.. X JOHDATUS TEKOÄLYYN TEEMU ROOS

Koko: px
Aloita esitys sivulta:

Download ".. X JOHDATUS TEKOÄLYYN TEEMU ROOS"

Transkriptio

1 X.... X X JOHDATUS TEKOÄLYYN TEEMU ROOS

2 2. ETSINTÄ JA PELIT LEVEYSSUUNTAINEN HAKU

3 2. ETSINTÄ JA PELIT SYVYYSSUUNTAINEN HAKU

4 2. ETSINTÄ JA PELIT ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

5 2. ETSINTÄ JA PELIT ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

6 2. ETSINTÄ JA PELIT [A] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

7 2. ETSINTÄ JA PELIT [] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

8 2. ETSINTÄ JA PELIT [B,C,D] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

9 2. ETSINTÄ JA PELIT [C,D] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

10 2. ETSINTÄ JA PELIT [D] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

11 2. ETSINTÄ JA PELIT [D,F] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

12 2. ETSINTÄ JA PELIT [F] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

13 2. ETSINTÄ JA PELIT [] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

14 2. ETSINTÄ JA PELIT [E] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

15 2. ETSINTÄ JA PELIT [] ETSINTÄ(Alkusolmu) A B Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) C Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) D F E LEVEYSSUUNTAINEN HAKU: LISÄÄ(Solmulista1, Solmulista2) return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

16 2. ETSINTÄ JA PELIT ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) LISÄÄ(Solmulista1, Solmulista2) JONO ( FIRST-IN-FIRST-OUT ) LEVEYSSUUNTAINEN HAKU: return(peräkkäin(solmulista2, UUDET(Solmulista1))) # LISÄÄ([a,f],[d]) => [d,a,f]

17 2. ETSINTÄ JA PELIT ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) LISÄÄ(Solmulista1, Solmulista2) PINO ( LAST-IN-FIRST-OUT ) SYVYYSSUUNTAINEN HAKU: return(peräkkäin(uudet(solmulista1), Solmulista2)) # LISÄÄ([a,f],[d]) => [a,f,d]

18 ETSINTÄ ONGELMANRATKAISUNA I KU M HA RIT GO AL

19 ETSINTÄ ONGELMANRATKAISUNA

20 ETSINTÄ ONGELMANRATKAISUNA KOLME KANNIBAALIA JA KOLME LÄHETYSSAARNAAJAA HALUAA YLITTÄÄ JOEN VENEELLÄ, JOHON MAHTUU VAIN KAKSI HENKILÖÄ. JOS JOMMALLA KUMMALLA RANNALLA ON ENEMMÄN KANNIBAALEJA KUIN LÄHETYSSAARNAAJIA (MUTTA KUITENKIN VÄHINTÄÄN YKSI LÄHETYSSAARNAAJA), KANNIBAALIT SYÖVÄT HEIDÄT. MITEN JOKI SAADAAN YLITETTYÄ ILMAN, ETTÄ KETÄÄN SYÖDÄÄN? VOIT KOKEILLA KLIKKAAMALLA TÄSTÄ.

21 YKSINKERTAINEN SUDOKU-ALGORITMI: 1. ALOITA VASEMMASTA YLÄKULMASTA. 2. JOS RUUTU ANNETTU, SIIRRY SEURAAVAAN. 3. LISÄÄ NUMERO 0 RUUTUUN. 4. KASVATA NUMEROA YHDELLÄ. 5. JOS LISÄTTY NUMERO SOPII, SIIRRY SEURAAVAAN RUUTUUN JA JATKA ASKELEESTA JOS NUMERO LIIAN SUURI, PERUUTA YKSI RUUTU. 7. JATKA ASKELEESTA 4.

22 3

23 1 3

24 1 3 1

25 1 3 2

26 1 3 3

27 1 3 4

28

29

30

31

32 ?

33

34 ?

35 ?

36 ?

37

38 ?

39 ?

40 1 3 4?

41 1 3?

42 2 3

43 2 3 1

44

45

46

47

48

49

50

51

52 X X X ALGORITMI VASTAA SYVYYSSUUNTAISTA HAKUA!

53 HEURISTIIKAT KUSTANNUSARVIO: f(n) - ARVIO SOLMUN N KAUTTA KULKEVAN POLUN KUSTANNUKSESTA HEURISTIIKKA : h(n) - ARVIO SOLMUSTA N LÄHTEVÄN POLUN KUSTANNUKSESTA POLKUKUSTANNUS: g(n) - SOLMUUN N PÄÄTTYVÄN POLUN KUSTANNUS f(n) = g(n) + h(n)

54 HEURISTINEN HAKU ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] while Solmulista ei tyhjä Solmu = EKA(Solmulista); Solmulista = LOPUT(Solmulista) if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) return( ei ratkaisua ) LISÄÄ(Solmulista1, Solmulista2) PARAS-ENSIN-HAKU: A*-HAKU: f(n) = g(n) + h(n) return(järjestä(solmulista1,solmulista2)) # [(a,5),(b,3),(c,1)], [(a,2),(c,3),(f,5)] => [(c,1),(a,2),(b,3),(f,5)]

55 A* OLETUS: HEURISTIIKKA h(n) ANTAA AINA ENINTÄÄN YHTÄ SUUREN ARVON KUIN TODELLINEN KUSTANNUS SOLMUSTA N MAALIIN. TÄLLÖIN A* TUOTTAA AINA OPTIMAALISEN RATKAISUN TODISTUKSEN IDEA: JONON EKAKSI EI VOI PÄÄSTÄ MAALISOLMU, JONKA KUSTANNUS ON SUUREMPI KUIN OPTIMAALISEN MAALISOLMUN. JOS HEURISTIIKKA HYVÄ, SUURIMMASSA OSASSA HUONOJA SOLMUJA EI KÄYDÄ OLLENKAAN.

56 REITTIOPAS

57 REITTIOPAS TILA: (PYSÄKKI, KLO) SIIRTYMÄT: (LINJANRO, SUUNTA) TEHTÄVÄ: ETSI NOPEIN REITTI PYSÄKILTÄ A PYSÄKILLE B (EI KÄVELYÄ) MENETELMÄ: A*-HAKU

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 1: 4.9.2014-17.10.2012 (7 VIIKKOA+KOE) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 16.1.2017-3.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 18.1.2016-6.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ

Lisätiedot

Kognitiivinen mallintaminen 1

Kognitiivinen mallintaminen 1 Kognitiivinen mallintaminen 1 Uutta infoa: Kurssin kotisivut wikissä: http://wiki.helsinki.fi/display/kognitiotiede/cog241 Suorittaminen tentillä ja laskareilla (ei välikoetta 1. periodissa) Ongelmanratkaisu

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

13 Lyhimmät painotetut polut

13 Lyhimmät painotetut polut TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien

Lisätiedot

Kognitiivinen mallintaminen I

Kognitiivinen mallintaminen I Kognitiivinen mallintaminen I Symbolinen mallintaminen: 2. luento Ongelmanratkaisu Ongelmanratkaisu Rationaalinen agentti Ongelma-avaruus Hakustrategiat ongelma-avaruudessa sokea haku tietoinen haku heuristiikat

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

Johdatus tekoälyyn (T. Roos) Kurssikoe ARVOSTELUPERUSTEET

Johdatus tekoälyyn (T. Roos) Kurssikoe ARVOSTELUPERUSTEET 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 10.3.2016 ARVOSTELUPERUSTEET 1. Tekoälyn filosofiaa yms. a. (5 p) Esseekysymys. Sopivan pituinen vastaus on yli yhden, mutta mielellään alle kahden sivun mittainen.

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen. Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto

4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto 4 Heuristinen haku Eero Hyvönen Helsingin yliopisto Strategioita: - Breath-first - Uniform-cost - Depth-first - Depth-limited - Iterative deepening - Bidirectional Tekoäly, Eero Hyvönen, 2004 2 Heuristisen

Lisätiedot

Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät

Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät 96 Prolog voi päätyä samaan ratkaisuun monen päättelypolun kautta Tällöin sama ratkaisu palautetaan useita kertoja minimum(x,y,x):- X=Y. Molempien sääntöjen kautta löytyyy sama

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))!

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 126 Luku 3 Puut 3.1 Puu 3.2 Virittävä puu 3.3 Virittävän puun konstruointi 3.4 Minimaalinen virittävä puu

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU ACTIVATOR 1 ACTIVATOR 2 PELIPUU ACTIVATOR 1 ACTIVATOR 2 -1 0 1 PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu)) v = for each Lapsi in

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Lyhin kahden solmun välinen polku

Lyhin kahden solmun välinen polku Lyhin kahden solmun välinen polku Haluamme etsiä lyhimmän polun alla olevan ruudukon kohdasta a kohtaan b vierekkäisten (toistensa sivuilla, ylä- ja alapuolella olevien) valkoisten ruutujen välinen etäisyys

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan

Lisätiedot

Määrittelydokumentti

Määrittelydokumentti Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan?

a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan? 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

A* Reitinhaku Aloittelijoille

A* Reitinhaku Aloittelijoille A* Reitinhaku Aloittelijoille Alkuperäisen artikkelin kirjoittanut Patrick Lester, suomentanut Antti Veräjänkorva. Suom. huom. Tätä kääntäessäni olen pyrkinyt pitämään saman alkuperäisen tyylin ja kerronnan.

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.40 Lineaarinen ohjelmointi 5..007 Luento 9 Verkkotehtävän erikoistapauksia (kirja 7., 7.5, 7.9, 7.0) Lineaarinen ohjelmointi - Syksy 007 / Luentorunko (/) Verkkotehtävän ominaisuuksia Kuljetustehtävä

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen

Kaksiloppuinen jono D on abstrakti tietotyyppi, jolla on ainakin seuraavat 4 perusmetodia... PushFront(x): lisää tietoalkion x jonon eteen Viimeksi käsiteltiin pino: lisäys ja poisto lopusta jono: lisäys loppuun, poisto alusta Pinon ja jonon yleistävä tietorakenne: kaksiloppuinen jono alkion lisäys/poisto voidaan kohdistaa jonon alkuun tai

Lisätiedot

Algoritmit 2. Luento 12 To Timo Männikkö

Algoritmit 2. Luento 12 To Timo Männikkö Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille

Lisätiedot

Haku osittaisen informaation vallitessa

Haku osittaisen informaation vallitessa 136 Haun merkittävä ongelma on mahdollisuus laajentaa uudelleen jo kertaalleen tutkittu tila Näin äärellinen tila-avaruus voi johtaa äärettömään hakupuuhun Ratkeava ongelma voi muuttua käytännössä ratkeamattomaksi

Lisätiedot

1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1

1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen. succ(n) = n + 1 Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 11 Ratkaisut 1. Primitiivirekursiiviset funktiot muodostetaan kolmesta perusfunktiosta käyttäen kahta yhdistämissääntöä. Perusfunktioita

Lisätiedot

Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8.

Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 ARVOSTELUPERUSTEET Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 1. Tekoälyn filosofiaa yms.

Lisätiedot

j n j a b a c a d b c c d m j b a c a d a c b d c c j

j n j a b a c a d b c c d m j b a c a d a c b d c c j TEKNILLINEN KORKEAKOULU Tietoliikenne- ja tietoverkkotekniikan laitos S-38.115 Liikenneteorian perusteet, Kevät 2008 Demonstraatiot Luento 12 29.2.2008 D12/1 Tarkastellaan verkkoa, jossa on solmua ja linkkiä.

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2012-2013 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2012-2013 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

Englannin lausekerakenteita ja taulukkojäsentäminen

Englannin lausekerakenteita ja taulukkojäsentäminen Englannin lausekerakenteita ja taulukkojäsentäminen Kontekstittomat jäsennysmenetelmät Lili Aunimo lili.aunimo@helsinki.fi Helsingin yliopisto Kieliteknologia Lili Aunimo Englannin lausekerakenteita ja

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

811312A Tietorakenteet ja algoritmit V Verkkojen algoritmeja Osa1 : Leveys- ja syvyyshaku

811312A Tietorakenteet ja algoritmit V Verkkojen algoritmeja Osa1 : Leveys- ja syvyyshaku 811312A Tietorakenteet ja algoritmit 2016-2017 V Verkkojen algoritmeja Osa1 : Leveys- ja syvyyshaku Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi 811312A

Lisätiedot

Johdatus tekoälyyn (T. Roos) Kurssikoe

Johdatus tekoälyyn (T. Roos) Kurssikoe 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 18.10.2013 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ

Lisätiedot

Algoritmit 2. Luento 10 To Timo Männikkö

Algoritmit 2. Luento 10 To Timo Männikkö Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien

Lisätiedot

10. Painotetut graafit

10. Painotetut graafit 10. Painotetut graafit Esiintyy monesti sovelluksia, joita on kätevä esittää graafeina. Tällaisia ovat esim. tietoverkko tai maantieverkko. Näihin liittyy erinäisiä tekijöitä. Tietoverkkoja käytettäessä

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08

Rationaalinen agentti. Kognitiivinen mallintaminen I. Rationaalinen agentti. Rationaalinen agentti. Kognitiivinen mallintaminen I, kevät /1/08 Rationaalinen agentti Kognitiivinen mallintaminen I Yksinkertainen refleksiagentti Toiminta perustuu ainoastaan agentin havaintoihin kullakin ajanhetkellä. Luento III Symbolinen mallintaminen Ongelmanratkaisu

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT PERUSTIETORAKENTEET LISTA, PINO, JONO, PAKKA ABSTRAKTI TIETOTYYPPI Tietotyyppi on abstrakti, kun se on määritelty (esim. matemaattisesti) ottamatta kantaa varsinaiseen

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1

Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1 Liitosesimerkki 16.02.06 Tietokannan hallinta, kevät 2006, J.Li 1 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa 16.02.06

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan

Lisätiedot

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10

Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10 Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

1. Mitä tehdään ensiksi?

1. Mitä tehdään ensiksi? 1. Mitä tehdään ensiksi? Antti Jussi i Lakanen Ohjelmointi 1, kevät 2010/ Jyväskylän yliopisto a) Etsitään Googlesta valmis algoritmi b) Mietitään miten itse tehtäisiin sama homma kynällä ja paperilla

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 62 Luku 2 Yhtenäisyys 2.1 Polku 2.2 Lyhin painotettu polku 2.3 Yhtenäinen graafi 2.4 Komponentti 2.5 Aste

Lisätiedot

8. Yhteenvetoa. abstrakti tietotyyppi: mitä datalle halutaan tehdä tietorakenne: miten se tehdään (talletusrakenne, operaatioden toteutus)

8. Yhteenvetoa. abstrakti tietotyyppi: mitä datalle halutaan tehdä tietorakenne: miten se tehdään (talletusrakenne, operaatioden toteutus) 8. Yhteenvetoa Tietorakenteet ja abstraktit tietotyypit: abstrakti tietotyyppi: mitä datalle halutaan tehdä tietorakenne: miten se tehdään (talletusrakenne, operaatioden toteutus) Tietorakenteet ja algoritmit:

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2013-2014 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2013-2014 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan.

Eräs keskeinen algoritmien suunnittelutekniikka on. Palauta ongelma johonkin tunnettuun verkko-ongelmaan. 5. Verkkoalgoritmeja Eräs keskeinen algoritmien suunnittelutekniikka on Palauta ongelma johonkin tunnettuun verkko-ongelmaan. Palauttaminen edellyttää usein ongelman ja algoritmin pientä modifioimista,

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan

Lisätiedot

Syötteen ensimmäisellä rivillä on kokonaisluku n, testien määrä (1 n 10). Tämän jälkeen jokaisella seuraavalla rivillä on kokonaisluku x (0 x 1000).

Syötteen ensimmäisellä rivillä on kokonaisluku n, testien määrä (1 n 10). Tämän jälkeen jokaisella seuraavalla rivillä on kokonaisluku x (0 x 1000). A Summat Tehtäväsi on selvittää, monellako tavalla luvun n voi esittää summana a 2 + b 2 + c 2 + d 2. Kaikki luvut ovat ei-negatiivisia kokonaislukuja. Esimerkiksi jos n = 21, yksi tapa muodostaa summa

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

Pino S on abstrakti tietotyyppi, jolla on ainakin perusmetodit:

Pino S on abstrakti tietotyyppi, jolla on ainakin perusmetodit: Pino (stack) Pino: viimeisenä sisään, ensimmäisenä ulos (LIFO, Last In, First Out) -tietorakenne kaksi perusoperaatiota: alkion lisäys pinon päälle (push), ja päällimmäisen alkion poisto (pop) Push(alkio)

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot