JOHDATUS TEKOÄLYYN TEEMU ROOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "JOHDATUS TEKOÄLYYN TEEMU ROOS"

Transkriptio

1 JOHDATUS TEKOÄLYYN TEEMU ROOS

2 KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 3: (7 VIIKKOA+KOE) LUENNOT (CK112): MA 14-16, TI LASKUHARJOITUKSET: RYHMÄ 1: TI (TEEMU) RYHMÄ 2: TO (ELIAS) RYHMÄ 3: PE (ELIAS) RYHMÄ 4? KURSSIKOE TO KLO 16-18:30

3 TIIMI IRC: teemuroos HUONE: A322 ELIAS JÄÄSAARI IRC: IRC: #johtek

4 ESITIETOVAATIMUKSET TIETORAKENTEET-KURSSI JOHDATUS YLIOPISTOMATEMATIIKKAAN -KURSSI TODENNÄKÖISYYSLASKENNAN KURSSISTA ON HYÖTYÄ OHJELMOINTITAITO KIELI VAPAA. JAVAAN OHJAUSTA.

5 MITÄ PITÄÄ TEHDÄ? LUENNOILLA EI OLE PAKKO ISTUA KURSSIKIRJAA EI OLE -- MATERIAALI KURSSIN SIVULLA KURSSIMONISTE LUENTOKALVOT (SIS. LINKKEJÄ) LASKUHARJOITUKSET MAX 20 PISTETTÄ KURSSIKOE MAX 40 PISTETTÄ HYVÄKSYMISRAJA N. 30 PISTETTÄ

6 VIELÄ PARI JUTTUA ERILAINEN KUIN TYYPILLINEN AI-KURSSI: - VARHAISEMMASSA VAIHEESSA OPINTOJA - VÄHEMMÄN MATEMATIIKKAA (MUTTA > 0) RAKENTAVA KRITIIKKI TERVETULLUTTA! TAVOITE: 100% LÄPÄISEE TYÖMÄÄRÄ: YHTEENSÄ N. 125 TUNTIA TAI 18 TUNTIA VIIKOSSA NO PAIN, NO GAIN!

7 AIHEITA 1. MITÄ ON TEKOÄLY? HISTORIA JA FILOSOFIA 2. PELIT JA ETSINTÄ GOFAI 3. LOGIIKKA(-OHJELMOINTI) 4. KONEOPPIMINEN JA PÄÄTTELY EPÄVARMUUDEN VALLITESSA 5. LUONNOLLISEN KIELEN KÄSITTELY 6. ROBOTIIKKA MODERN AI

8 KESKUSTELUA TEKOÄLY KULTTUURISSA R2-D2 GLADOS (PORTAL) GOOGLE AUTO SKYNET DATA

9

10

11 KESKUSTELUA MITÄ KAIKKEA SAMANTHA (*) OSAA? MITÄ NÄISTÄ EI OSATA VIELÄ TOTEUTTAA? ONKO SAMANTHALLA TIETOISUUS? *) TAI MUU ELOKUVAN TEKOÄLY

12 TEKOÄLYN FILOSOFIAA ÄLYKKÄÄSTI vahva tekoäly logiikka heikko tekoäly rationaaliset agentit AJATTELEE kognitiotiede neurotiede psykologia Turingin koe David (A.I.) HAL Samantha TOIMII IHMISMÄISESTI

13 TOIMII IHMISMÄISESTI: TURINGIN TESTI

14

15 KIINALAINEN HUONE VOIKO TOIMIA ÄLYKKÄÄSTI ILMAN ETTÄ AJATTELEE? TIETOISUUS?

16 MITÄ TEKOÄLY OIKEASTI ON?

17 MITÄ TEKOÄLY OIKEASTI ON? KONENÄKÖ REITINOPTIMOINTI PUHE NLP PELIT KONEOPPIMINEN TIEDONHAKU LOGIIKKA TIEDON LOUHINTA KONEKÄÄNNÖS SUOSITTELU

18 MITÄ TEKOÄLY OIKEASTI ON?

19 ETSINTÄ X.... X X

20 ETSINTÄ LEVEYSSUUNTAINEN HAKU

21 ETSINTÄ

22 ETSINTÄ

23 ETSINTÄ

24 ETSINTÄ

25 ETSINTÄ

26 ETSINTÄ

27 ETSINTÄ LYHIN REITTI SELVIÄÄ PERUUTTAMALLA NUOLTEN SUUNTAAN

28 ETSINTÄ LYHIN REITTI SELVIÄÄ PERUUTTAMALLA NUOLTEN SUUNTAAN

29 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

30 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

31 ETSINTÄ [A] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

32 ETSINTÄ [] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

33 ETSINTÄ [B,C,D] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

34 ETSINTÄ [C,D] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

35 ETSINTÄ [D] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

36 ETSINTÄ [D,F] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

37 2. ETSINTÄ JA PELIT [F] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

38 ETSINTÄ [] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

39 ETSINTÄ [E] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

40 ETSINTÄ [] ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) C A D F B E LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

41 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) JONO ( FIRST-IN-FIRST-OUT ) LISÄÄ(Naapurit, Solmulista) LEVEYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt Solmulista return(peräkkäin(solmulista, Uudet)) # LISÄÄ([a,f],[d]) => [d,a,f]

42 ETSINTÄ ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) PINO ( LAST-IN-FIRST-OUT ) LISÄÄ(Naapurit, Solmulista) SYVYYSSUUNTAINEN HAKU: Uudet = Naapurilista Käsitellyt return(peräkkäin(uudet, Solmulista)) # LISÄÄ([a,f],[d]) => [a,f,d]

43 ETSINTÄ ONGELMANRATKAISUNA

44 ETSINTÄ ONGELMANRATKAISUNA KOLME KANNIBAALIA JA KOLME LÄHETYSSAARNAAJAA HALUAA YLITTÄÄ JOEN VENEELLÄ, JOHON MAHTUU VAIN KAKSI HENKILÖÄ. JOS JOMMALLA KUMMALLA RANNALLA ON ENEMMÄN KANNIBAALEJA KUIN LÄHETYSSAARNAAJIA (MUTTA KUITENKIN VÄHINTÄÄN YKSI LÄHETYSSAARNAAJA), KANNIBAALIT SYÖVÄT HEIDÄT. MITEN JOKI SAADAAN YLITETTYÄ ILMAN, ETTÄ KETÄÄN SYÖDÄÄN? VOIT KOKEILLA KLIKKAAMALLA TÄSTÄ.

45 SUDOKU

46 SUDOKU YKSINKERTAINEN SUDOKU-ALGORITMI: 1. ALOITA VASEMMASTA YLÄKULMASTA. 2. JOS RUUTU ANNETTU, SIIRRY SEURAAVAAN. 3. LISÄÄ NUMERO 0 RUUTUUN. 4. KASVATA NUMEROA YHDELLÄ. 5. JOS LISÄTTY NUMERO SOPII, SIIRRY SEURAAVAAN RUUTUUN JA JATKA ASKELEESTA JOS NUMERO LIIAN SUURI, PERUUTA EDELLISEN ITSE VALITUN NUMERON KOHDALLE. 7. JATKA ASKELEESTA 4.

47 SUDOKU

48 SUDOKU

49 SUDOKU

50 SUDOKU

51 SUDOKU

52 SUDOKU

53 SUDOKU

54 SUDOKU

55 SUDOKU

56 SUDOKU

57 SUDOKU ?

58 SUDOKU

59 SUDOKU ?

60 SUDOKU ?

61 SUDOKU ?

62 SUDOKU

63 SUDOKU ?

64 SUDOKU ?

65 SUDOKU 1 3 4?

66 SUDOKU 1 3?

67 SUDOKU

68 SUDOKU

69 SUDOKU X X X ALGORITMI VASTAA SYVYYSSUUNTAISTA HAKUA!

70 PARAS-ENSIN HAKU ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) LISÄÄ(Solmulista1, Solmulista2) PARAS-ENSIN -HAKU: return(järjestä(solmulista1, Solmulista2)) # [(a,5),(b,3),(c,1)], [(a,2),(c,3),(f,5)] => [(c,1),(a,2),(c,3),(b,3),(f,5),(a,5)]

71 HEURISTIIKAT KUSTANNUSARVIO: f(n) - ARVIO LÄHTÖSOLMUSTA SOLMUN N KAUTTA MAALISOLMUUN KULKEVAN POLUN KUSTANNUKSESTA HEURISTIIKKA : h(n) - ARVIO KUSTANNUKSESTA SOLMUSTA N MAALISOLMUUN POLKUKUSTANNUS: g(n) - KUSTANNUS ALKUSOLMUSTA SOLMUUN N (RIIPPUU KULJETUSTA REITISTÄ) f(n) = g(n) + h(n)

72 A* ETSINTÄ(Alkusolmu) Solmulista = [Alkusolmu] Käsitellyt = [ ] while Solmulista not empty Solmu = EKA(Solmulista) Solmulista = LOPUT(Solmulista) if Solmu not in Käsitellyt Käsitellyt = Käsitellyt + [Solmu] if MAALI(Solmu) return( ratkaisu, Solmu) Solmulista = LISÄÄ(NAAPURIT(Solmu),Solmulista) end if end while return( ei ratkaisua ) A*-HAKU: f(n) = g(n) + h(n) LISÄÄ(Solmulista1, Solmulista2) PARAS-ENSIN -HAKU: return(järjestä(solmulista1, Solmulista2)) # [(a,5),(b,3),(c,1)], [(a,2),(c,3),(f,5)] => [(c,1),(a,2),(c,3),(b,3),(f,5),(a,5)]

73 A* OLETUS: HEURISTIIKKA h(n) ANTAA AINA ENINTÄÄN YHTÄ SUUREN ARVON KUIN TODELLINEN KUSTANNUS SOLMUSTA N MAALIIN. TÄLLÖIN A* TUOTTAA AINA OPTIMAALISEN RATKAISUN TODISTUKSEN IDEA: JONON EKAKSI EI VOI PÄÄSTÄ MAALISOLMU, JONKA POLKUKUSTANNUS ON SUUREMPI KUIN OPTIMAALISEN REITIN KUSTANNUS. JOS HEURISTIIKKA HYVÄ, SUURIMMASSA OSASSA HUONOJA SOLMUJA EI KÄYDÄ OLLENKAAN.

74 REITTIOPAS

75 REITTIOPAS TILA: (PYSÄKKI, KULUNUT AIKA) KUSTANNUSARVIO: (MATKA-AIKA (MIN)) SIIRTYMÄT: (UUSI PYSÄKKI, VÄLIMATKA (MIN)) TEHTÄVÄ: ETSI NOPEIN REITTI PYSÄKILTÄ A PYSÄKILLE B (EI KÄVELYÄ) MENETELMÄ: A*-HAKU

76 HUOMENNA PELIT CASE: SHAKKI MINIMAX JA ALPHA-BETA-KARSINTA

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 5 OP PERIODI 1: 4.9.2014-17.10.2012 (7 VIIKKOA+KOE) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KURSSIN PERUSTIEDOT VALINNAINEN AINEOPINTOTASOINEN KURSSI, 4 OP PERIODI 1: 6.9.2012-12.10.2012 (6 VIIKKOA) LUENNOT (B123, LINUS TORVALDS -AUDITORIO): TO 10-12, PE 12-14 LASKUHARJOITUKSET

Lisätiedot

.. X JOHDATUS TEKOÄLYYN TEEMU ROOS

.. X JOHDATUS TEKOÄLYYN TEEMU ROOS 1 3 1 3 4 3 2 3 4 3 2 3 1 2 3 4 122 31 4 3 1 4 3 1 122 31........ X.... X X 2 3 1 4 1 4 3 2 3 2 4 1 4 JOHDATUS TEKOÄLYYN TEEMU ROOS 2. ETSINTÄ JA PELIT LEVEYSSUUNTAINEN HAKU 1 9 3 2 5 4 6 7 11 16 8 12

Lisätiedot

Johdatus tekoälyyn (T. Roos) Kurssikoe

Johdatus tekoälyyn (T. Roos) Kurssikoe 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 18.10.2013 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

Kognitiivinen mallintaminen 1

Kognitiivinen mallintaminen 1 Kognitiivinen mallintaminen 1 Uutta infoa: Kurssin kotisivut wikissä: http://wiki.helsinki.fi/display/kognitiotiede/cog241 Suorittaminen tentillä ja laskareilla (ei välikoetta 1. periodissa) Ongelmanratkaisu

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU ACTIVATOR 1 ACTIVATOR 2 PELIPUU ACTIVATOR 1 ACTIVATOR 2 -1 0 1 PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu)) v = for each Lapsi in

Lisätiedot

a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan?

a. (2 p) Selitä Turingin koe. (Huom. ei Turingin kone.) Minkälainen tekoäly on saavutettu, kun Turingin koe ratkaistaan? 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))!

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: ROBOTIIKKA TEKOÄLYN GRAND CHALLENGE YHDISTÄÄ LÄHES KAIKKI TEKOÄLYN OSA-ALUEET: AIVOT : + KONENÄKÖ

Lisätiedot

Johdatus tekoälyyn

Johdatus tekoälyyn KURSSIN SISÄLTÖ eli TULEEKO TÄMÄ KOKEESEEN??? 582216 Johdatus tekoälyyn Syksy 2011 T. Roos KURSSIKOODI: 582216 OPINTOPISTEET: 4.0 ERIKOISTUMISLINJA: Algoritmit ja koneoppiminen TASO: Aineopinnot KUVAUS:

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8.

Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 19.10.2012 ARVOSTELUPERUSTEET Kokeessa piti vastata viiteen (5) tehtävään kuudesta (6). Jokaisen tehtävän maksimipistemäärä on 8. 1. Tekoälyn filosofiaa yms.

Lisätiedot

Johdatus tekoälyyn (T. Roos) Kurssikoe ARVOSTELUPERUSTEET

Johdatus tekoälyyn (T. Roos) Kurssikoe ARVOSTELUPERUSTEET 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 10.3.2016 ARVOSTELUPERUSTEET 1. Tekoälyn filosofiaa yms. a. (5 p) Esseekysymys. Sopivan pituinen vastaus on yli yhden, mutta mielellään alle kahden sivun mittainen.

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT GRAAFITEHTÄVIÄ JA -ALGORITMEJA Lähteet: Timo Harju, Opintomoniste Keijo Ruohonen, Graafiteoria (math.tut.fi/~ruohonen/gt.pdf) GRAAFIN LÄPIKÄYMINEN Perusta useimmille

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen. Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

Määrittelydokumentti

Määrittelydokumentti Määrittelydokumentti Aineopintojen harjoitustyö: Tietorakenteet ja algoritmit (alkukesä) Sami Korhonen 014021868 sami.korhonen@helsinki. Tietojenkäsittelytieteen laitos Helsingin yliopisto 23. kesäkuuta

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

Johdatus tekoälyyn

Johdatus tekoälyyn YLEISTÄ 582216 Johdatus tekoälyyn Syksy 2013 T. Roos Kurssin päätavoitteena on saada käsitys tekoälyn perusongelmista, -sovelluksista ja -menetelmistä, sekä tekoälyn tärkeimmistä kehitysaskeleista sen

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Kognitiivinen mallintaminen I

Kognitiivinen mallintaminen I Kognitiivinen mallintaminen I Symbolinen mallintaminen: 2. luento Ongelmanratkaisu Ongelmanratkaisu Rationaalinen agentti Ongelma-avaruus Hakustrategiat ongelma-avaruudessa sokea haku tietoinen haku heuristiikat

Lisätiedot

Lyhin kahden solmun välinen polku

Lyhin kahden solmun välinen polku Lyhin kahden solmun välinen polku Haluamme etsiä lyhimmän polun alla olevan ruudukon kohdasta a kohtaan b vierekkäisten (toistensa sivuilla, ylä- ja alapuolella olevien) valkoisten ruutujen välinen etäisyys

Lisätiedot

Ohjelmistoprosessit ja ohjelmistojen laatu Ohjelmistoprosessit ja ohjelmistojen laatu (4op)

Ohjelmistoprosessit ja ohjelmistojen laatu Ohjelmistoprosessit ja ohjelmistojen laatu (4op) 581361 Ohjelmistoprosessit ja ohjelmistojen laatu (4op) Ohjelmistojärjestelmien syventävien opintojen kurssi Myös ohjelmistotekniikan profiilin pakollinen kurssi eli ohjelmistotekniikka-aiheisen gradun

Lisätiedot

Tervetuloa 2. vuositason infoiltaan

Tervetuloa 2. vuositason infoiltaan Tervetuloa 2. vuositason infoiltaan yleistä 2. vuositason opiskelijoista yo-tutkinto abivuosi opinto-ohjaus ja jatko-opintoihin pyrkiminen mahdollisuus tutustua sähköisiin kokeisiin luokassa 2O Missä mennään?

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja

Laskennan mallit (syksy 2008) 2. kurssikoe , ratkaisuja 582206 Laskennan mallit (syksy 2008) 2. kurssikoe 11.12., ratkaisuja Tehtävän 1 tarkasti Harri Forsgren, tehtävän 2 Joel Kaasinen ja tehtävän 3 Jyrki Kivinen. Palautetilaisuuden 19.12. jälkeen arvosteluun

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Matematiikka ja tilastotiede. Orientoivat opinnot / 25.8.2015

Matematiikka ja tilastotiede. Orientoivat opinnot / 25.8.2015 Matematiikka ja tilastotiede Orientoivat opinnot / 25.8.2015 Tutkinnot Kaksi erillistä ja peräkkäistä tutkintoa: LuK + FM Laajuudet 180 op + 120 op = 300 op Ohjeellinen suoritusaika 3 v + 2 v = 5 v Tutkinnot

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LOGIIKKAA LINTU(A) LENTÄÄ(A) PINGVIINI(A) LINTU(A) PINGVIINI(tweety). LENTÄÄ(tweety) ISÄ(X,Y) LAPSI(Y,X) ÄITI(X,Y) LAPSI(Y,X) ISÄ(X,Y) ISÄ(Y,Z) LAPSENLAPSI(Z,X) ISOISÄ(X,Z)

Lisätiedot

Laskennan teoria

Laskennan teoria 581336-0 Laskennan teoria luennot syyslukukaudella 2003 Jyrki Kivinen tietojenkäsittelytieteen laudatur-kurssi, 3 ov pakollinen tietojenkäsittelytieteen suuntautumisvaihtoehdossa esitiedot käytännössä

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LOGIIKKAA LINTU(A) LENTÄÄ(A) PINGVIINI(A) LINTU(A) PINGVIINI(tweety). LENTÄÄ(tweety) ISÄ(X,Y) LAPSI(Y,X) ÄITI(X,Y) LAPSI(Y,X) ISÄ(X,Y) ISÄ(Y,Z) LAPSENLAPSI(Z,X) ISOISÄ(X,Z)

Lisätiedot

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa

Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa Koe on kaksiosainen: siihen kuuluvat tekstitaidon koe ja esseekoe. Tekstitaidon kokeen arvioinnissa painottuu lukutaito ja esseekokeessa kirjoitustaito. Kokeet järjestetään eri päivinä: esimerkiksi tänä

Lisätiedot

Ylioppilaskokeisiin ilmoittautuminen

Ylioppilaskokeisiin ilmoittautuminen Ylioppilaskokeisiin ilmoittautuminen Sitova ilmoittautuminen syksyn 2017 tutkintoon ti 2.5. - ma 29.5. Wilmassa. Ilmoittautumisen allekirjoittaminen kansliassa viim. ma 29.5. Kevään tutkintoon ilmoittautuminen

Lisätiedot

1. Mitä tehdään ensiksi?

1. Mitä tehdään ensiksi? 1. Mitä tehdään ensiksi? Antti Jussi i Lakanen Ohjelmointi 1, kevät 2010/ Jyväskylän yliopisto a) Etsitään Googlesta valmis algoritmi b) Mietitään miten itse tehtäisiin sama homma kynällä ja paperilla

Lisätiedot

Matematiikan opintosuunta

Matematiikan opintosuunta Matematiikan opintosuunta Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on mahdotonta antaa. Matematiikka: Mitä se on? Vastaus: (Oma vastaukseni:) Tyhjentävää vastausta on

Lisätiedot

Tietokoneen rakenne (2 ov / 4 op) Syksy 2006

Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Luento 0 581365 Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento 0-1 Tietokoneen rakenne Asema opetuksessa u 1999 HajaTilin pakollinen,

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Tervetuloa 2. vuositason infoiltaan!

Tervetuloa 2. vuositason infoiltaan! Tervetuloa 2. vuositason infoiltaan! yleistä 2. vuositason opiskelijoista yo-tutkinto ensi lukuvuoden kurssivalinnat opinto-ohjaus ja jatko-opintoihin pyrkiminen Missä mennään? Nyt arvioituna 9 jaksoa

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

32 Ke 10.8. avajaiset klo 10.00 Forumilla 1. To 11.8. ro kaikki ryhmät 2

32 Ke 10.8. avajaiset klo 10.00 Forumilla 1. To 11.8. ro kaikki ryhmät 2 KALENTERI 1. JAKSO 32 Ke 10.8. avajaiset klo 10.00 Forumilla 1 To 11.8. ro kaikki ryhmät 2 Pe 12.8. tentti-info 09-ryhmät klo 11.15 3 ilm. uusintaan klo 12 mennessä 33 Ma 15.8. ilm.syksyn suul.kuulusteluihin

Lisätiedot

4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto

4 Heuristinen haku. Eero Hyvönen Helsingin yliopisto 4 Heuristinen haku Eero Hyvönen Helsingin yliopisto Strategioita: - Breath-first - Uniform-cost - Depth-first - Depth-limited - Iterative deepening - Bidirectional Tekoäly, Eero Hyvönen, 2004 2 Heuristisen

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut

58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut

14. Luennon sisältö. Kuljetustehtävä. Verkkoteoria ja optimointi. esimerkki. verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut JYVÄSKYLÄN YLIOPISTO 14. Luennon sisältö Kuljetustehtävä esimerkki Verkkoteoria ja optimointi verkkoteorian optimointitehtäviä verkon virittävä puu lyhimmät polut kevät 2012 TIEA382 Lineaarinen ja diskreetti

Lisätiedot

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs

Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs Ongelma(t): Voiko älykkyyden määritellä ja voiko sitä mitata, myös objektiivisesti? Onko älykkyyttä ilman (näkyvää) toimintaa? Voiko kone olla älykäs ja jos voi, niin tulisiko sellainen rakentaa? 2012-2013

Lisätiedot

Ylioppilaskokeisiin ilmoittautuminen

Ylioppilaskokeisiin ilmoittautuminen Ylioppilaskokeisiin ilmoittautuminen Ilmoittautuminen kevään 2017 tutkintoon alkaa pe 4.11. ja päättyy pe 18.11. Mikäli osallistuit syksyn yo-kirjoituksiin, voit odottaa niiden lopulliset tulokset ja ilmoittautua

Lisätiedot

Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi

Mallilukujärjestys Teknistieteellinen kandidaattiohjelma Tietotekniikka, 2. vuosikurssi 8.8.2016 Mallilukujärjestys 2016 2017 Yleisiä ohjeita Opinto-oppaat ja kurssikuvaukset Teknistieteellisen kandidaattiohjelman opinto-oppaat löytyvät osoitteesta http://studyguides.aalto.fi. Kurssien tarkemmat

Lisätiedot

T : Max-flow / min-cut -ongelmat

T : Max-flow / min-cut -ongelmat T-61.152: -ongelmat 4.3.2008 Sisältö 1 Määritelmät Esimerkki 2 Max-flow Graafin leikkaus Min-cut Max-flow:n ja min-cut:n yhteys 3 Perusajatus Pseudokoodi Tarkastelu 4 T-61.152: -ongelmat Virtausverkko

Lisätiedot

582206 Laskennan mallit

582206 Laskennan mallit 582206 Laskennan mallit luennot syksylla 2006, periodit I{II Jyrki Kivinen tietojenkasittelytieteen aineopintokurssi, 6 op, paaaineopiskelijoille pakollinen esitietoina Tietorakenteet (ja sen esitiedot)

Lisätiedot

Luento 0: Kurssihallinto Tietokoneen rakenne (2 ov / 4 op) Syksy 2006

Luento 0: Kurssihallinto Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Luento 0 581365 Tietokoneen rakenne (2 ov / 4 op) Syksy 2006 Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Luento 0-1 Tietokoneen rakenne Asema opetuksessa u 1999 HajaTilin pakollinen,

Lisätiedot

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I.

Valitaan alkio x 1 A B ja merkitään A 1 = A { x 1 }. Perinnöllisyyden nojalla A 1 I. Vaihto-ominaisuudella on seuraava intuition kannalta keskeinen seuraus: Olkoot A I ja B I samankokoisia riippumattomia joukkoja: A = B = m jollain m > 0. Olkoon vielä n = m A B, jolloin A B = B A = n.

Lisätiedot

ALGORITMIT & OPPIMINEN

ALGORITMIT & OPPIMINEN ALGORITMIT & OPPIMINEN Mitä voidaan automatisoida? Mikko Koivisto Avoimet aineistot tulevat Tekijä: Lauri Vanhala yhdistä, kuvita, selitä, ennusta! Tekijä: Logica Mitä voidaan automatisoida? Algoritmi

Lisätiedot

Tietokoneen toiminta (Computer Organization I)

Tietokoneen toiminta (Computer Organization I) 581305-6 toiminta (Computer Organization I) Teemu Kerola Helsingin yliopisto Tietojenkäsittelytieteen laitos Kesä 2002 Avoin yliopisto 1 Aihepiiri Sovellukset Teknologia Samanaikaisuus Ohjelmointikielet

Lisätiedot

Yhteenveto palautteesta kurssilla Johdatus tekoälyyn (syksy 2011), Teemu Roos

Yhteenveto palautteesta kurssilla Johdatus tekoälyyn (syksy 2011), Teemu Roos Yhteenveto palautteesta kurssilla 582216 Johdatus tekoälyyn (syksy 2011), Teemu Roos 14.11.2011 Kurssille osallistui 193 opiskelijaa, joista kokeessa oli 113. Hyväksyttyjä oli 99 (51% osallistuneista,

Lisätiedot

Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009

Juha Merikoski. Jyväskylän yliopiston Fysiikan laitos Kevät 2009 FYSP120 FYSIIKAN NUMEERISET MENETELMÄT Juha Merikoski Jyväskylän yliopiston Fysiikan laitos Kevät 2009 1 Kurssin sisältö JOHDANTOA, KÄSITTEITÄ, VÄLINEITÄ [1A] Laskennallista fysiikkaa [1B] Matlabin alkeita

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 6, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 6, Ratkaisu Harjoituksen aiheet ovat verkkojen leveys- ja syvyyshakualgoritmit Tehtävä 6.1 Hae leveyshakualgoritmia käyttäen lyhin polku seuraavan

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)

MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12

Lisätiedot

Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät

Ohjelmistotekniikan laitos OHJ-2550 Tekoäly, kevät 96 Prolog voi päätyä samaan ratkaisuun monen päättelypolun kautta Tällöin sama ratkaisu palautetaan useita kertoja minimum(x,y,x):- X=Y. Molempien sääntöjen kautta löytyyy sama

Lisätiedot

TFM-fuksit/Mallilukujärjestys I periodi / viikot /

TFM-fuksit/Mallilukujärjestys I periodi / viikot / TFM-fuksit/llilukujärjestys I periodi / viikot 37-42 /..-20..20.6.20 Useimmilla kursseilla on luento (L) eri tyyppisiä pienryhmiä. Jos kurssilla on useampi, kuin yksi pienryhmä = harjoitus (H)-, atk (A)-,

Lisätiedot

Algoritmi on periaatteellisella tasolla seuraava:

Algoritmi on periaatteellisella tasolla seuraava: Algoritmi on periaatteellisella tasolla seuraava: Dijkstra(V, E, l, v 0 ): S := { v 0 } D[v 0 ] := 0 for v V S do D[v] := l(v 0, v) end for while S V do valitse v V S jolle D[v] on minimaalinen S := S

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

OPS2016 ja ohjelmointi

OPS2016 ja ohjelmointi 1 OPS2016 ja ohjelmointi - johdattelu ohjelmointiin alakoulussa MIKKO HORILA & TUOMO TAMMI OPS2016 ja ohjelmointi 2 Perusopetuksen opetussuunnitelman perusteet päivittyvät syksyllä 2016. Koodaustaidot

Lisätiedot

LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op)

LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op) LuK-HOPS: Henkilökohtainen opintosuunnitelma ja osallistuminen opettajatuutorointiin (1 op) Vuonna 2015 aloittaneet opiskelijat pe 9.9.2016 klo 14-16 Kjell Lemström Yhteenveto Kurssin luennot Kurssin suorittaminen

Lisätiedot

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:

Lisätiedot

Tervetuloa! Matematiikka tutuksi

Tervetuloa! Matematiikka tutuksi Tervetuloa! Matematiikka tutuksi Tavoitteet Yritetään vastata seuraaviin kysymyksiin: Mitä matematiikassa tutkitaan ja mihin sitä tarvitaan? Mitä tarkoitetaan todistuksella ja mitä hyötyä on käsitteiden

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit

811312A Tietorakenteet ja algoritmit 2015-2016. V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit 811312A Tietorakenteet ja algoritmit 2015-2016 V Verkkojen algoritmeja Osa 2 : Kruskalin ja Dijkstran algoritmit Sisältö 1. Johdanto 2. Leveyshaku 3. Syvyyshaku 4. Kruskalin algoritmi 5. Dijkstran algoritmi

Lisätiedot

Myös opettajaksi aikova voi suorittaa LuK-tutkinnon, mutta sillä ei saa opettajan kelpoisuutta.

Myös opettajaksi aikova voi suorittaa LuK-tutkinnon, mutta sillä ei saa opettajan kelpoisuutta. Tietojenkäsittelytiede Tutkintovaatimukset Perustutkinnot LUONNONTIETEIDEN KANDIDAATIN TUTKINTO (VÄHINTÄÄN 120 OV) 1. Tietojenkäsittelytieteen cum laude approbatur -oppimäärä (vähintään 55 ov) ja kypsyysnäyte

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2013) Kurssikoe 2, 652013, vastauksia 1 [6 pistettä] Vastaa jokaisesta alla olevasta väittämästä onko se tosi vai epätosi ja anna lyhyt perustelu Jokaisesta kohdasta

Lisätiedot

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä

Luku 7. Verkkoalgoritmit. 7.1 Määritelmiä Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko

Lisätiedot

O P I N T O S U O R I T U S O T E

O P I N T O S U O R I T U S O T E Jyväskylän yliopisto 19.02.2013 O P I N T O S U O R I T U S O T E Sukunimi : Soranto Etunimet : Annemari Kristiina Syntymäaika : 01.05.1977 Opinto-oikeus : Varsinainen Tutkintotavoite : Kauppatieteiden

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

Päätöksentekomenetelmät

Päätöksentekomenetelmät L u e n t o Hanna Virta / Liikkeenjohdon systeemit Päätöksentekomenetelmät Luennon sisältö Johdanto päätöksentekoon Päätöksenteko eri tilanteissa Päätöspuut Päätösongelmia löytyy joka paikasta Päästökauppa:

Lisätiedot

LUKIOON VALMISTAVA KOULUTUS MAAHANMUUTTAJILLE VUOSAAREN LUKIOSSA 2011-2013 ja 2013-2014

LUKIOON VALMISTAVA KOULUTUS MAAHANMUUTTAJILLE VUOSAAREN LUKIOSSA 2011-2013 ja 2013-2014 LUKIOON VALMISTAVA KOULUTUS MAAHANMUUTTAJILLE VUOSAAREN LUKIOSSA 2011-2013 ja 2013-2014 Marko Paju Kuntaliiton Lukioforum 19.6.2013 Marko Paju OPH:n luvaperusteiden toimeenpanokoulutus 4.3.2014 Helsingin

Lisätiedot

Matematiikka ja tilastotiede. Orientoivat opinnot /

Matematiikka ja tilastotiede. Orientoivat opinnot / Matematiikka ja tilastotiede Orientoivat opinnot / 27.8.2013 Tutkinnot Kaksi erillistä ja peräkkäistä tutkintoa: LuK + FM Laajuudet 180 op + 120 op = 300 op Ohjeellinen suoritusaika 3 v + 2 v = 5 v Tutkinnot

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LOGIIKKAA TERMI: MUUTTUJA: A,B,C,... VAKIO: a,b,c,... PREDIKAATTI: SISÄLLÄ, ULKONA,... LAUSE: ULKONA(A) SISÄLLÄ(A) SITÄ ON JOKO ULKONA TAI SISÄLLÄ. LAUSE: ULKONA(A) SATAA

Lisätiedot

Yo-koe: Kuullunymmärtäminen, vieras kieli, pitkä oppimäärä Opetus /13

Yo-koe: Kuullunymmärtäminen, vieras kieli, pitkä oppimäärä Opetus /13 Aikuislinjan lukuvuosikalenteri 1. jakso 18.8. 5.10. Päivä Pvm. Toiminta Ti 12.8. Uusien opiskelijoiden yleisinfo klo 18.00 Ke 13.8. Opinto-ohjaaja ohjaa uusia opiskelijoita klo 12.00 18.00 To 14.8. Opinto-ohjaaja

Lisätiedot

YO-info S2014 3.9.2014. rehtori Mika Strömberg

YO-info S2014 3.9.2014. rehtori Mika Strömberg YO-info S2014 3.9.2014 rehtori Mika Strömberg YLIOPPILASTUTKINTO NELJÄ PAKOLLISTA KOETTA VIERAS KIELI ÄIDINKIELI TOINEN KOTIMAINEN KIELI MATEMATIIKKA AINEREAALI HUOM! * yksi vaativampi koe (A-kieli/pitkä

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 1: Rekursiivinen ajattelutapa, Scheme-kielen perusteita (mm. SICP 11.2.4) Riku Saikkonen 16. 10. 2012 Sisältö 1 Kurssijärjestelyitä 2 Perusteita Scheme-kielestä,

Lisätiedot

TERVETULOA!

TERVETULOA! TERVETULOA! 4.5.2017 ILMOITTAUTUMINEN (1/2) Sitova ilmoittautuminen vain syksyn 2017 YO-kokeisiin Wilmaan 19.5. mennessä ILMOITTAUTUMINEN (2/2) Lomake jaetaan RO-tuokiossa allekirjoitettavaksi Suunnitelma

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot