NUKLIDIEN PYSYVYYS. Stabiilit nuklidit

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "NUKLIDIEN PYSYVYYS. Stabiilit nuklidit"

Transkriptio

1 VI NUKLIDIEN PYSYVYYS Stabiilit nuklidit Luonnon 92 alkuaineessa on kaiken kaikkiaan 275 pysyvää nuklidia. Näistä noin 60%:lla on sekä parillinen (even) protoniluku että parillinen (even) neutroniluku. Näitä kutsutaan eveneven-nuklideiksi. Noin 40%:lla on joko neutroni- tai protoniluku parillinen, toisen ollessa pariton (odd): jos protonien luku on parillinen on kyseessä even-odd-nuklidi ja jos taas neutronien luku on parillinen se on odd-even nuklidi. Odd-odd-nuklideja, joissa molemmat luvut ovat parittomia, on kaiken kaikkiaan vain viisi: 2 H, 6 Li, 10 B, 14 N ja 50 V, eikä ole täysin poissuljettu että viimeksi mainittu olisi erittäin pitkäikäinen radionuklidi. Edellä kerrotun pohjalta on selvää, että ydin suosii protonien ja neutronien parillisuutta. Yksinäinen protoni ja yksinäinen neutroni eivät sen sijaan muodosta keskenään paria, mikä näkyy odd-odd-nuklidien vähäisyytenä. Kun katsoo nuklidikarttaa, huomaa, että parillisen järjestysluvun omaavilla alkuaineilla on huomattavasti enemmän stabiileja nuklideja kuin parittomilla. Esim. 32 Ge:lla on viisi stabiilia isotooppia (joista neljällä on myös parillinen neutroniluku), kun sen yläpuolella olevalla 33 As:lla on vain yksi ja sen alapuolella olevalla 31Ga:lla kaksi. Ytimien neutroni/protonisuhde Toinen tärkeä ytimen stabiilisuuteen vaikuttava tekijä on neutroni/protonisuhde. Paitsi ydinvoimat, vaikuttavat ytimessä myös sähköiset poisto- eli repulsiovoimat, koska positiiviset protonit hylkivät toisiaan. Kevyimmillä alkuaineilla on stabiileissa ytimissä suurinpiirtein yhtä paljon protoneja ja neutroneja. Alkuaineen järjestysluvun kasvaessa, kasvaa myös protonien välinen repulsiovoima. Jotta ydin pysyisi koossa on raskaimmissa ytimissä ylimäärä neutroneja suhteessa protoneihin. Raskaimmassa stabiilissa alkuaineessa vismutissa suhde on noin 1.5 ja luonnon uraanissa, jossa on 92 protonia, on 143 tai 146 neutronia eli neutroni/protonisuhde on noin 1.6. Allaolevassa kuvassa on esitetty nuklidit koordinaatistossa, jossa neutroniluku on y-akselina ja protoniluku x-akselina. Stabiilien nuklidien (kuvassa pisteinä) alapuolella olevia radionuklideja kutsutaan protoniylimääräisiksi 20

2 ja ne hajoavat stabiileiksi ytimiksi positroniemissiolla tai elektronikaappauksella sekä näistä kaikkein raskaimmat ytimet alfahajonnalla. Yläpuolella ovat neutroniylimääräiset hajoavat β - - hajonnalla. Kuva VI.1. Ytimien neutronien lukumäärä niiden protonimäärän eli järjestysluvun funktiona. Ytimen ja nukleonien massat Atomin, ytimen ja nukleonien massoja ei ilmaista grammoissa niiden pienuuden vuoksi, vaan suhteellisissa atomimassayksiköissä (amu = atomic mass unit). Atomimassayksikkö määritellään yhdeksi kahdeksitoistaosaksi 12 C-isotoopin massasta ( 12 C:ssä on kuusi protonia ja kuusi neutronia). 12 C:n massa on siis amu. Grammoissa ilmaistuna 1 amu = 1 / N = g [VI.I] missä N on Avogadron luku mol -1. Protonin massa on amu ja neutronin amu. Elektronin massa on vain n osa nukleonien massasta, amu. Kun massoja ilmaistaan atomimassayksiköissä käytetään symbolia M ja kun ne ilmaistaan grammoissa käytetään symbolia m. 21

3 Massavajaus sidosenergia Ensi katsomalta näyttäisi loogiselta, että ytimen massa (M A ) olisi neutronien ja protonien massojen summa: M A ( laskettu) = Z M p + N M n [VI.II] Esimerkiksi deuteriumin 2 H massaksi saataisin näin amu amu = amu. Mitattu massa on amu, mikä on amu pienempi kuin nukleoneista laskettu massa. Tätä massaeroa kutsutaan massavajaukseksi M (mass defect) ja sen yleinen lauseke on. M = M ( mitattu) Z M N M [VI.III] A A p n Massavajaus on se massaero, jonka verran ytimen massa muuttuu, kun se (kuvainnollisesti) rakennetaan nukleoneistaan. Massa ja energia voidaan korreloida toisiinsa Einsteinin kaavan E = m c 2 avulla. Näin voidaan myös massavajaus esittää energiana. Yksi atomimassayksikkö vastaa MeV:n energiaa. (Hajoamisissa ja ydinreaktioissa tapahtuvia energiamuutoksia ilmaistaan lähes aina elektronivoltteina (ev), joka määritellään energiaksi, joka vaaditaan siirtämään yhden elektronin varaus yhden voltin potentiaalieron ylitse. Jouleina 1 ev on J.) Deuteriumin massavajaus vastaa näin ollen MeV:n energia. Tämä energia siis purkautuu kun deuterium rakennetaan protonista ja neutronista. Vastaava määrä ulkopuolista energiaa tarvitaan hajoittamaan deuterium erilliseksi protoniksi ja neutroniksi. Tätä massavajausta vastaavaa energiaa kutsutaan ytimen sidosenergiaksi E B. Siis E B (MeV) = M A (amu) [VI.IV] Sidosenergiat nukleonia kohden Alla olevassa taulukossa on esitetty eräiden atomien massavajaukset ja sidosenergiat. Taulukossa on myös esitetty kullekin atomille nukleonia kohti laskettu sidosenergia E B /A. Tämä arvo on esitetty kaikille alkuaineille alla olevassa kuvassa. 22

4 Taulukko VI.1. Eräiden atomien atomimassat (M A ), massavajaukset ( M A ), sidosenergiat (E B ) ja nukleonia kohti lasketut sidosenergiat E B /A. Alkuaine Z N A M A (amu) M A (amu) E B (MeV) E B /A (MeV) H D Li B C Mg Zr Hg U Kuva VI.2. Alkuaineiden sidosenergia nukleonia kohden E B /A (MeV/A). Tästä kuvasta nähdään, että lähdettäessä kevyimmistä alkuaineista, sidosenergia kasvaa voimakkaasti mentäessä alkuaineisiin, joiden massaluku on välillä Kun E B /A arvo deuteriumilla on 1.11 MeV, on se korkeimmillaan raudalla (A=55) 8.8 MeV. Tämän jälkeen E B /A laskee hitaasti ollen talliumilla 8.02 MeV ja uraanilla 7.57 MeV. Siis keskiraskaat alkuaineet, kuten rauta, koboltti ja nikkeli, ovat kaikkein stabiileimpia. Tietyillä massaluvuilla, tai oikeastaan tietyillä protoni- tai neutroniluvuilla ns. maagisilla luvuilla, on 23

5 poikkeuksellisen korkeita E B /A-arvoja eli ytimet ovat selvästi stabiilimpia kuin naapurinsa. Esimerkiksi 4 He:n arvo on 7.07 MeV, kun seuraavaksi raskaammalla alkuaineella 6 Li:lla arvo on selvästi alhaisempi eli 5.33 MeV. 4 He:n erityinen stabiilisuus tekeekin ymmärrettäväksi, miksi alfahajonnassa emittoituu nimenomaan heliumytimiä. Energialaakso Kun esitetään nuklidit kolmiuloitteisessa koordinaatistossa, jossa akseleina ovat massavajaus, järjestysluku Z ja neutroniluku N, saadaan alla esitetty kuva, jossa näkyy ns. energialaakso keveyimmille ytimille (Z<25). Laakso syvenee kun massavajaus (sidosenergia) kasvaa järjestysluvun kasvaessa. Laakson pohjalla ovat stabiilit nuklidit ja sen reunoilla radioaktiiviset. Kuva VI.3. Energialaakso. Fuusio ja fissio Kuvasta VI.2. huomataan, että jos kaksi kevyttä alkuainetta (A<30) yhdistyy raskaammaksi alkuaineeksi, vapautuu energiaa. Jos esim. kaksi 20 Ne ydintä yhdistyy 40 Ca ytimeksi vapautuu 24 MeV:n sidosenergia koska 20 Ne:lla on E B /A-arvo 8.0 MeV eli kahden 20 Ne-ytimen kokonaissidosenergia on MeV eli 320 MeV kun puolestaan 40 Ca:n kokonais- 24

6 sidosenergia on 24 MeV korkeampi (40 8.6MeV = 344 MeV). Kahden kevyen alkuaineen yhdistymistä energeettisesti edullisemmaksi raskaammaksi alkuaineeksi kutsutaan fuusioksi. Fuusiota on ensiksi käytetty hyväksi fuusiopommeissa, ns. vetypommeissa, joissa aikaansaatiin deuteriumin ja tritiumin yhdistyminen ja vastaava valtavan energian vapautuminen. Energiatuotantoon tähtäävät fuusioreaktorit ovat vasta kehitysasteella. Ongelma niissä on tarpeeksi korkean lämpötilan aikaansaaminen fuusion herättämiseksi käyntiin. Fuusioreaktoreissa tämä saadaan aikaan plasman avulla, mutta toistaiseksi vielä energeettisesti/taloudellisesti kannattamattomalla tavalla. Pommeissa fuusio saadaan alkuun siten, että fuusioituvan materiaalin ympärillä on fissioituva U/Pu kerros, jonka räjähtäminen saa aikaan korkean lämpötilan, joka herättää fuusion. Fuusion vastakkainen, energiaa tuottava reaktio on fissio, jossa raskaat alkuaineet halkeavat kahdeksi keskiraskaaksi alkuaineeksi. Esim seuraavassa fissioreaktiossa 236 U 140 Xe + 93 Sr + 3n [VI.V] vapautuu energiaa MeV, koska 236 U:n sidosenergia nukleonia kohden on 7.6 MeV ja kokonaissidosenegia näin ollen MeV = MeV. 140 Xe:n ja 93 Sr:n sidosenergiat nukleonia kohden ovat 8.4MeV ja 8.7MeV ja kokonaissidosenergiat 1176MeV ja 809.1MeV, jolloin fission energiatuotto on 1176MeV MeV MeV = 191.5MeV. Kuten historiaosassa kerrottiin, fissiota, kuten fuusiotakin, käytettiin hyväksi ensin ydinaseissa ja vasta myöhemmin energiatuotannossa. Puoliempiirinen massan kaava Pohjautuen ns. ytimen pisaramalliin, jossa nukleonit oletetaan kokoonpuristumattomiksi nestepisaroiksi, joilla on vuorovaikutusta vain lähimpien naapuripisaroiden kanssa, on ytimen massan laskemiseksi johdettu ns. puoliempiirinen massan kaava, joka esitettynä sidosenergiaksi laskettuna on seuraava: E B (MeV) = a v A a a (N-Z) 2 /A - a c Z 2 /A 1/3 a s A 2/3 ± a δ /A 3/4 [VI.VI] 25

7 missä A on massaluku, Z järjestysluku, N neutroniluku sekä a v, a a, a c, a s ja a σ ovat kertoimia. Yhtälön ensimmäinen termi ottaa huomioon sidosenergian suoran riippuvuuden nukleonien määrästä, toinen neutroni/protonisuhteen vaihtelun eli ns. asymmetriaenergian, kolmas termi protonien coulombisen repulsion ja neljäs termi pintaenergian. Viides termi ottaa huomioon sen onko protonien ja neutronien lukumäärä parillinen vai pariton: termi on positiivinen jos kyseessä on even-even-nuklidi ja negatiivinen jos kyseessä on odd-odd-nuklidi. Jos puolestaan on kyseessä odd-even tai even-odd-nuklidi on termi nolla. Puoliempiiriseksi kaavan tekee se, että kertoimien arvot on saatu sovittamalla kaava havaittuihin sidosenergioihin ja arvoiksi on saatu a v = 15.5, a a = 23, a c = 0.72, a s = ja a δ = 34. Kun puoliempiiriseen massan kaavaan sijoitetaan Z = A-N ja järjestellään sopivasti, saadaan kaava, jossa sidosenergia esitetään järjestysluvun Z funktiona: E B = a Z 2 + b Z + c ± d/a 3/4 [VI.VII] Jossa kertoimet a, b ja c riippuvat vain massaluvusta A. Määrätyllä massaluvulla A eli isobaarilla yhtälön kuvaaja on parabeli. Alla olevassa kuvassa on esitetty esimerkki tällaisesta kuvaajasta tietylle massaluvulle. Myöhemmin betahajonnan käsittelyn yhteydessä kerrotaan, että kaikki betahajoamisen muodot (betamiinus, betaplus ja elektronikaappaus) kulkevat isobaarileikkauksia pitkin. Niissä muuttuu järjestysluku, mutta massaluku ei. Alla olevan kuvan kuvaaja, ja muut em. kaavalla saadut kuvaajat esittävätkin betahajomisketjuissa olevia nuklideja. Pohjalla oleva nuklidi tai nuklidit ovat stabiileja, parabelin vasemmalla sivulla olevat nuklidit hajoavat betaminushajonnalla kohti stabiilia ydintä ja oikealla sivulla olevat nuklidit betaplushajonnalla tai elektronikaappauksella. Vastaava parabelikuvaaja saadaan kun tehdään sivulla 24 esitetyssä energialaaksossa isobaaripoikkileikkaus. Parabeliyhtälön kolmas termi ± d/a 3/4 aiheuttaa sen, että jos isobaarin massaluku on pariton, kuten allaolevassa kuvassa vasen puoli, saadaan vain yksi parabelikuvaaja, kun taas parillisen massaluvun omaavilla isobaareille saadaan kaksi päällekkäin olevaa parabelia (kuva VI.4., oikea puoli). Näistä tarkemmin myöhemmin betahajonnan yhteydessä. 26

8 Kuva VI.4. Puoliempiirisestä massan yhtälöstä johdettu betastabiilisuuslaakson parabelikuvaaja määrätylle massaluvulle A. a = massaluku pariton, b = massaluku parillinen. Maagiset nuklidit Pisaramalli, johon puoliempiirinen kaava perustuu, selittää pitkälti ytimen massan ja energian systematiikan. Kuitenkin, kuten jo aiemmin todettiin ja kuvasta VI.2. näkyy, tässä systematiikassa on tiettyjä poikkeuksia, kuten 4 He:n, 16 O:n, 40 Ca:n, 48 Ca:n ja 208 Pb:n erikoisen korkea stabiilisuus. Näistä on päätelty, että tietyillä neutroni- ja protoniluvuilla ytimet ovat lähiytimiä selvästi stabiilimpia. Tällaisia lukuja ovat 2, 8, 20, 28, 50, 82 sekä neutroniluku 126. Näitä lukuja kutsutaan maagisiksi luvuiksi. Maagiset luvut eivät selity ytimen pisaramallin avulla, joten niiden selitykseksi on kehitetty ns. ytimen kuorimalli joka on analoginen atomin elektronimallin kanssa: nukleonit sijaitsevat ytimessä tietyillä kuorilla, joilla kullakin on tilaa vain tietylle määrälle ja nuklidit, joilla on vain täysiä kuoria, ovat kaikkein stabiileimpia. Pisaramalli ja kuorimalli eivät ole toisiaan poissulkevia vaan pikemminkin toisiaan täydentäviä. Superraskailla ytimillä maagiset neutroni- ja protoniluvut eivät ole enää identtisiä. Z = 82 jälkeen maagiset protoniluvut ovat 114, 126, 164, 228 ja vastaavat neutroniluvut N = 126 jälkeen 184, 196, 228 ja 272. Uusien alkuaineiden metsästäjillä seuraava suuri tavoite onkin valmistaa maagiset luvut omaava nuklidi , jonka oletetaan olevan naapureitaan stabiilimman. 27

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N

Atomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman

Lisätiedot

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö

Kemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen

Lisätiedot

2.2 RÖNTGENSÄTEILY. (yli 10 kv).

2.2 RÖNTGENSÄTEILY. (yli 10 kv). 11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT

VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin

Lisätiedot

Luento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot

Luento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot Luento 3 7 Ydinfysiikka Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot Ytimien ominaisuudet Ydin koostuu nukleoneista eli protoneista ja neutroneista Ydin on

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

FYSN300 Nuclear Physics I. Välikoe

FYSN300 Nuclear Physics I. Välikoe Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla

Lisätiedot

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.

raudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia. Vinkkejä tenttiin lukemiseen Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä luentomuistiinpanojen

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli

Lisätiedot

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni 3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja

Lisätiedot

Ydinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Ydinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Ydinfysiikka Atomin ydin kuuluu silmillemme näkymättömään maailmaan, mutta ydinfysiikan ilmiöt ovat osa modernia teknologiaa. Esim ydinvoima, ydinfysiikan käyttö lääketieteessä, ydinjätteet. Luennon tavoite:

Lisätiedot

Alkuaineita luokitellaan atomimassojen perusteella

Alkuaineita luokitellaan atomimassojen perusteella IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien

Lisätiedot

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET

MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET MAAILMANKAIKKEUDEN PIENET JA SUURET RAKENTEET KAIKKI HAVAITTAVA ON AINETTA TAI SÄTEILYÄ 1. Jokainen rakenne rakentuu pienemmistä rakenneosista. Luonnon rakenneosat suurimmasta pienimpään galaksijoukko

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA

6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA 6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA Atomin elektronirakenne tunnettiin paljon ennen ytimen rakenteen tuntemista: elektronien irrottamiseen atomista tarvitaan paljon pienempiä energioita (muutamia ev)

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

Oppikirja (kertauksen vuoksi)

Oppikirja (kertauksen vuoksi) Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain

Lisätiedot

9. JAKSOLLINEN JÄRJESTELMÄ

9. JAKSOLLINEN JÄRJESTELMÄ 9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.

KEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi

Lisätiedot

Säteily- ja ydinturvallisuus -kirjasarjan toimituskunta: Sisko Salomaa, Tarja K. Ikäheimonen, Roy Pöllänen, Anne Weltner, Olavi Pukkila, Wendla Paile, Jorma Sandberg, Heidi Nyberg, Olli J. Marttila, Jarmo

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis

E p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis 763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Ydin- ja hiukkasfysiikka

Ydin- ja hiukkasfysiikka Oulun yliopisto 766344A Ydin- ja hiukkasfysiikka Minna Patanen Nano- ja molekyylisysteemien tutkimusyksikkö Luonnontieteellinen tiedekunta 24. toukokuuta 2017 2 Sisältö 1 Ydinfysiikka 1 1.1 Ytimen ominaisuuksia........................

Lisätiedot

YDIN- JA SÄTEILYFYSIIKAN PERUSTEET

YDIN- JA SÄTEILYFYSIIKAN PERUSTEET 1 YDIN- JA SÄTEILYFYSIIKAN PERUSTEET Jorma Sandberg ja Risto Paltemaa SISÄLLYSLUETTELO 1.1 Atomi- ja ydinfysiikan peruskäsitteitä... 12 1.2 Radioaktiivinen hajoaminen... 19 1.3 Ydinreaktiot ja vaikutusala...

Lisätiedot

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat

Lisätiedot

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 Prof. Filip Tuomisto Fuusion perusteet, torstai 10.3.2016 Päivän aiheet Fuusioreaktio(t) Fuusion vaatimat olosuhteet Miten fuusiota voidaan

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Atomi- ja ydinfysiikan peruskäsitteitä. Seppo Sipilä

Atomi- ja ydinfysiikan peruskäsitteitä. Seppo Sipilä Atomi- ja ydinfysiikan peruskäsitteitä Seppo Sipilä Aineen perushiukkaset Varaus Massa [kg] elektroni, e - -q 9.1096 10-31 protoni, p +q 1.6726 10-27 (1836 m e ) neutroni, n 0 1.6749 10-27 (1839 m e )

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

1 Ensimmäisen asteen polynomifunktio

1 Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit

Kertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä Kertausta 1.kurssista Hiilen isotoopit 1 Isotoopeilla oli ytimessä sama määrä protoneja, mutta eri määrä neutroneja. Ne käyttäytyvät kemiallisissa

Lisätiedot

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360)

Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Hajoamiskaaviot ja niiden tulkinta (PHYS-C0360) Jarmo Ala-Heikkilä, VIII/2017 Useissa tämän kurssin laskutehtävissä täytyy ensin muodostaa tilannekuva: minkälaista säteilyä lähteestä tulee, mihin se kohdistuu,

Lisätiedot

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja.

Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: Taulukko VII.1. Eräitä kevyempiä primäärisiä luonnon radionuklideja. VII RADIONUKLIDIT Radionuklideja on seuraavia neljää tyyppiä jaoteltuna syntyperänsä mukaan: primääriset luonnon radionuklidit sekundääriset luonnon radionuklidit kosmogeeniset radionuklidit keinotekoiset

Lisätiedot

2 Toisen asteen polynomifunktio

2 Toisen asteen polynomifunktio Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4.5.017 Toisen asteen polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Merkitään taulukon pisteet koordinaatistoon ja hahmotellaan niiden kautta kulkeva

Lisätiedot

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1

FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko , klo 10-11, LS1 FL, sairaalafyysikko, Eero Hippeläinen Keskiviikko 19.12.2012, klo 10-11, LS1 Isotooppilääketiede Radioaktiivisuus Radioaktiivisuuden yksiköt Radiolääkkeet Isotooppien ja radiolääkkeiden valmistus 99m

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Keski-Suomen fysiikkakilpailu

Keski-Suomen fysiikkakilpailu Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus

Massaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus 11.5.2017 Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Erilaisia entalpian muutoksia

Erilaisia entalpian muutoksia Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli

Lisätiedot

Säteilyn historia ja tulevaisuus

Säteilyn historia ja tulevaisuus Säteilyn historia ja tulevaisuus 1. Mistä Maassa oleva uraani on peräisin? 2. Kuka havaitsi röntgensäteilyn ensimmäisenä ja millä nimellä hän sitä kutsui? 3. Miten alfa- ja beetasäteily löydettiin? Copyright

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Ydinfysiikka lääketieteellisissä sovelluksissa

Ydinfysiikka lääketieteellisissä sovelluksissa Ydinfysiikka lääketieteellisissä sovelluksissa Ari Virtanen Professori Jyväskylän yliopisto Fysiikan laitos/kiihdytinlaboratorio ari.j.virtanen@jyu.fi Sisältö Alkutaival Sädehoito Radiolääkkeet Terapia

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

Piirrostehtiivissa merkitse nakyviin mahdollisimman paljon tietoa, jolla ilmaiset ymmartaneesi tarkasteltavan ilmion.

Piirrostehtiivissa merkitse nakyviin mahdollisimman paljon tietoa, jolla ilmaiset ymmartaneesi tarkasteltavan ilmion. YDINFYSIIKKA FYSN3 kl. 211 Valikoe 1 25.2.211 Piirrostehtiivissa merkitse nakyviin mahdollisimman paljon tietoa jolla ilmaiset ymmartaneesi tarkasteltavan ilmion. 1. a) 14 C-ajoitusmenetelma perustuu 14

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Kaikki ympärillämme oleva aine koostuu alkuaineista.

Kaikki ympärillämme oleva aine koostuu alkuaineista. YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen

5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen TURUN AMMATTIKORKEAKOULU työohje 1(8) 5B. Radioaktiivisen isotoopin puoliintumisajan määrittäminen 1. TYÖN TAVOITE 2. TEORIAA 2.1. Aktivointi Työssä perehdytään radioaktiivisuuteen ja radioaktiivisen säteilyn

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

LHC -riskianalyysi. Emmi Ruokokoski

LHC -riskianalyysi. Emmi Ruokokoski LHC -riskianalyysi Emmi Ruokokoski 30.3.2009 Johdanto Mikä LHC on? Perustietoa ja taustaa Mahdolliset riskit: mikroskooppiset mustat aukot outokaiset magneettiset monopolit tyhjiökuplat Emmi Ruokokoski

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, syksy 2016 / ORMS1010 Matemaattinen Analyysi 8. harjoitus, viikko 49 R1 to 12 14 F453 (8.12.) R2 to 14 16 F345 (8.12.) R3 ke 8 10 F345 (7.11.) 1. Määritä funktion f (x) = 1 Taylorin sarja

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

LaFy IV, Ydinfysiikka

LaFy IV, Ydinfysiikka 11. Ydinfysiikka LaFy IV, 2016 101 Radioaktiivisen säteilyn havaitseminen (A.H. Becquerel, 1896) pian röntgensäteilyn löytämisen jälkeen oli ensimmäinen merkki atomien ytimistä (engl. nucleus). Rutherford

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Jakso 8: Monielektroniset atomit

Jakso 8: Monielektroniset atomit Jakso 8: Monielektroniset atomit Näytä tai palauta tämän jakson tehtävät viimeistään tiistaina 9.6.2015. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 6 ja 7. Suunnilleen samat asiat ovat

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto

Aineen olemuksesta. Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Aineen olemuksesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Miten käsitys aineen perimmäisestä rakenteesta on kehittynyt aikojen kuluessa? Mitä ajattelemme siitä nyt? Atomistit Loogisen päättelyn

Lisätiedot

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto

Neutriinofysiikka. Tvärminne Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinofysiikka Tvärminne 27.5.2010 Jukka Maalampi Fysiikan laitos, Jyväskylän yliopisto Neutriinon keksiminen Ongelma 1900-luvun alusta: beetahajoamisessa syntyvän neutriinon energiaspektri on jatkuva.

Lisätiedot

Fysiikka 9. luokan kurssi

Fysiikka 9. luokan kurssi Nimi: Fysiikka 9. luokan kurssi Kurssilla käytettävät suureet ja kaavat Täydennä taulukkoa kurssin edetessä: Suure Kirjaintunnus Yksikkö Yksikön lyhenne Jännite Sähkövirta Resistanssi Aika Sähköteho Sähköenergia

Lisätiedot

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2017

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2017 PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2017 Prof. Filip Tuomisto Reaktorifysiikan perusteita, torstai 5.1.2017 Ydinenergiatekniikka lämmön- ja siten sähköntuotanto ydinreaktioiden avulla

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi lyhyesti. a) a, c, e, g, b),,, 7,, Ratkaisut: a) i ja k - oikea perustelu ja oikeat kirjaimet, annetaan

Lisätiedot

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty KERTAUS KERTAUSTEHTÄVIÄ K1. a) Kun suoran s pisteen -koordinaatti kasvaa yhdellä, pisteen y- koordinaatti kasvaa kahdella. Suoran s kulmakerroin on siis. Kun suoran t pisteen -koordinaatti kasvaa kahdella,

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje

EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje Pohjois-Suomen yksikkö Q 15/25/2006/1 Rovaniemi 20.2.2006 EXPLORANIUM GR-130 minispec- Gammaspektrometrin käyttöohje Pertti Turunen 2006 GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä 20.2.2006 Tekijät

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

4. Funktion arvioimisesta eli approksimoimisesta

4. Funktion arvioimisesta eli approksimoimisesta 4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot