 Staattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskeltua huolellisesti, niin
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
Potentiaali ja potentiaalienergia
Luku 2 Potentiaali ja potentiaalienergia 2.1 Sähköstaattinen potentiaali ja sähkökenttä Koska paikallaan olevan pistemäisen varauksen aiheuttamalla Coulombin sähkökentällä on vain radiaalikomponentti,
Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV
SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV Faradayn laki E B t Muuttuva magneettivuon tiheys B aiheuttaa ympärilleen sähkökentän E pyörteen. Sähkökentän
1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt
Magneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
MEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto
Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
Varatun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Staattinen magneettikenttä
Luku 5 Staattinen magneettikenttä 5.1 Sähkövirta Nykyaikana sähkövirta lienee tutumpi ilmiö kuin sähkövaraus. Todellisuudessa varauksia ja virtoja ei oikeastaan voi käsitellä erikseen. Edellisissä luvuissakin
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Kertausta: Vapausasteet
Maanantai 8.9.2014 1/19 Kertausta: Vapausasteet Liikkeen kuvailu: massapisteen koordinaatit (x, y, z) ja nopeudet (v x, v y, v z ). Vapaasti liikkuvalla massapisteellä on kolme vapausastetta. N:llä vapaasti
Staattinen magneettikenttä
Luku 5 Staattinen magneettikenttä Tässä luvussa tutustutaan liikkuvien sähkövarausten eli sähkövirtojen aiheuttamaan staattiseen magneettikenttään. Jos sähköstatiikka tuli opiskeltua huolellisesti, niin
Luku Ohmin laki
Luku 9 Sähkövirrat Sähkövirta määriteltiin kappaleessa 7.2 ja huomattiin, että magneettikenttä syntyy sähkövirtojen vaikutuksesta. Tässä kappaleessa tarkastellaan muita sähkövirtaan liittyviä seikkoja
Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen
Jakso 8. Ampèren laki Esimerkki 8.: Johda pitkän suoran virtajohtimen (virta ) aiheuttaman magneettikentän lauseke johtimen ulkopuolella etäisyydellä r johtimesta. Ratkaisu: Käytetään Ampèren lakia C 0
Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä
1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa
a) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
niiden pinnalle indusoituva varausjakautuma muuttuu, mikä puolestaan muuttaa eristeeseen vaikuttavaa ulkoista kenttää.
Luku 3 Sähkökenttä väliaineessa Edellä tarkasteltiin sähköstaattista kenttää tilanteissa, joissa oli annettuja varausjakautumia tai vapaita varauksia johdekappaleiden pinnalla. Läheskään kaikki aineet
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
Coulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
Sähkömagneettinen induktio
Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Luku 3. niiden pinnalle indusoituva varausjakautuma muuttuu, mikä puolestaan muuttaa eristeeseen vaikuttavaa ulkoista kenttää. E = 0. (3.
Luku 3 Sähkökenttä väliaineessa Edellä tarkasteltiin sähköstaattista kenttää tilanteissa, joissa oli annettuja varausjakautumia tai vapaita varauksia johdekappaleiden pinnalla. Läheskään kaikki aineet
Kondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan
f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
Aaltoputket ja resonanssikaviteetit
Luku 13 Aaltoputket ja resonanssikaviteetit Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla. Äärettömän hyvän johteen sisällä ei ole sähkökenttää,
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Aaltoputket ja resonanssikaviteetit
Luku 12 Aaltoputket ja resonanssikaviteetit Tässä luvussa tutustutaan ohjattuun aaltoliikkeeseen. Kerrataan ensin ajasta riippuvan sähkömagneettisen kentän käyttäytyminen ideaalijohteessa ja sen pinnalla.
Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina
Jakso 1. iot-savartin laki, Ampèren laki, vektoripotentiaali Tässä jaksossa lasketaan erimuotoisten virtajohtimien aiheuttamien magneettikenttien suuruutta kahdella eri menetelmällä, iot-savartin lain
Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
Varatun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan
3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden
Maxwell ja hänen yhtälönsä mitä seurasi?
Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Magneettikenttä ja sähkökenttä
Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon
Magneettinen energia
Luku 11 Magneettinen energia 11.1 Kelojen varastoima energia Sähköstatiikan yhteydessä havaittiin, että kondensaattori kykenee varastoimaan sähköstaattista energiaa. astaavalla tavalla kela, jossa kulkee
12. Derivointioperaattoreista geometrisissa avaruuksissa
12. Derivointioperaattoreista geometrisissa avaruuksissa 12.1. Gradientti, divergenssi ja roottori 328. Laske u, kun u on vektorikenttä a) (z y)i + (x z)j + (y x)k, b) e xyz (i + xlnyj + x 2 zk), c) (x
Staattinen magneettikenttä
Luku 5 taattinen magneettikenttä Tässä luvussa tustustutaan tasavirtoihin ja niiden aiheuttamiin magneettikenttiin (RM luvut 7 ja 8, L luku 6; esitiedot KII luvut 5 ja 6). 5.1 ähkövirta Nykyaikana sähkövirta