JOHDATUS TEKOÄLYYN TEEMU ROOS
|
|
- Kaarina Korpela
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 JOHDATUS TEKOÄLYYN TEEMU ROOS
2 KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI LASKUHARJOITUKSET: RYHMÄ 1: TI (TEEMU) RYHMÄ 2: TO (ELIAS) RYHMÄ 3: PE (ELIAS) RYHMÄ 4? KURSSIKOE TO KLO 16-18:30
3 TIIMI IRC: teemuroos HUONE: A322 ELIAS JÄÄSAARI IRC: IRC: #johtek
4 ESITIETOVAATIMUKSET TIETORAKENTEET-KURSSI JOHDATUS YLIOPISTOMATEMATIIKKAAN -KURSSI TODENNÄKÖISYYSLASKENNAN KURSSISTA ON HYÖTYÄ OHJELMOINTITAITO KIELI VAPAA. JAVAAN OHJAUSTA.
5 MITÄ PITÄÄ TEHDÄ? LUENNOILLA EI OLE PAKKO ISTUA KURSSIKIRJAA EI OLE -- MATERIAALI KURSSIN SIVULLA KURSSIMONISTE LUENTOKALVOT (SIS. LINKKEJÄ) LASKUHARJOITUKSET MAX 20 PISTETTÄ KURSSIKOE MAX 40 PISTETTÄ HYVÄKSYMISRAJA N. 30 PISTETTÄ
6 VIELÄ PARI JUTTUA ERILAINEN KUIN TYYPILLINEN AI-KURSSI: - VARHAISEMMASSA VAIHEESSA OPINTOJA - VÄHEMMÄN MATEMATIIKKAA (MUTTA > 0) RAKENTAVA KRITIIKKI TERVETULLUTTA! TAVOITE: 100% LÄPÄISEE TYÖMÄÄRÄ: YHTEENSÄ N. 125 TUNTIA TAI 18 TUNTIA VIIKOSSA NO PAIN, NO GAIN!
7 AIHEITA 1. MITÄ ON TEKOÄLY? HISTORIA JA FILOSOFIA 2. PELIT JA ETSINTÄ GOFAI 3. LOGIIKKA(-OHJELMOINTI) 4. KONEOPPIMINEN JA PÄÄTTELY EPÄVARMUUDEN VALLITESSA 5. LUONNOLLISEN KIELEN KÄSITTELY 6. ROBOTIIKKA MODERN AI
8 KESKUSTELUA TEKOÄLY KULTTUURISSA R2-D2 GLADOS (PORTAL) GOOGLE AUTO SKYNET DATA
9
10
11 KESKUSTELUA MITÄ KAIKKEA SAMANTHA (*) OSAA? MITÄ NÄISTÄ EI OSATA VIELÄ TOTEUTTAA? ONKO SAMANTHALLA TIETOISUUS? *) TAI MUU ELOKUVAN TEKOÄLY
12 TEKOÄLYN FILOSOFIAA ÄLYKKÄÄSTI vahva tekoäly logiikka heikko tekoäly rationaaliset agentit AJATTELEE kognitiotiede neurotiede psykologia Turingin koe David (A.I.) HAL Samantha TOIMII IHMISMÄISESTI
13 TOIMII IHMISMÄISESTI: TURINGIN TESTI
14
15 KIINALAINEN HUONE VOIKO TOIMIA ÄLYKKÄÄSTI ILMAN ETTÄ AJATTELEE? TIETOISUUS?
16 MITÄ TEKOÄLY OIKEASTI ON?
17 MITÄ TEKOÄLY OIKEASTI ON? KONENÄKÖ REITINOPTIMOINTI PUHE NLP PELIT KONEOPPIMINEN TIEDONHAKU LOGIIKKA TIEDON LOUHINTA KONEKÄÄNNÖS SUOSITTELU
18 MITÄ TEKOÄLY OIKEASTI ON?
19 ETSINTÄ X.... X X
20 ETSINTÄ LEVEYSSUUNTAINEN HAKU
21 ETSINTÄ
22 ETSINTÄ
23 ETSINTÄ
24 ETSINTÄ
25 ETSINTÄ
26 ETSINTÄ
27 ETSINTÄ LYHIN REITTI SELVIÄÄ PERUUTTAMALLA NUOLTEN SUUNTAAN
28 ETSINTÄ LYHIN REITTI SELVIÄÄ PERUUTTAMALLA NUOLTEN SUUNTAAN
29 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
30 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
31 ETSINTÄ [A] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
32 ETSINTÄ [] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
33 ETSINTÄ [B,C,D] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
34 ETSINTÄ [C,D] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
35 ETSINTÄ [D] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
36 ETSINTÄ [D,F] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
37 2. ETSINTÄ JA PELIT [F] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
38 ETSINTÄ [] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
39 ETSINTÄ [E] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
40 ETSINTÄ [] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
41 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) JONO ( FIRST-IN-FIRST-OUT ) LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]
42 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) PINO ( LAST-IN-FIRST-OUT ) LISÄÄ(Naapurit, Solmulista) SYVYYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt return(peräkkäin(uudet, Solmulista)) # LISÄÄ([a,f],[d]) => [a,f,d]
43 ETSINTÄ ONGELMANRATKAISUNA
44 ETSINTÄ ONGELMANRATKAISUNA KOLME KANNIBAALIA JA KOLME LÄHETYSSAARNAAJAA HALUAA YLITTÄÄ JOEN VENEELLÄ, JOHON MAHTUU VAIN KAKSI HENKILÖÄ. JOS JOMMALLA KUMMALLA RANNALLA ON ENEMMÄN KANNIBAALEJA KUIN LÄHETYSSAARNAAJIA (MUTTA KUITENKIN VÄHINTÄÄN YKSI LÄHETYSSAARNAAJA), KANNIBAALIT SYÖVÄT HEIDÄT. MITEN JOKI SAADAAN YLITETTYÄ ILMAN, ETTÄ KETÄÄN SYÖDÄÄN? VOIT KOKEILLA KLIKKAAMALLA TÄSTÄ.
45 SUDOKU
46 SUDOKU YKSINKERTAINEN SUDOKU-ALGORITMI: 1. ALOITA VASEMMASTA YLÄKULMASTA. 2. JOS RUUTU ANNETTU, SIIRRY SEURAAVAAN. 3. LISÄÄ NUMERO 0 RUUTUUN. 4. KASVATA NUMEROA YHDELLÄ. 5. JOS LISÄTTY NUMERO SOPII, SIIRRY SEURAAVAAN RUUTUUN JA JATKA ASKELEESTA JOS NUMERO LIIAN SUURI, PERUUTA EDELLISEN ITSE VALITUN NUMERON KOHDALLE. 7. JATKA ASKELEESTA 4.
47 SUDOKU
48 SUDOKU
49 SUDOKU
50 SUDOKU
51 SUDOKU
52 SUDOKU
53 SUDOKU
54 SUDOKU
55 SUDOKU
56 SUDOKU
57 SUDOKU ?
58 SUDOKU
59 SUDOKU ?
60 SUDOKU ?
61 SUDOKU ?
62 SUDOKU
63 SUDOKU ?
64 SUDOKU ?
65 SUDOKU 1 3 4?
66 SUDOKU 1 3?
67 SUDOKU
68 SUDOKU
69 SUDOKU X X X ALGORITMI VASTAA SYVYYSSUUNTAISTA HAKUA!
70 PARAS-ENSIN HAKU ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) LISÄÄ(Solmulista1, Solmulista2) PARAS-ENSIN -HAKU: return(järjestä(solmulista1, Solmulista2)) # [(a,5),(b,3),(c,1)], [(a,2),(c,3),(f,5)] => [(c,1),(a,2),(c,3),(b,3),(f,5),(a,5)]
71 HEURISTIIKAT KUSTANNUSARVIO: f(n) - ARVIO LÄHTÖSOLMUSTA SOLMUN N KAUTTA MAALISOLMUUN KULKEVAN POLUN KUSTANNUKSESTA HEURISTIIKKA : h(n) - ARVIO KUSTANNUKSESTA SOLMUSTA N MAALISOLMUUN POLKUKUSTANNUS: g(n) - KUSTANNUS ALKUSOLMUSTA SOLMUUN N (RIIPPUU KULJETUSTA REITISTÄ) f(n) = g(n) + h(n)
72 A* ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) A*-HAKU: f(n) = g(n) + h(n) LISÄÄ(Solmulista1, Solmulista2) PARAS-ENSIN -HAKU: return(järjestä(solmulista1, Solmulista2)) # [(a,5),(b,3),(c,1)], [(a,2),(c,3),(f,5)] => [(c,1),(a,2),(c,3),(b,3),(f,5),(a,5)]
73 A* OLETUS: HEURISTIIKKA h(n) ANTAA AINA ENINTÄÄN YHTÄ SUUREN ARVON KUIN TODELLINEN KUSTANNUS SOLMUSTA N MAALIIN. TÄLLÖIN A* TUOTTAA AINA OPTIMAALISEN RATKAISUN TODISTUKSEN IDEA: JONON EKAKSI EI VOI PÄÄSTÄ MAALISOLMU, JONKA POLKUKUSTANNUS ON SUUREMPI KUIN OPTIMAALISEN REITIN KUSTANNUS. JOS HEURISTIIKKA HYVÄ, SUURIMMASSA OSASSA HUONOJA SOLMUJA EI KÄYDÄ OLLENKAAN.
74 REITTIOPAS
75 REITTIOPAS TILA: (PYSÄKKI, KULUNUT AIKA) KUSTANNUSARVIO: (MATKA-AIKA (MIN)) SIIRTYMÄT: (UUSI PYSÄKKI, VÄLIMATKA (MIN)) TEHTÄVÄ: ETSI NOPEIN REITTI PYSÄKILTÄ A PYSÄKILLE B (EI KÄVELYÄ) MENETELMÄ: A*-HAKU
76 HUOMENNA PELIT CASE: SHAKKI MINIMAX JA ALPHA-BETA-KARSINTA
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: 16.1.2017-3.3.2016 (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI 14-16 LASKUHARJOITUKSET: RYHMÄ
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 1: 4.9.2014-17.10.2012 (7 VIIKKOA+KOE) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET
.. X JOHDATUS TEKOÄLYYN TEEMU ROOS
1 3 1 3 4 3 2 3 4 3 2 3 1 2 3 4 122 31 4 3 1 4 3 1 122 31........ X.... X X 2 3 1 4 1 4 3 2 3 2 4 1 4 JOHDATUS TEKOÄLYYN TEEMU ROOS 2. ETSINTÄ JA PELIT LEVEYSSUUNTAINEN HAKU 1 9 3 2 5 4 6 7 11 16 8 12
Johdatus tekoälyyn (T. Roos) Kurssikoe
582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 18.10.2013 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen
Kognitiivinen mallintaminen 1
Kognitiivinen mallintaminen 1 Uutta infoa: Kurssin kotisivut wikissä: http://wiki.helsinki.fi/display/kognitiotiede/cog241 Suorittaminen tentillä ja laskareilla (ei välikoetta 1. periodissa) Ongelmanratkaisu
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU ACTIVATOR 1 ACTIVATOR 2 PELIPUU ACTIVATOR 1 ACTIVATOR 2 -1 0 1 PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu)) v = for each Lapsi in
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: AKTUAATTORIT:
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))
a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan?
582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen
13 Lyhimmät painotetut polut
TIE-20100 Tietorakenteet ja algoritmit 297 13 Lyhimmät painotetut polut BFS löytää lyhimmän polun lähtösolmusta graafin saavutettaviin solmuihin. Se ei kuitenkaan enää suoriudu tehtävästä, jos kaarien
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))!
A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.
Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
(p j b (i, j) + p i b (j, i)) (p j b (i, j) + p i (1 b (i, j)) p i. tähän. Palaamme sanakirjaongelmaan vielä tasoitetun analyysin yhteydessä.
Loppu seuraa suoralla laskulla: n n Tave TR = p j (1 + b (i, j)) j=1 = 1 + 1 i
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
Miten käydä läpi puun alkiot (traversal)?
inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: AIVOT : + KONENÄKÖ
Johdatus tekoälyyn
KURSSIN SISÄLTÖ eli TULEEKO TÄMÄ KOKEESEEN??? 582216 Johdatus tekoälyyn Syksy 2011 T. Roos KURSSIKOODI: 582216 OPINTOPISTEET: 4.0 ERIKOISTUMISLINJA: Algoritmit ja koneoppiminen TASO: Aineopinnot KUVAUS:
Esimerkkejä polynomisista ja ei-polynomisista ongelmista
Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia
A274101 TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8.
582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 ARVOSTELUPERUSTEET Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 1. Tekoälyn filosofiaa yms.
Johdatus tekoälyyn (T. Roos) Kurssikoe ARVOSTELUPERUSTEET
582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 10.3.2016 ARVOSTELUPERUSTEET 1. Tekoälyn filosofiaa yms. a. (5 p) Esseekysymys. Sopivan pituinen vastaus on yli yhden, mutta mielellään alle kahden sivun mittainen.
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
Tietorakenteet, laskuharjoitus 7, ratkaisuja
Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.
Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN
58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)
811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo
Määrittelydokumentti
Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta
811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan
Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.
Kognitiivinen mallintaminen I
Kognitiivinen mallintaminen I Symbolinen mallintaminen: 2. luento Ongelmanratkaisu Ongelmanratkaisu Rationaalinen agentti Ongelma-avaruus Hakustrategiat ongelma-avaruudessa sokea haku tietoinen haku heuristiikat
Johdatus tekoälyyn
YLEISTÄ 582216 Johdatus tekoälyyn Syksy 2013 T. Roos Kurssin päätavoitteena on saada käsitys tekoälyn perusongelmista, -sovelluksista ja -menetelmistä, sekä tekoälyn tärkeimmistä kehitysaskeleista sen
Ohjelmistoprosessit ja ohjelmistojen laatu Ohjelmistoprosessit ja ohjelmistojen laatu (4op)
581361 Ohjelmistoprosessit ja ohjelmistojen laatu (4op) Ohjelmistojärjestelmien syventävien opintojen kurssi Myös ohjelmistotekniikan profiilin pakollinen kurssi eli ohjelmistotekniikka-aiheisen gradun
Tervetuloa 2. vuositason infoiltaan
Tervetuloa 2. vuositason infoiltaan yleistä 2. vuositason opiskelijoista yo-tutkinto abivuosi opinto-ohjaus ja jatko-opintoihin pyrkiminen mahdollisuus tutustua sähköisiin kokeisiin luokassa 2O Missä mennään?
Lyhin kahden solmun välinen polku
Lyhin kahden solmun välinen polku Haluamme etsiä lyhimmän polun alla olevan ruudukon kohdasta a kohtaan b vierekkäisten (toistensa sivuilla, ylä- ja alapuolella olevien) valkoisten ruutujen välinen etäisyys
TKT50004: Akateemiset taidot (1 op)
TKT50004: Akateemiset taidot (1 op) Vuonna 2017 aloittaneet opiskelijat ke 12.9.2017 klo 14-16 Kjell Lemström Yhteenveto Kurssin luennot & suorittaminen Vanha vs. uusi tutkintojärjestelmä Miten 1. vuosi
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja
582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun
Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria
Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:
2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.
Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen
Matematiikka ja tilastotiede. Orientoivat opinnot / 25.8.2015
Matematiikka ja tilastotiede Orientoivat opinnot / 25.8.2015 Tutkinnot Kaksi erillistä ja peräkkäistä tutkintoa: LuK + FM Laajuudet 180 op + 120 op = 300 op Ohjeellinen suoritusaika 3 v + 2 v = 5 v Tutkinnot
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet ja algoritmit Uusinta- ja erilliskoe 12.9.2018 ratkaisuja (Jyrki Kivinen) 1. [10 pistettä] Iso-O-merkintä. (a) Pitääkö paikkansa, että n 3 + 5 = O(n 3 )? Ratkaisu: Pitää paikkansa.
Laskennan teoria
581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LOGIIKKAA LINTU(A) LENTÄÄ(A) PINGVIINI(A) LINTU(A) PINGVIINI(tweety). LENTÄÄ(tweety) ISÄ(X,Y) LAPSI(Y,X) ÄITI(X,Y) LAPSI(Y,X) ISÄ(X,Y) ISÄ(Y,Z) LAPSENLAPSI(Z,X) ISOISÄ(X,Z)
Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa
Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa kirjoitustaito. Kokeet järjestetään eri päivinä: esimerkiksi tänä
JOHDATUS TEKOÄLYYN TEEMU ROOS
JOHDATUS TEKOÄLYYN TEEMU ROOS LOGIIKKAA LINTU(A) LENTÄÄ(A) PINGVIINI(A) LINTU(A) PINGVIINI(tweety). LENTÄÄ(tweety) ISÄ(X,Y) LAPSI(Y,X) ÄITI(X,Y) LAPSI(Y,X) ISÄ(X,Y) ISÄ(Y,Z) LAPSENLAPSI(Z,X) ISOISÄ(X,Z)
Ylioppilaskokeisiin ilmoittautuminen
Ylioppilaskokeisiin ilmoittautuminen Sitova ilmoittautuminen syksyn 2017 tutkintoon ti 2.5. - ma 29.5. Wilmassa. Ilmoittautumisen allekirjoittaminen kansliassa viim. ma 29.5. Kevään tutkintoon ilmoittautuminen
1. Mitä tehdään ensiksi?
1. Mitä tehdään ensiksi? Antti Jussi i Lakanen Ohjelmointi 1, kevät 2010/ Jyväskylän yliopisto a) Etsitään Googlesta valmis algoritmi b) Mietitään miten itse tehtäisiin sama homma kynällä ja paperilla
Tekoäly tukiäly. Eija Kalliala, Marjatta Ikkala
Tekoäly tukiäly Eija Kalliala, Marjatta Ikkala 29.11.2018 Mitä on tekoäly? Unelma koneesta, joka ajattelee kuin ihminen Hype-sana, jota kuulee joka paikassa Väärinymmärretty sana -> vääriä odotuksia, pelkoja
Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5
Matematiikan opintosuunta
Matematiikan opintosuunta Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on mahdotonta antaa. Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on
Tervetuloa 2. vuositason infoiltaan!
Tervetuloa 2. vuositason infoiltaan! yleistä 2. vuositason opiskelijoista yo-tutkinto ensi lukuvuoden kurssivalinnat opinto-ohjaus ja jatko-opintoihin pyrkiminen Missä mennään? Nyt arvioituna 9 jaksoa
Tietokoneen rakenne (2 ov / 4 op) Syksy 2006
Luento 0 581365 Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento 0-1 Tietokoneen rakenne Asema opetuksessa u 1999 HajaTilin pakollinen,
811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto
811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien
Algoritmit 1. Luento 9 Ti Timo Männikkö
Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward
T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut
T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama
32 Ke 10.8. avajaiset klo 10.00 Forumilla 1. To 11.8. ro kaikki ryhmät 2
KALENTERI 1. JAKSO 32 Ke 10.8. avajaiset klo 10.00 Forumilla 1 To 11.8. ro kaikki ryhmät 2 Pe 12.8. tentti-info 09-ryhmät klo 11.15 3 ilm. uusintaan klo 12 mennessä 33 Ma 15.8. ilm.syksyn suul.kuulusteluihin
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
811312A Tietorakenteet ja algoritmit II Perustietorakenteet
811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi
Ylioppilaskokeisiin ilmoittautuminen
Ylioppilaskokeisiin ilmoittautuminen Ilmoittautuminen kevään 2017 tutkintoon alkaa pe 4.11. ja päättyy pe 18.11. Mikäli osallistuit syksyn yo-kirjoituksiin, voit odottaa niiden lopulliset tulokset ja ilmoittautua
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut
JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti
A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007
Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:
Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi
8.8.2016 Mallilukujärjestys 2016 2017 Yleisiä ohjeita Opinto-oppaat ja kurssikuvaukset Teknistieteellisen kandidaattiohjelman opinto-oppaat löytyvät osoitteesta http://studyguides.aalto.fi. Kurssien tarkemmat
T : Max-flow / min-cut -ongelmat
T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko
Algoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
58131 Tietorakenteet Erilliskoe , ratkaisuja (Jyrki Kivinen)
58131 Tietorakenteet Erilliskoe 11.11.2008, ratkaisuja (Jyrki Kivinen) 1. (a) Koska halutaan DELETEMAX mahdollisimman nopeaksi, käytetään järjestettyä linkitettyä listaa, jossa suurin alkio on listan kärjessä.
Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs
Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013
Diskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
582206 Laskennan mallit
582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)
Luento 0: Kurssihallinto Tietokoneen rakenne (2 ov / 4 op) Syksy 2006
Luento 0 581365 Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento 0-1 Tietokoneen rakenne Asema opetuksessa u 1999 HajaTilin pakollinen,
Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.
Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.
Tietokoneen toiminta (Computer Organization I)
581305-6 toiminta (Computer Organization I) Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Kesä 2002 Avoin yliopisto 1 Aihepiiri Sovellukset Teknologia Samanaikaisuus Ohjelmointikielet
Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009
FYSP120 FYSIIKAN NUMEERISET MENETELMÄT Juha Merikoski Jyväskylän yliopiston Fysiikan laitos Kevät 2009 1 Kurssin sisältö JOHDANTOA, KÄSITTEITÄ, VÄLINEITÄ [1A] Laskennallista fysiikkaa [1B] Matlabin alkeita
ALGORITMIT & OPPIMINEN
ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto Avoimet aineistot tulevat Tekijä: Lauri Vanhala yhdistä, kuvita, selitä, ennusta! Tekijä: Logica Mitä voidaan automatisoida? Algoritmi
811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003
Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12
4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto
4 Heuristinen haku Eero Hyvönen Helsingin yliopisto Strategioita: - Breath-first - Uniform-cost - Depth-first - Depth-limited - Iterative deepening - Bidirectional Tekoäly, Eero Hyvönen, 2004 2 Heuristisen
Algoritmi on periaatteellisella tasolla seuraava:
Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S
TFM-fuksit/Mallilukujärjestys I periodi / viikot /
TFM-fuksit/llilukujärjestys I periodi / viikot 37-42 /..-20..20.6.20 Useimmilla kursseilla on luento (L) eri tyyppisiä pienryhmiä. Jos kurssilla on useampi, kuin yksi pienryhmä = harjoitus (H)-, atk (A)-,
Yhteenveto palautteesta kurssilla Johdatus tekoälyyn (syksy 2011), Teemu Roos
Yhteenveto palautteesta kurssilla 582216 Johdatus tekoälyyn (syksy 2011), Teemu Roos 14.11.2011 Kurssille osallistui 193 opiskelijaa, joista kokeessa oli 113. Hyväksyttyjä oli 99 (51% osallistuneista,
Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät
96 Prolog voi päätyä samaan ratkaisuun monen päättelypolun kautta Tällöin sama ratkaisu palautetaan useita kertoja minimum(x,y,x):- X=Y. Molempien sääntöjen kautta löytyyy sama
OPS2016 ja ohjelmointi
1 OPS2016 ja ohjelmointi - johdattelu ohjelmointiin alakoulussa MIKKO HORILA & TUOMO TAMMI OPS2016 ja ohjelmointi 2 Perusopetuksen opetussuunnitelman perusteet päivittyvät syksyllä 2016. Koodaustaidot
TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)
JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.
Tervetuloa! Matematiikka tutuksi
Tervetuloa! Matematiikka tutuksi Tavoitteet Yritetään vastata seuraaviin kysymyksiin: Mitä matematiikassa tutkitaan ja mihin sitä tarvitaan? Mitä tarkoitetaan todistuksella ja mitä hyötyä on käsitteiden
811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit
811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op)
LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op) Vuonna 2015 aloittaneet opiskelijat pe 9.9.2016 klo 14-16 Kjell Lemström Yhteenveto Kurssin luennot Kurssin suorittaminen
LUKUJÄRJESTYKSEN SUUNNITTELU
LUKUJÄRJESTYKSEN SUUNNITTELU Kieli- ja viestintätieteiden laitos Englannin kieli JYU. Since 1863. 4.9.2018 1 Opintojen työmäärä 1 op vastaa n. 27 tunnin työpanosta, johon sisältyvät sekä kontaktiopetuksen
Myös opettajaksi aikova voi suorittaa LuK-tutkinnon, mutta sillä ei saa opettajan kelpoisuutta.
Tietojenkäsittelytiede Tutkintovaatimukset Perustutkinnot LUONNONTIETEIDEN KANDIDAATIN TUTKINTO (VÄHINTÄÄN 120 OV) 1. Tietojenkäsittelytieteen cum laude approbatur -oppimäärä (vähintään 55 ov) ja kypsyysnäyte
f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))
Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia
Syksyn 2018 ylioppilaskokeet
Syksyn 2018 ylioppilaskokeet Lue YTL:n tiedote kokelaille https://www.ylioppilastutkinto.fi/maaraykset/tiedote-kokelaille Syksyn 2018 yo-kokeiden päivämäärät ma 17.9. äidinkieli (suomi ja ruotsi), lukutaidon
LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op)
LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op) Vuonna 2016 aloittaneet opiskelijat pe 15.9.2017 klo 14-16 Kjell Lemström Yhteenveto Kurssin luennot & suorittaminen