5.5 Jäsenninkombinaattoreista

Koko: px
Aloita esitys sivulta:

Download "5.5 Jäsenninkombinaattoreista"

Transkriptio

1 5.5. JÄSENNINKOMBINAATTOREISTA 67 type Env α = FiniteMap String α data EnvT m α = MkE (Env Integer m (Env Integer, α)) instance Transformer EnvT where promote mp = MkE $ λenv mp λr return $(env, r) instance Monad m Monad (EnvT m) where return = promote return (MkE p) f = MkE $ λenv p env λ(env, pr) case f pr of (MkE q) q env fail = promote fail instance Monad m EnvMonad (EnvT m) where begin (MkE p) = MkE $ λenv p env λ(_, r) return (env, r) bind v n = MkE $ λenv return (addtofm env v n, ()) getvalue v (MkE f) = MkE $ λenv case lookupfm env v of Just n return (env, n) Nothing f env Kuva 5.2: Ympäristömonadimuunnin 5.5 Jäsenninkombinaattoreista Tarkastellaanpa 6 nyt ongelman toista puolta. Miten jäsentää merkkijono niin, että saamme ulos sitä vastaavan tyyppiä Expr olevan abstraktin syntaksipuun? Tutkitaanpa ensin yleistä jäsennysongelmaa: tunnistetaan merkkijono ja kootaan sen perusteella semanttinen arvo. Jäsennin on siis oikeastaan funktio String α. Toisaalta joillakin merkkijonoilla voi olla useita semanttisia arvoja (jos kielen syntaksi on moniselitteinen), joten voisi olla parempi käyttää funktiotyyppiä String [α]. Aiemmin luennoilla on puhuttu kombinatorisesta ohjelmoinnista, jossa ohjelmia koostetaan toisista ohjelmista. Tämä oli monadisen lähestymistavan ydin. Nokkelina saattaisimme päätyä ajatukseen, että ehkä jäsentimetkin kannattaisi rakentaa kombinatorisesti: ainakin säännöllisten kielten tapauksessa tämä olisi mahdollista. Säännölliset kielethän voidaan kuvata säännöllisillä lausekkeilla: Määritelmä Säännölliset lausekkeet ovat seuraavanlaisia: 6. Kirjoittaja pahoittelee tämän osan karuutta. Ehkä ensi vuonna sitten :)

2 68 LUKU 5. MONADIT 1. Symboli ε muodostaa yksinään säännöllisen lausekkeen. 2. Mikä tahansa aakkoston Σ merkki on säännöllinen lauseke. 3. Jos r on säännöllinen lauseke, niin r on säännöllinen lauseke (Kleenen tähti). 4. Jos r on säännöllinen lauseke, niin r + on säännöllinen lauseke. 5. Jos r ja s ovat säännöllisiä lausekkeita, niin rs on säännöllinen lauseke (r:n ja s:n katenointi). 6. Jos r ja s ovat säännöllisiä lausekkeita, niin r s on säännöllinen lauseke. Aakkoston Σ säännöllisten lausekkeiden joukkoa merkitään RE(Σ). Säännöllisen lausekkeen merkitys määritellään funktion L : RE(Σ) P(Σ ) avulla 7 : L ε = ε L c = c L rs = { vw v L r w L s } L r s = L r L s L r = L ε rr L r + = L rr missä c Σ Huomaa, että Kleenen tähden merkitys määritellään rekursiivisesti. Aivan formaalisti tämän tekeminen vaatisi kiintopisteoperaattoria, mikä ei valitettavasti kuulu tämän kurssin esitietoihin. Voisimme asettaa seuraavanlaiset Haskell-määritelmät: type Parser α = String [α] eps :: α Parser α eps a s = [a] char :: Char Parser Char char c [] = [] char c (x : _) c == x = [c] otherwise = [] 7. Sulut on tavanomainen tapa erottaa tarkasteltava kieli (tässä säännölliset lausekkeet) metakielestä (tässä merkkijonoteoria). Sulkujen sisällä oleva tavara on tarkasteltavaa kieltä, sulkujen ulkopuolella on metakieltä.

3 5.5. JÄSENNINKOMBINAATTOREISTA 69 ja niin edelleen. Ongelmaksi muodostuu katenoinnin määritteleminen. Tähän mennessä käyttämämme jäsentimen tyyppi ei mitenkään paljasta, mitä jäsennin on syötteestä syönyt. Siksi lienee parasta määritellä vielä kerran uudelleen: type Parser α = String [(α, String)] eps :: α Parser α eps a s = [(a, s)] char :: Char Parser Char char c [] = [] char c (x : xs) c == x = [(c, xs)] otherwise = [] Mutta lienee fiksumpaa tehdä jäsentimestä abstrakti tyyppi: newtype Parser α = MkP(String [(α, String)]) Ei ehkä niin yllättävästi näin määritelty jäsennintyyppi on monadi: instance Monad Parser where return x = MkP $ λs [(x, s)] (MkP p) f = MkP $ λs concatmap g $ p s where g (rv, rest) = case f rv of MkP p p rest fail _ = mzero Se kuuluu myös tyyppiluokkaan MonadPlus, joka on monadi, jolla on lisäksi yhteenlaskuoperaattori ja nolla : instance MonadPlus Parser where mzero = MkP $ λ_ [] (MkP p) mplus (MkP q) = MkP $ λs p s ++ q s Ajatus on se, että return x vastaa säännöllistä lauseketta ε, jonka semanttinen arvo on x ja p λx q on p:n ja q:n katenointi niin, että x:ään tulee p:n semanttinen arvo ja q tuottaa omansa lisäksi koko lausekkeen yhteisen semanttisen arvon. Kuvissa 5.3 ja 5.4 on tämän ajatuksen pohjalta määritelty jäsenninkombinaattorimoduli. Tämä moduli riittääkin edellä esitetyn laskimen jäsentimen rakentamiseen (ks. kuva 5.5). Kannattaa huomata, että vaikka edellä keskityttiinkin vain säännöllisten lausekkeiden kuvaamiseen, Haskellin rekursiiviset määritelmät antavat

4 70 LUKU 5. MONADIT module ParComb where import Char (isspace, isalpha, isdigit) import Monad (MonadPlus, mzero, mplus) newtype Parser a = MkP (String -> [(a, String)]) runparser :: Parser a -> String -> [(a, String)] runparser (MkP f) = f instance Monad Parser where return x = MkP $ \ s -> [(x, s)] (MkP p) >>= f = MkP $ \ s -> concatmap g $ p s where g (rv, rest) = case f rv of MkP p -> p rest fail _ = mzero instance MonadPlus Parser where mzero = MkP $ \ _ -> [] (MkP p) mplus (MkP q) = MkP $ \ s -> p s ++ q s eof :: a -> Parser a eof rv = MkP f where f [] = [(rv, [])] f (_:_) = [] eps :: a -> Parser a eps a = MkP $ \ s -> [(a, s)] maximal :: Parser [a] -> Parser [a] maximal (MkP p) = MkP $ \ s -> findmax (\ (a,s) -> length a) $ p s where findmax :: (a -> Int) -> [a] -> [a] findmax m l = let f (_, r) [] = r f r) (x:xs) lx > lr = f (lx, [x]) xs otherwise = f p xs where lx = m x in f (-1, []) l Kuva 5.3: Moduli ParComb alkaa

5 5.5. JÄSENNINKOMBINAATTOREISTA 71 item :: Parser Char item = MkP f where f [] = [] f (x:xs) = [(x, xs)] sat :: (Char -> Bool) -> Parser Char sat p = item >>= filt where filt c p c = return c otherwise = mzero char :: Char -> Parser Char char c = sat (==c) wchar :: Char -> Parser () wchar c = wsp >> char c >> return () string :: String -> Parser String string = return rv string = char x >> string xs >> return rv wsp :: Parser () wsp = kstar (sat isspace) >> return () wstring :: String -> Parser String wstring s = wsp >> string s -- Kleene star kstar :: Parser a -> Parser [a] kstar p = eps [] mplus (p >>= \ x -> kstar p >>= \ xs -> return $ x:xs) -- Kleene plus kplus :: Parser a -> Parser [a] kplus p = p >>= \x -> kstar p >>= \xs -> return $ x:xs ident :: Parser String ident = maximal $ kplus (sat isalpha) wident :: Parser String wident = wsp >> ident int :: Parser Integer int = (maximal $ kplus (sat isdigit)) >>= return. (read :: String -> Integer) wint :: Parser Integer wint = wsp >> int Kuva 5.4: Moduli ParComb päättyy

6 72 LUKU 5. MONADIT meille ilmaiseksi kyvyn kuvata kontekstittomia kielioppeja. Ainoa rajoite on se, että tämä tekniikka ei kestä vasenrekursiivisia kielioppeja, joten vasen rekursio on ensin kieliopista poistettava. Kuvaa 5.5 vastaava konkreetti kielioppi on seuraavanlainen: Let-expression = "let", Identifier, "=", Expression, "in", Expression Expression Expression = Term, Rest of expression Rest of expression = (* nothing *) "+", Term, Rest of expression -", Term, Rest of expression Term = Factor, Rest of term Rest of term = (* nothing *) "*", Factor, Rest of term "/", Factor, Rest of term Factor =Identifier Integer literal "(", Let expression, ")" Kannattaa huomata, että tässä esitetty toteutus jäsenninkombinaattoreille on hyvin voimallinen mutta tehoton. Ks. esimerkiksi sivulle daan/parsec.html, jossa esitellään tehokas versio samasta ideasta.

7 5.5. JÄSENNINKOMBINAATTOREISTA 73 module Parser (parse) where import Expr import List (nub) import ParComb import Monad (mplus) parse :: String -> [Expr] parse s = nub $ map fst $ runparser (lexpr >>= eof) s lexpr :: Parser Expr lexpr = letex mplus expr letex :: Parser Expr letex = do wstring "let" x <- wident wchar = e <- expr wstring "in" e <- lexpr return $ Let x e e expr :: Parser Expr expr = term >>= expr expr :: Expr -> Parser Expr expr t = mplus (eps t) $ do op <- (wchar + >> return (:+)) mplus (wchar - >> return (:-)) t <- term expr (op t t ) term :: Parser Expr term = factor >>= term term :: Expr -> Parser Expr term f = mplus (eps f) $ do op <- (wchar * >> return (:*)) mplus (wchar / >> return (:/)) f <- factor term (op f f ) factor :: Parser Expr factor = (wident >>= return. Var) mplus (wint >>= return. Const) mplus (wchar ( >> lexpr >>= \r -> wchar ) >> return r) Kuva 5.5: Moduli Parser

5.3 Laskimen muunnelmia 5.3. LASKIMEN MUUNNELMIA 57

5.3 Laskimen muunnelmia 5.3. LASKIMEN MUUNNELMIA 57 5.3. LASKIMEN MUUNNELMIA 57 Samaan sarjaan kuuluu seuraavakin funktio, jonka määritelmä esittelee muutenkin hyödyllisen tavan kirjoittaa ohjelmia: getline :: IO String getline = getchar λc case c of \n

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 9 Kombinaattoreista Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Currying Haskell-funktio ottaa aina vain yhden

Lisätiedot

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Jäsennys TIEA341 Funktio ohjelmointi 1 Syksy 2005 Muistutus: Laskutehtävä ja tulos data Laskutehtava = Luku Double Yhteen Laskutehtava Laskutehtava Vahennys Laskutehtava Laskutehtava Tulo Laskutehtava

Lisätiedot

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla 2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella

Lisätiedot

Monadeja siellä, monadeja täällä... monadeja kaikkialla? TIES341 Funktio ohjelmointi 2 Kevät 2006

Monadeja siellä, monadeja täällä... monadeja kaikkialla? TIES341 Funktio ohjelmointi 2 Kevät 2006 Monadeja siellä, monadeja täällä... monadeja kaikkialla? TIES341 Funktio ohjelmointi 2 Kevät 2006 Materiaalia Paras verkkomatsku: http://www.nomaware.com/monads/html/ Komentoanalogiasta vielä Monadityypin

Lisätiedot

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa

Laajennetaan vielä Ydin-Haskellia ymmärtämään vakiomäärittelyt. Määrittely on muotoa 2.6. TIETOKONE LASKIMENA 23 Edellä esitetty Ydin-Haskell on hyvin lähellä sitä kieltä, jota GHCi (Glasgow Haskell Compiler, Interactive) sekä muut Haskell-järjestelmät suostuvat ymmärtämään. Esimerkiksi:

Lisätiedot

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Tyyppejä ja vähän muutakin. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tyyppejä ja vähän muutakin TIEA341 Funktio ohjelmointi 1 Syksy 2005 Viime luennolla... Haskellin alkeita pääasiassa Hello World!... ja muita tutunoloisia ohjelmia Haskellilla Haskellin voima on kuitenkin

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 5 Ympärysmitta. Puut. Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 CASE: YMPÄRYSMITTA Lasketaan kuvioiden ympärysmittoja

Lisätiedot

Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005

Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin (alkua) TIEA341 Funktio ohjelmointi 1 Syksy 2005 Esimerkki: Laskin Liukulukulaskentaa Yhteen, vähennys, kerto ja jakolaskut Syötteenä laskutehtävä, tulosteena tulos tai virheilmoitus

Lisätiedot

Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006

Taas laskin. TIES341 Funktio ohjelmointi 2 Kevät 2006 Taas laskin TIES341 Funktio ohjelmointi 2 Kevät 2006 Rakennepuutyyppi data Term = C Rational T F V String Term :+: Term Term : : Term Term :*: Term Term :/: Term Term :==: Term Term :/=: Term Term :

Lisätiedot

Uusi näkökulma. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Uusi näkökulma. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Uusi näkökulma TIEA341 Funktio ohjelmointi 1 Syksy 2005 Aloitetaan alusta... Otetaan uusi näkökulma Haskelliin ohjelmointi laskentana kertausta toisaalta, uusia käsitteitä toisaalta helpottanee sitten

Lisätiedot

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Algebralliset tietotyypit ym. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Tällä luennolla Algebralliset tietotyypit Hahmonsovitus (pattern matching) Primitiivirekursio Esimerkkinä binäärinen hakupuu Muistattehan...

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 11 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Listakomprehensio Uusi tapa luoda (ja muokata) listoja: [ lauseke

Lisätiedot

Luku 3. Listankäsittelyä. 3.1 Listat

Luku 3. Listankäsittelyä. 3.1 Listat Luku 3 Listankäsittelyä Funktio-ohjelmoinnin tärkein yksittäinen tietorakenne on lista. Listankäsittely on paitsi käytännöllisesti oleellinen aihe, se myös valaisee funktio-ohjelmoinnin ideaa. 3.1 Listat

Lisätiedot

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005 Demo 7 (14.12.2005) Antti-Juhani Kaijanaho 9. joulukuuta 2005 Liitteenä muutama esimerkki Ydin-Haskell-laskuista. Seuraavassa on enemmän kuin 12 nimellistä tehtävää; ylimääräiset ovat bonustehtäviä, joilla

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 4 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 17. tammikuuta 2008 Modulin viimeistelyä module Shape ( Shape ( Rectangle, E l l i p

Lisätiedot

Ydin-Haskell Tiivismoniste

Ydin-Haskell Tiivismoniste Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,

Lisätiedot

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet

Säännölliset kielet. Sisällys. Säännölliset kielet. Säännölliset operaattorit. Säännölliset kielet TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 24. toukokuuta 2013 Sisällys Formaalit kielet On tapana sanoa, että merkkijonojen joukko on (formaali) kieli. Hieman

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 19. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 19. tammikuuta 2012 Sisällys Sisällys Muistathan A B -konstruktion 0 k 1 i 2 s 3 s 4 a 5 0 k 1 o 2 i 3 r 4

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)

Lisätiedot

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos

Geneeriset tyypit. TIES542 Ohjelmointikielten periaatteet, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos Geneeriset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 6. maaliskuuta 2007 Kysymys Mitä yhteistä on seuraavilla funktioilla?

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 Kierros 6, 22. 26. helmikuuta Huom: arviointiviikolla 15. 19.2. ei ole laskuharjoituksia! Demonstraatiotehtävien ratkaisut D1: (a) Osoita, että seuraava yhteydetön

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 5: Säännöllisten kielten pumppauslemma; yhteydettömät kieliopit Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Kevät 2016 Alue ja aiheet: Orposen

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

Haskell ohjelmointikielen tyyppijärjestelmä

Haskell ohjelmointikielen tyyppijärjestelmä Haskell ohjelmointikielen tyyppijärjestelmä Sakari Jokinen Helsinki 19. huhtikuuta 2004 Ohjelmointikielten perusteet - seminaarityö HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos 1 Johdanto 1 Tyyppien

Lisätiedot

Luku 5. Monadit. 5.1 Siirrännän ongelma

Luku 5. Monadit. 5.1 Siirrännän ongelma Luku 5 Monadit There are lots of books about functional programming in Haskell. They tend to concentrate on the beautiful core of functional programming: higher order functions, algebraic data types, polymorphic

Lisätiedot

Säännöllisten kielten sulkeumaominaisuudet

Säännöllisten kielten sulkeumaominaisuudet Säännöllisten kielten sulkeumaominaisuudet Osoitamme nyt, että säännöllisten kielten joukko on suljettu yhdisteen, konkatenaation ja tähtioperaation suhteen. Toisin sanoen jos A ja B ovat säännöllisiä,

Lisätiedot

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Abstraktit tietotyypit. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Abstraktit tietotyypit TIEA341 Funktio ohjelmointi 1 Syksy 2005 Data abstraktio Abstraktio on ohjelmoinnin tärkein väline Data abstraktio abstrahoi dataa Abstrakti tietotyyppi Koostuu kolmesta asiasta:

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 16. helmikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 16. helmikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. helmikuuta 2012 Sisällys t Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Attribuuttikieliopit

Attribuuttikieliopit TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. toukokuuta 2011 Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi

Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Äärellisten automaattien ja säännöllisten kielten ekvivalenssi Osoitamme seuraavan keskeisen tuloksen: Lause 1.8: [Sipser Thm. 1.54] Kieli on säännöllinen, jos ja vain jos jokin säännöllinen lauseke esittää

Lisätiedot

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan.

Tämän vuoksi kannattaa ottaa käytännöksi aina kirjoittaa uuden funktion tyyppi näkyviin, ennen kuin alkaa sen määritemää kirjoittamaan. 3.1. LISTAT 35 destaan pisteittäisesti: init :: [α] [α] init (x : []) = [] init (x : xs) = x : init xs Varuskirjastoon kuuluu myös funktiot take ja drop, jotka ottavat tai tiputtavat pois, funktiosta riippuen,

Lisätiedot

8. Kieliopit ja kielet

8. Kieliopit ja kielet 8. Kieliopit ja kielet Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää siipiään" on kieliopillisesti

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

Rajoittamattomat kieliopit (Unrestricted Grammars)

Rajoittamattomat kieliopit (Unrestricted Grammars) Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 31. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 31. maaliskuuta 2011 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Funktionimien kuormitus. TIES341 Funktio ohjelmointi 2 Kevät 2006

Funktionimien kuormitus. TIES341 Funktio ohjelmointi 2 Kevät 2006 Funktionimien kuormitus TIES341 Funktio ohjelmointi 2 Kevät 2006 Kertausta ongelma Mikä on (+) operaattorin tyyppi? Num a => a -> a -> a Mikä on (==) operaattorin tyyppi? Eq a => a -> a -> a Mikä on show

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 8: Pienen ohjelmointikielen tulkki (ohjelmoitava laskin) (mm. SICP 4-4.1.5 osin) Riku Saikkonen 15. 11. 2012 Sisältö 1 Nelilaskintulkki, globaalit muuttujat

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 29. huhtikuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 29. huhtikuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. huhtikuuta 2011 Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Jäsennysalgoritmeja. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Jäsennysalgoritmeja

Jäsennysalgoritmeja. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Jäsennysalgoritmeja TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Kääntäjän

Lisätiedot

11.4. Context-free kielet 1 / 17

11.4. Context-free kielet 1 / 17 11.4. Context-free kielet 1 / 17 Määritelmä Tyypin 2 kielioppi (lauseyhteysvapaa, context free): jos jokainenp :n sääntö on muotoa A w, missäa V \V T jaw V. Context-free kielet ja kieliopit ovat tärkeitä

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava

Lisätiedot

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset

Luku 4. Tietorakenteet funktio-ohjelmoinnissa. 4.1 Äärelliset kuvaukset Luku 4 Tietorakenteet funktio-ohjelmoinnissa Koska funktio-ohjelmoinnissa ei käytetä tuhoavaa päivitystä (sijoituslausetta ja sen johdannaisia), eivät läheskään kaikki valtavirtaohjelmoinnista tutut tietorakenteet

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset 815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 26. kesäkuuta 2013 ja ja TIEA241 Automaatit ja kieliopit, kesä 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. kesäkuuta 2013 Sisällys ja ja on yksi vanhimmista tavoista yrittää mallittaa mekaanista laskentaa. Kurt

Lisätiedot

Yhteydettömät kieliopit [Sipser luku 2.1]

Yhteydettömät kieliopit [Sipser luku 2.1] Yhteydettömät kieliopit [ipser luku 2.1] Johdantoesimerkkinä tarkastelemme kieltä L = { a n b m a n n > 0, m > 0 }, joka on yhteydetön (mutta ei säännöllinen). Vastaavan kieliopin ytimenä on säännöt eli

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 10 Todistamisesta Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Samuuden todistaminen usein onnistuu ihan laskemalla

Lisätiedot

follow(a) first(α j ) x

follow(a) first(α j ) x Tästä ensimmäisestä LL(1)-ehdosta (14) seuraa erityisesti, että korkeintaan yksi välikkeen A säännöistä voi tuottaa tyhjän merkkijonon ε eli tehdä välikkeestä A tyhjentyvän (eli nollautuvan). Toinen osa

Lisätiedot

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13

2.4 Normaalimuoto, pohja ja laskentajärjestys 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 2.4. NORMAALIMUOTO, POHJA JA LASKENTAJÄRJESTYS 13 Toisinaan voi olla syytä kirjoittaa α- tai β-kirjain yhtäsuuruusmerkin yläpuolelle kertomaan, mitä muunnosta käytetään. Esimerkki 4 1. (λx.x)y β = y 2.

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Säännöllisen kielen tunnistavat Turingin koneet

Säännöllisen kielen tunnistavat Turingin koneet 186 Säännöllisen kielen tunnistavat Turingin koneet Myös säännöllisen kielen hyväksyvien Turingin koneiden tunnistaminen voidaan osoittaa ratkeamattomaksi palauttamalla universaalikielen tunnistaminen

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. kesäkuuta 2013 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. kesäkuuta 2013 Sisällys t Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015

TIEA241 Automaatit ja kieliopit, syksy 2015. Antti-Juhani Kaijanaho. 3. joulukuuta 2015 TIEA241 Automaatit ja, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Formaalisti Määritelmä Nelikko G = (V, Σ, P, S) on kontekstiton kielioppi (engl. context-free

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. toukokuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. toukokuuta 2011 Sisällys engl. random-access machines, RAM yksinkertaistettu nykyaikaisen (ei-rinnakkaisen)

Lisätiedot

Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005

Laiska laskenta, korekursio ja äärettömyys. TIEA341 Funktio ohjelmointi Syksy 2005 Laiska laskenta, korekursio ja äärettömyys TIEA341 Funktio ohjelmointi Syksy 2005 Muistatko graafinsievennyksen? DAG esitys ja graafinsievennys DAG esitys Lausekkeen rakennepuu, jossa yhteiset alilausekkeet

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 10. tammikuuta 2008 Arvot... ovat laskutoimituksen lopputuloksia... ovat lausekkeita, joihin

Lisätiedot

Metodien tekeminen Javalla

Metodien tekeminen Javalla 1 Metodien tekeminen Javalla Mikä metodi on? Metodin syntaksi Metodi ja sen kutsuminen Parametreista Merkkijonot ja metodi Taulukot ja metodi 1 Mikä metodi on? Metodilla toteutetaan luokkaan toiminnallisuutta.

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)).

Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Jos sekaannuksen vaaraa ei ole, samastamme säännöllisen lausekkeen ja sen esittämän kielen (eli kirjoitamme R vaikka tarkoitammekin L(R)). Esimerkkejä: Σ koostuu kaikista aakkoston Σ merkkijonoista ja

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 7: Funktionaalista ohjelmointia (mm. SICP 3.5) Riku Saikkonen 13. 11. 2012 Sisältö 1 Laiskaa laskentaa: delay ja force 2 Funktionaalinen I/O 3 Funktionaalista

Lisätiedot

FORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus

FORMAALI SYSTEEMI (in Nutshell): aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus FORMAALI SYSTEEMI (in Nutshell): Formaali kieli: aakkosto: alkeismerkkien joukko kieliopin määräämä syntaksi: sallittujen merkkijonojen rakenne, formaali kuvaus esim. SSM:n tai EBNF:n avulla Semantiikka:

Lisätiedot

Yksinkertaiset tyypit

Yksinkertaiset tyypit Yksinkertaiset tyypit TIES542 Ohjelmointikielten periaatteet, kevät 2007 Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 13. helmikuuta 2007 Tyypitön puhdas λ-laskento E ::= I E 1 E 2

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Chomskyn hierarkia. tyyppi 0 on juuri esitelty (ja esitellään kohta lisää) tyypit 2 ja 3 kurssilla Ohjelmoinnin ja laskennan perusmallit

Chomskyn hierarkia. tyyppi 0 on juuri esitelty (ja esitellään kohta lisää) tyypit 2 ja 3 kurssilla Ohjelmoinnin ja laskennan perusmallit Chomskyn hierarkia Noam Chomskyn vuonna 1956 esittämä luokittelu kieliopeille niiden ilmaisuvoiman mukaan tyyppi kieli kielioppi tunnistaminen 0 rekurs. lueteltava rajoittamaton Turingin kone 1 kontekstinen

Lisätiedot

abba 1. Perusrakenteita

abba 1. Perusrakenteita 1 abba angry birds bombing apparatus LKTT 2012 (periodit II-III) 17. SYYSKUUTA 2012, VERSIO 1.0 Kielen määrittely annetaan laajennetulla BNF-notaatiolla, joka on seuraava. ::= määrittely määrittelee

Lisätiedot

815338A Ohjelmointikielten periaatteet

815338A Ohjelmointikielten periaatteet 815338A Ohjelmointikielten periaatteet 2015-2016 III Ohjelmointikielten syntaksi ja semantiikka Sisältö 1. Syntaksi ja semantiikan käsitteet 2. BNF-kielioppi 3. Syntaksikaaviot 4. Jäsentäjät 5. Semantiikka

Lisätiedot

7.5 Monadimuuntimet. Vaikka monadinen tyypitus on monoliittista, niin monadit voi suunnitella ja toteuttaa hierarkisesti.

7.5 Monadimuuntimet. Vaikka monadinen tyypitus on monoliittista, niin monadit voi suunnitella ja toteuttaa hierarkisesti. 7.5 Monadimuuntimet Vaikka monadinen tyypitus on monoliittista, niin monadit voi suunnitella ja toteuttaa hierarkisesti. Sitä varten ghc tarjoaa monadimuuntimet (monadic transformers) (O Sullivan et al.,

Lisätiedot

Mitä funktionaalinen ohjelmointi on

Mitä funktionaalinen ohjelmointi on Funktionaalinen ohjelmointi Mitä funktionaalinen ohjelmointi on - Funktionaalisessa ohjelmoinnissa mallinnus keskittyy löytämään ongelmasta sellaisia tiedon muunnoksia, jotka voidaan esittää matemaattisina

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 8: Tulkki: proseduurit, abstrakti syntaksi, quote ja cond (mm. SICP 44.1.5 osin) Riku Saikkonen 15. 11. 2011 Sisältö 1 Argumentittomat proseduurit ja käyttöliittymä

Lisätiedot

T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut

T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1

Lisätiedot

8. Kieliopit ja kielet 1 / 22

8. Kieliopit ja kielet 1 / 22 8. Kieliopit ja kielet 1 / 22 Luonnollinen kieli Suomen kielen sanoja voidaan yhdistellä monella eri tavalla. Kielioppi määrää sen, milloin sanojen yhdistely antaa oikein muodostetun lauseen. "Mies räpyttää

Lisätiedot

formalismeja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 15. joulukuuta 2015 TIETOTEKNIIKAN LAITOS

formalismeja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 15. joulukuuta 2015 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 15. joulukuuta 2015 Sisällys Loppukurssin aikataulu tiistai 15.12.2015 viimeiset demot keskiviikko 16.12.2015 viimeiset

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 20. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 20. lokakuuta 2016 .. TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 20. lokakuuta 2016 Sisällys. Turingin koneiden pysähtymisongelma. Lause Päätösongelma Pysähtyykö standardimallinen

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

Oliosuunnitteluesimerkki: Yrityksen palkanlaskentajärjestelmä

Oliosuunnitteluesimerkki: Yrityksen palkanlaskentajärjestelmä Oliosuunnitteluesimerkki: Yrityksen palkanlaskentajärjestelmä Matti Luukkainen 10.12.2009 Tässä esitetty esimerkki on mukaelma ja lyhennelmä Robert Martinin kirjasta Agile and Iterative Development löytyvästä

Lisätiedot

TIES542 kevät 2009 Tyyppijärjestelmän laajennoksia

TIES542 kevät 2009 Tyyppijärjestelmän laajennoksia TIES542 kevät 2009 Tyyppijärjestelmän laajennoksia Antti-Juhani Kaijanaho 16. helmikuuta 2009 Tyypitetyt ohjelmointikielet sisältävät paljon muitakin konstruktioita kuin yksinkertaisesti tyypitetyn lambda-kielen,

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Kurssin sisältö pääpiirteittäin Tarvittavat pohjatiedot Avainsanat Abstraktio Esimerkkiohjelman tehtäväkuvaus Abstraktion käyttö tehtävässä Abstrakti tietotyyppi Hyötyjä ADT:n

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

AS-0.1103 C-ohjelmoinnin peruskurssi 2013: C-kieli käytännössä ja erot Pythoniin

AS-0.1103 C-ohjelmoinnin peruskurssi 2013: C-kieli käytännössä ja erot Pythoniin AS-0.1103 C-ohjelmoinnin peruskurssi 2013: C-kieli käytännössä ja erot Pythoniin Raimo Nikkilä Aalto-yliopiston sähkötekniikan korkeakoulu - Automaation tietotekniikan tutkimusryhmä 17. tammikuuta 2013

Lisätiedot

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä

Rekursiolause. Laskennan teorian opintopiiri. Sebastian Björkqvist. 23. helmikuuta Tiivistelmä Rekursiolause Laskennan teorian opintopiiri Sebastian Björkqvist 23. helmikuuta 2014 Tiivistelmä Työssä käydään läpi itsereplikoituvien ohjelmien toimintaa sekä esitetään ja todistetaan rekursiolause,

Lisätiedot

Ohjelmointikielten syntaksista ja semantiikasta

Ohjelmointikielten syntaksista ja semantiikasta Ohjelmointikielten syntaksista ja semantiikasta Tässä osassa esitellään käsitteet syntaksi ja semantiikka sekä tutustutaan ohjelmointikielen syntaksin kuvaamismenetelmiin. Esimerkiksi Sebestan ([Seb])

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

5.2.5 Konstruktoriluokat Edellisessä esimerkissä määrittelimme oman tyyppiluokan Isqrt jonka jäsenet olivat tyyppejä (kuten Int, Integer, Word,...).

5.2.5 Konstruktoriluokat Edellisessä esimerkissä määrittelimme oman tyyppiluokan Isqrt jonka jäsenet olivat tyyppejä (kuten Int, Integer, Word,...). 5.2.5 Konstruktoriluokat Edellisessä esimerkissä määrittelimme oman tyyppiluokan Isqrt jonka jäsenet olivat tyyppejä (kuten Int, Integer, Word,...). Voimme määritellä tyyppiluokkia myös tyyppikonstruktoreille

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 22. toukokuuta 2013 TIEA24 Automaatit ja kieliopit, kesä 3 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 22. toukokuuta 3 Sisällys Äärellisiä automaatteja ON PUSH PUSH OFF Q T J Q C C H S C,Q C,Q 0 40 60 80 00, 70 90 Deterministinen

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 1: Rekursiivinen ajattelutapa, Scheme-kielen perusteita (mm. SICP 11.2.4) Riku Saikkonen 16. 10. 2012 Sisältö 1 Kurssijärjestelyitä 2 Perusteita Scheme-kielestä,

Lisätiedot

2. Yhteydettömät kielet

2. Yhteydettömät kielet 2. Yhteydettömät kielet Yhteydettömät eli kontekstittomat kielet (context-free language, CFL) ovat säännöllisiä kieliä laajempi luokka formaaleja kieliä. Ne voidaan esittää yhteydettömillä kieliopeilla

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Luento 2: SICP kohdat 22.2.3 Riku Saikkonen 2. 11. 2010 Sisältö 1 Linkitetyt listat 2 Listaoperaatioita 3 Listarakenteet 4 Gambit-C:n Scheme-debuggeri Linkitetyt

Lisätiedot

Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla.

Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että jotkut kielet eivät ole säännöllisiä eli niitä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen

Lisätiedot

Ohjelmointiharjoituksia Arduino-ympäristössä

Ohjelmointiharjoituksia Arduino-ympäristössä Ohjelmointiharjoituksia Arduino-ympäristössä Yleistä Arduino-sovelluksen rakenne Syntaksi ja käytännöt Esimerkki ohjelman rakenteesta Muuttujat ja tietotyypit Tietotyypit Esimerkkejä tietotyypeistä Ehtolauseet

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot