Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Koko: px
Aloita esitys sivulta:

Download "Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset."

Transkriptio

1 Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit, Nollahypoteesi, p-arvo, Päätössääntö, Testi, Testisuure, Testisuureen normaaliarvo, Testit suhdeasteikollisille muuttujille, t-testi, t-testi parivertailuille, Vaihtoehtoinen hypoteesi, Varianssien vertailutesti, Yhden otoksen t-testi, Yleinen hypoteesi. Kahden riippumattoman otoksen t-testi STATISTIX-tiedostossa MORT on esitetty 9 amerikkalaispankin käyttämät korot (muuttuja KORKO; yksikkö = %) asuntolainoille. Lainat voidaan ryhmitellä kahteen ryhmään sen mukaan onko korko ollut kiinteä vai vaihtuva (muuttuja LAINATYYP; 0 = kiinteä korko, = vaihtuva korko). (a) (b) Ratkaisu: (a) Määrää kummallekin lainatyypille: aritmeettinen keskiarvo, keskihajonta, minimi, maksimi, 95 %:n luottamusväli keskimääräiselle korolle, Box ja Whisker -kuvio Tee tulostusten perusteella johtopäätöksiä lainatyyppien koroista. Testaa kahden riippumattoman otoksen t-testillä nollahypoteesia, että keskimääräinen korko on kummallekin lainatyypille sama. Käytä vaihtoehtoisena hypoteesina oletusta: Keskimääräinen lainakorko on kiinteäkorkoiselle lainalle korkeampi. Vaihtoehtoinen hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Muotoile myös kaikki testiin liittyvät hypoteesit. Käytätkö varianssien yhtäsuuruusoletukseen vai erisuuruusoletukseen perustuvaa t-testiä? Perustele! Tunnusluvut, luottamusvälit, Box ja Whisker -kuvio Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks.. harjoitukset. Tunnusluvut ja luottamusväli Statistics > Summary Statistics > escriptive Statistics escriptive Variables = KORKO Grouping Variable = LAINATYYP C. I. Percent Coverage = 95 TKK Systeemianalyysin laboratorio (009) /

2 Mat-.04 Tilastollisen analyysin perusteet ESCRIPTIVE STATISTICS FOR LAINATYYP = 0 KORKO N 3 LO 95% CI 7.08 MEAN UP 95% CI S MINIMUM MAXIMUM ESCRIPTIVE STATISTICS FOR LAINATYYP = KORKO N 6 LO 95% CI MEAN UP 95% CI S MINIMUM MAXIMUM Tunnuslukujen ja luottamusvälien perusteella näyttää ilmeiseltä, että kiinteäkorkoisten lainojen korot (LAINATYYP = 0) ovat keskimäärin korkeampia. Box ja Whisker -kuvio Statistics > Summary Statistics > Box and Whisker Plots Model Specification = Categorical ependent Variable = KORKO Grouping Variable = LAINATYYP Box ja Whisker -kuvio muodostuu laatikosta ja viiksistä (ks. tarkemmin. harjoitusten tehtävän ratkaisua): Alakvartiili Q määrää laatikon alareunan paikan. Yläkvartiili Q 3 määrää laatikon yläreunan paikan. Puolet havaintoarvoista on laatikon sisällä. Mediaanin Q = Me paikka merkitään poikkiviivalla laatikon sisään. Viiksien kärjet kertovat normaalien havaintojen minimin ja maksimin paikat. Poikkeuksellisten havaintojen paikat merkitään tähdillä tai ympyröillä viiksien jatkeille. TKK Systeemianalyysin laboratorio (009) /

3 KORKO Mat-.04 Tilastollisen analyysin perusteet Box and Whisker Plot LAINATYYP 9 cases missing cases Kuvion perusteella on ilmeistä, että kiinteäkorkoisten lainojen korot (LAINATYYP = 0) ovat keskimäärin korkeampia. (b) Kahden riippumattoman otoksen t-testi Koska havaintoja eri lainatyyppejä käyttävistä pankeista voidaan pitää riippumattomina otoksina, sovelletaan kahden riippumattoman otoksen t-testiä. LAINATYYP = 0 X i = kiinteäkorkoisen lainan korko pankissa i LAINATYYP = X j = vaihtuvakorkoisen lainan korko pankissa j H 0 : = Vaihtoehtoinen hypoteesi: H : > TKK Systeemianalyysin laboratorio (009) 3/3

4 Mat-.04 Tilastollisen analyysin perusteet STATISTIX tulostaa yhdellä kertaa tulokset 3:sta testistä: Kahden riippumattoman otoksen t-testi, kun ryhmäkohtaiset varianssit saavat erota toisistaan (ks. Testi ratkaisujen lopussa). Kahden riippumattoman otoksen t-testi, kun ryhmäkohtaiset varianssit ovat yhtä suuret (ks. Testi ratkaisujen lopussa). Varianssien vertailutesti (ks. Testi 4 ratkaisujen lopussa). Statististics > One, Two, Multi-Sample Tests > Two-Sample T Test Model Specification = Categorical ependent Variable = KORKO Categorical Variable = LAINATYYP Null Hypothesis = 0 Alternate Hypothesis = Greater Than TWO-SAMPLE T TESTS FOR KORKO BY LAINATYYP SAMPLE LAINATYYP MEAN SIZE S.. S.E IFFERENCE.4006 NULL HYPOTHESIS: IFFERENCE = 0 ALTERNATIVE HYP: IFFERENCE > 0 ASSUMPTION T F P 95% CI FOR IFFERENCE EQUAL VARIANCES (.9009,.9004) UNEQUAL VARIANCES (.79, ) F NUM F EN F P TESTS FOR EQUALITY OF VARIANCES CASES INCLUE 9 MISSING CASES Varianssien yhtäsuuruutta testaavan F-testisuureen arvo =.73 ja vastaava p-arvo = Siten nollahypoteesi varianssien yhtäsuuruudesta voidaan hyväksyä 5 %:n merkitsevyystasolla. Siten kahden riippumattoman otoksen t-testeistä voidaan valita yhtä suuriin variansseihin perustuva versio. Vastaava testisuureen arvo = 0.4. Sitä vastaava p-arvo on neljällä desimaalilla = Siten nollahypoteesi H 0 voidaan hylätä kaikilla tavanomaisilla merkitsevyystasoilla: Kiinteäkorkoisten lainojen keskimääräiset korot ovat korkeampia kuin vaihtuvakorkoisten lainojen korot. TKK Systeemianalyysin laboratorio (009) 4/4

5 Mat-.04 Tilastollisen analyysin perusteet. t-testi parivertailuille STATISTIX-tiedostossa PalkkaMF on esitetty 0 amerikkalaismiehen (= MALE) ja 0 amerikkalaisnaisen (= FEMALE) vuosipalkat (yksikkö = $). Havainnot muodostuvat sovitetuista pareista, joissa jokaista miestä vastaa samanlaisen taustan (iän, ammatin, koulutustason, työpaikan jne.) omaava nainen. (a) (b) (c) (d) Ratkaisu: (a) Määrää naisten ja miesten palkoille: aritmeettinen keskiarvo, keskihajonta, minimi, maksimi, 95 %:n luottamusväli keskimääräiselle korolle, Box ja Whisker -kuvio Tee tulostusten perusteella johtopäätöksiä palkkaeroista. Testaa t-testillä parivertailuille nollahypoteesia, että miesten ja naisten palkat eivät eroa tosistaan. Käytä vaihtoehtoisena hypoteesina oletusta: Naisten ja miesten palkat eroavat toisistaan. Testaa riippumattomien otosten t-testillä nollahypoteesia, että miesten ja naisten palkat eivät eroa tosistaan. Vertaa (b)- ja (c)-kohdan tuloksia toisiinsa. Kumpi menettely on oikea? Tunnusluvut, luottamusvälit, Box ja Whisker -kuvio Tunnusluvut ja luottamusväli Statistics > Summary Statistics > escriptive Statistics escriptive Variables = FEMALE, MALE C. I. Percent Coverage = 95 ESCRIPTIVE STATISTICS FEMALE MALE N 8 8 LO 95% CI MEAN UP 95% CI S MINIMUM MAXIMUM Tunnuslukujen ja luottamusvälien perusteella näyttää siltä, että naisten palkat saattavat olla keskimäärin pienempiä kuin miesten palkat. TKK Systeemianalyysin laboratorio (009) 5/5

6 Mat-.04 Tilastollisen analyysin perusteet Box ja Whisker -kuvio Statistics > Summary Statistics > Box and Whisker Plots Model Specification = Table Table Variables = FEMALE, MALE Ks. kuvion selitystä tehtävässä. 000 Box and Whisker Plot FEMALE MALE 6 cases Kuvion mukaan naisten palkat näyttävät yleensä olevan pienempiä kuin miesten palkat. (b) t-testi parivertailuille t-testi parivertailuille: ks. Testi 3 ratkaisujen lopussa. FEMALE X i = naisen palkka parissa i MALE X i = miehen palkka parissa i i = X i X i TKK Systeemianalyysin laboratorio (009) 6/6

7 Mat-.04 Tilastollisen analyysin perusteet H: 0 0 Vaihtoehtoinen hypoteesi: H: 0 Statististics > One, Two, Multi-Sample Tests > Paired T Test Sample Variables = FEMALE, MALE Null Hypothesis = 0 Alternate Hypothesis = Not Equal PAIRE T TEST FOR FEMALE - MALE NULL HYPOTHESIS: IFFERENCE = 0 ALTERNATIVE HYP: IFFERENCE <> 0 MEAN ST ERROR 64. LO 95% CI UP 95% CI T -.56 F 7 P CASES INCLUE 8 MISSING CASES 0 t-testisuureen arvo =.56 ja vastaava p-arvo = Nollahypoteesi H 0 voidaan hylätä 5 %:n merkitsevyystasolla: Naisten ja miesten palkat eroavat toisistaan. (c) Kahden riippumattoman otoksen t-testi FEMALE X i = naisen palkka parissa i MALE H: 0 Vaihtoehtoiset hypoteesit: H: X i = miehen palkka parissa i TKK Systeemianalyysin laboratorio (009) 7/7

8 Mat-.04 Tilastollisen analyysin perusteet STATISTIX tulostaa yhdellä kertaa tulokset 3:sta testistä: Kahden riippumattoman otoksen t-testi, kun ryhmäkohtaiset varianssit saavat erota toisistaan (ks. Testi ratkaisujen lopussa). Kahden riippumattoman otoksen t-testi, kun ryhmäkohtaiset varianssit ovat yhtä suuret (ks. Testi ratkaisujen lopussa). Varianssien vertailutesti (ks. Testi 4 ratkaisujen lopussa). Statististics > One, Two, Multi-Sample Tests > Two-Sample T Test Model Specification = Table Table Variables = FEMALE, MALE Null Hypothesis = 0 Alternate Hypothesis = Not Equal TWO-SAMPLE T TESTS FOR FEMALE VS MALE SAMPLE VARIABLE MEAN SIZE S.. S.E FEMALE MALE IFFERENCE NULL HYPOTHESIS: IFFERENCE = 0 ALTERNATIVE HYP: IFFERENCE <> 0 ASSUMPTION T F P 95% CI FOR IFFERENCE EQUAL VARIANCES ( , 347.4) UNEQUAL VARIANCES (-4548., 348.) F NUM F EN F P TESTS FOR EQUALITY OF VARIANCES CASES INCLUE 6 MISSING CASES 0 Varianssien yhtäsuuruutta testaavan F-testisuureen arvo =.0 ja vastaava p-arvo = Siten nollahypoteesi varianssien yhtäsuuruudesta voidaan hyväksyä kaikilla tavanomaisilla merkitsevyystasoilla. Siten kahden riippumattoman otoksen t-testeistä voidaan valita yhtä suuriin variansseihin perustuva versio. Vastaava testisuureen arvo =.6. Sitä vastaava p-arvo = Siten nollahypoteesi H 0 jätetään voimaan: Naisten ja miesten palkat eivät eroa toisistaan. TKK Systeemianalyysin laboratorio (009) 8/8

9 Mat-.04 Tilastollisen analyysin perusteet (d) Kohtien (b) ja (c) testien vertailu (b)- ja (c)-kohtien testit antavat ristiriitaiset tulokset. (c)-kohdan testiä ei saa kuitenkaan käyttää, koska havainnot muodostuvat sovitetuista pareista, mikä johtaa muuttujien riippuvuuteen; muuttujien MALE ja FEMALE korrelaatio on (varmista tämä lla). Opetus: Väärän tilastollisen menetelmän perusteella ei voi tehdä luotettavia johtopäätöksiä! 3. t-testi parivertailuille STATISTIX-tiedostossa VERENP on tulokset samoille potilaille tehdyistä verenpaineen mittauksista (ns. yläpaine) ennen (muuttuja ENNEN) ja jälkeen (muuttuja JALKEEN) verenpainetta alentavan lääkkeen antamisen. (a) (b) (c) Ratkaisu: (a) Testaa t-testillä parivertailuille nollahypoteesia, että lääkkeen antamisella ei ole vaikututusta verenpaineeseen, kun vaihtoehtoisena hypoteesina on, että lääke alentaa verenpainetta. Muodosta verenpaineiden erotukset ja tee niille tavallinen t-testi, jossa nollahypoteesina on, että erotusten odotusarvo = 0. Vertaa kohtien (a) ja (b) tuloksia toisiinsa. t-testi parivertailuille t-testi parivertailuille: ks. Testi 3 ratkaisujen lopussa. ENNEN X i = potilaan i verenpaine ennen lääkkeen antamista JALKEEN X i = potilaan i verenpaine lääkkeen antamisen jälkeen i = X i X i H: 0 0 Vaihtoehtoinen hypoteesi: H: 0 Statististics > One, Two, Multi-Sample Tests > Paired T Test Sample Variables = ENNEN, JALKEEN Null Hypothesis = 0 Alternate Hypothesis = Greater Than TKK Systeemianalyysin laboratorio (009) 9/9

10 Mat-.04 Tilastollisen analyysin perusteet PAIRE T TEST FOR ENNEN - JALKEEN NULL HYPOTHESIS: IFFERENCE = 0 ALTERNATIVE HYP: IFFERENCE > 0 MEAN ST ERROR.439 LO 95% CI.0967 UP 95% CI T 3.3 F 7 P CASES INCLUE 8 MISSING CASES 0 t-testisuureen arvo = 3.3 ja vastaava p-arvo = Siten nollahypoteesi H 0 voidaan hylätä % merkitsevyystasolla: Lääke alentaa verenpainetta. (b) Yhden otoksen t-testi Lisätään tiedostoon VERENP muuttuja = ENNEN JALKEEN ata > Transformations Transformation Expression = ENNEN JALKEEN Yhden otoksen t-testi: ks. Luentokalvot. ENNEN X i = potilaan i verenpaine ennen lääkkeen antamista JALKEEN X i = potilaan i verenpaine lääkkeen antamisen jälkeen i = X i X i H: 0 0 Vaihtoehtoinen hypoteesi: H: 0 TKK Systeemianalyysin laboratorio (009) 0/0

11 Mat-.04 Tilastollisen analyysin perusteet Statististics > One, Two, Multi-Sample Tests > One-Sample T Test Sample Variables = Null Hypothesis = 0 Alternate Hypothesis = Greater Than ONE-SAMPLE T TEST FOR NULL HYPOTHESIS: MU = 0 ALTERNATIVE HYP: MU > 0 MEAN ST ERROR.439 LO 95% CI.0967 UP 95% CI T 3.3 F 7 P CASES INCLUE 8 MISSING CASES 0 t-testisuureen arvo = 3.3 ja vastaava p-arvo on Siten nollahypoteesi voidaan hylätä %:n merkitsevyystasolla: Verenpaineiden erotusten keskimääräinen arvo on positiivinen. (c) Parivertailutestin ja yhden otoksen t-testin vertailu (a)- ja (b)-kohdat antavat saman tuloksen kuten pitääkin! TKK Systeemianalyysin laboratorio (009) /

12 Mat-.04 Tilastollisen analyysin perusteet 4. Kahden riippumattoman otoksen t-testi STATISTIX-tiedostossa COMPRon tiedot betonin puristuslujuutta koskevista testeistä. Muuttuja CONCR sisältää testitulokset betonierästä, jotka on tehty valmistusmenetelmällä ja muuttuja CONCR sisältää testitulokset 30 betonierästä, jotka on tehty valmistusmenetelmällä. Puristuslujuuden yksikkönä on kg/cm. Testaa kahden riippumattoman otosten t-testillä nollahypoteesia, että keskimääräiset puristuslujuudet eivät eroa toisistaan, kun vaihtoehtoisena hypoteesina on, että ne eroavat. Ratkaisu: Kahden riippumattoman otoksen t-testi Koska havaintoja eri menetelmillä tehdystä betonista voidaan pitää riippumattomina otoksina, sovelletaan kahden riippumattoman otoksen t-testiä. CONCR X i = testitulos menetelmän betonierästä i CONCR X j = testitulos menetelmän betonierästä j H 0 : = Vaihtoehtoinen hypoteesi: H : STATISTIX tulostaa yhdellä kertaa tulokset 3:sta testistä: Kahden riippumattoman otoksen t-testi, kun ryhmäkohtaiset varianssit saavat erota toisistaan (ks. Testi ratkaisujen lopussa). Kahden riippumattoman otoksen t-testi, kun ryhmäkohtaiset varianssit ovat yhtä suuret (ks. Testi ratkaisujen lopussa). Varianssien vertailutesti (ks. Testi 4 ratkaisujen lopussa). Statististics > One, Two, Multi-Sample Tests > Two-Sample T Test Model Specification = Table Table Variables = CONCR, CONCR Null Hypothesis = 0 Alternate Hypothesis = Not Equal TKK Systeemianalyysin laboratorio (009) /

13 Mat-.04 Tilastollisen analyysin perusteet TWO-SAMPLE T TESTS FOR CONCR VS CONCR SAMPLE VARIABLE MEAN SIZE S.. S.E CONCR CONCR IFFERENCE NULL HYPOTHESIS: IFFERENCE = 0 ALTERNATIVE HYP: IFFERENCE <> 0 ASSUMPTION T F P 95% CI FOR IFFERENCE EQUAL VARIANCES (9.7309, 8.435) UNEQUAL VARIANCES (9.6434, 8.53) F NUM F EN F P TESTS FOR EQUALITY OF VARIANCES CASES INCLUE 5 MISSING CASES 9 Varianssien yhtäsuuruutta testaavan F-testisuureen arvo =.8 ja vastaava p-arvo = Nollahypoteesi varianssien yhtäsuuruudesta voidaan hyväksyä 5 %:n merkitsevyystasolla. Siten kahden riippumattoman otoksen t-testeistä voidaan valita yhtäsuuriin variansseihin perustuva versio. Vastaava testisuureen arvo = Sitä vastaava p-arvo on neljällä desimaalilla = Nollahypoteesi H 0 voidaan hylätä kaikilla tavanomaisilla merkitsevyystasoilla: Valmistusmenetelmät eroavat toisistaan ja menetelmä tuottaa puristus-lujuudeltaan parempaa betonia. TKK Systeemianalyysin laboratorio (009) 3/3

14 Mat-.04 Tilastollisen analyysin perusteet Liitteet Testi : Yleinen hypoteesi H : Riippumattomien otosten t-testi, kun ryhmäkohtaiset varianssit saavat erota toisistaan X i = muuttujan havaittu arvo havainnossa i X j = muuttujan havaittu arvo havainnossa j () Havainnot () Havainnot ix ~N(, ), i,,, n jx ~N(, ), j,,, n (3) Havainnot X i ja X j ovat riippumattomia kaikille i ja j H: 0 Vaihtoehtoiset hypoteesit: H: H: H: Testisuure ja sen approksimatiivinen jakauma nollahypoteesin pätiessä: jossa XX t s s n n t() a s s nn s n n n n s Testisuureen approksimatiivisena jakaumana nollahypoteesin pätiessä käytetään usein myös standardoitua normaalijakaumaa: XX t N(0,) a s s nn Tämä approksimaatio on kuitenkin heikompi kuin edellä mainittu t-jakaumaan perustuva approksimaatio. TKK Systeemianalyysin laboratorio (009) 4/4

15 Mat-.04 Tilastollisen analyysin perusteet Testi : Yleinen hypoteesi H : Riippumattomien otosten t-testi, kun ryhmäkohtaiset varianssit ovat yhtä suuret X i = muuttujan havaittu arvo havainnossa i X j = muuttujan havaittu arvo havainnossa j () Havainnot () Havainnot ix ~N(, ), i,,, n jx ~N(, ), j,,, n (3) Havainnot X i ja X j ovat riippumattomia kaikille i ja j H: 0 Vaihtoehtoiset hypoteesit: H: H: H: Testisuure ja sen jakauma nollahypoteesin pätiessä: jossa XX t tnn ( ) sp nn ( n ) s ( n) s P nn s TKK Systeemianalyysin laboratorio (009) 5/5

16 Mat-.04 Tilastollisen analyysin perusteet Testi 3: t-testi parivertailuille X i = muuttujan havaittu arvo havainnossa i X i = muuttujan havaittu arvo havainnossa i i = X i X i Yleinen hypoteesi H : () Havainnot i n i~n(, ),,,, () Havainnot i ovat riippumattomia kaikille i H: 0 0 Vaihtoehtoiset hypoteesit: H : 0 H : 0 H : 0 Testisuure ja sen jakauma nollahypoteesin pätiessä: t tn () s n / TKK Systeemianalyysin laboratorio (009) 6/6

17 Mat-.04 Tilastollisen analyysin perusteet Testi 4: Varianssien vertailutesti X i = muuttujan havaittu arvo havainnossa i X j = muuttujan havaittu arvo havainnossa j Yleinen hypoteesi H : () Havainnot () Havainnot ix ~N(, ), i,,, n jx ~N(, ), j,,, n (3) Havainnot X i ja X j ovat riippumattomia kaikille i ja j H: 0 Vaihtoehtoiset hypoteesit: H: H: H: Testisuure ja sen jakauma nollahypoteesin pätiessä: s F Fn (, n ) s TKK Systeemianalyysin laboratorio (009) 7/7

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Testit järjestysasteikollisille muuttujille

Testit järjestysasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.

Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 5 Tilastollisten hypoteesien testaaminen Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa:

4. Seuraavaan ristiintaulukkoon on kerätty tehtaassa valmistettujen toimivien ja ei-toimivien leikkijunien lukumäärät eri työvuoroissa: Lisätehtäviä (siis vanhoja tenttikysymyksiä) 1. Erään yrityksen satunnaisesti valittujen työntekijöiden poissaolopäivien määrät olivat vuonna 003: 5, 3, 16, 9, 0, 1, 3,, 19, 5, 19, 11,, 0, 4, 6, 1, 15,

Lisätiedot

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012

Luentokalvoja tilastollisesta päättelystä. Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Luentokalvoja tilastollisesta päättelystä Kalvot laatinut Aki Taanila Päivitetty 30.11.2012 Otanta Otantamenetelmiä Näyte Tilastollinen päättely Otantavirhe Otanta Tavoitteena edustava otos = perusjoukko

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit järjestysasteikollisille muuttujille Järjestysasteikollisten muuttujien testit Merkkitesti Wilcoxonin

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007

Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 Mat-2.204 Tilastollisen analyysin perusteet, kevät 2007 3. luento: Pari sanaa vielä hypoteesien formuloinneista Kai Virtanen Hypoteesien muodoista Luennolla nro. 2 muotoiltiin nollahypoteesi - H 0 : θ

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

1 TILASTOMENETELMIEN PERUSTEITA

1 TILASTOMENETELMIEN PERUSTEITA 1 TILASTOMENETELMIEN PERUSTEITA Insinööritieteissä suoritetaan usein erilaisia mittauksia tai kokeita, joiden tuloksena saadaan numeerisia havaintoaineistoja tutkittavasta ilmiöstä. Hyvinvointiteknologiassa

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

031021P Tilastomatematiikka (5 op) viikko 5

031021P Tilastomatematiikka (5 op) viikko 5 031021P Tilastomatematiikka (5 op) viikko 5 Jukka Kemppainen Mathematics Division Hypoteesin testauksesta Tilastollisessa testauksessa on kyse havainnoista tapahtuvasta päätöksenteosta. Kokeellisen tutkimuksen

Lisätiedot

1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta?

1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta? 1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta? 2. Tehtävät 2-4 sekä 6 10 liittyvät keväällä 2002 suoritettuun ammattikorkeakoulusta

Lisätiedot

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen

Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Yhteensopivuuden, homogeenisuuden ja riippumattomuuden testaaminen TKK (c) Ilkka Mellin (2007) 1 Yhteensopivuuden, homogeenisuuden ja riippumattomuuden

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot

Empiirinen projekti. Olli-Matti Laine Kauppatieteet

Empiirinen projekti. Olli-Matti Laine Kauppatieteet Empiirinen projekti Olli-Matti Laine Kauppatieteet 1 Contents 1. Johdanto... 3 2. Kuvaileva osa... 4 3. Analyysiosa... 17 4. Yhteenveto... 35 2 1. Johdanto Tutkin projektissa tilastollisin menetelmin kansantaloudellisia

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 2) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 2005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

SELVITTÄJÄN KOMPETENSSISTA

SELVITTÄJÄN KOMPETENSSISTA OTM, KTM, Mikko Hakola, Vaasan yliopisto, Laskentatoimen ja rahoituksen laitos Helsinki 20.11.200, Helsingin kauppakorkeakoulu Projekti: Yrityksen maksukyky ja strateginen johtaminen SELVITTÄJÄN KOMPETENSSISTA

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas Keskivirheyksiköllä ilmaistuna voidaan erottaa otantajakaumalta kriittisiä kohtia: Keskimmäinen 95 % otoskeskiarvoista välillä [-1.96,+1.96] Keskimmäinen

Lisätiedot

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 17.6.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

Ratkaisuja luvun 15 tehtäviin

Ratkaisuja luvun 15 tehtäviin Tarja Heikkilä 1. Luettele hyvän tutkimuksen perusvaatimukset ja riskitekijät. Katso Hyvän tutkimuksen perusvaatimukset luvusta 1 ja Tutkimusraporttien arviointi luvusta 4. Esimerkkejä riskitekijöistä

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1

Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1 Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu

Lisätiedot

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on?

Tulkitse tulokset. Onko muuttujien välillä riippuvuutta? Jos riippuvuutta on, niin millaista se on? Tilastollinen tietojenkäsittely / SPSS Harjoitus 4 Tarkastellaan ensin aineistoa KUNNAT. Koska kyseessä on kokonaistutkimus, riittää, että tutkit tunnuslukujen arvoja ja teet niiden perusteella päätelmiä.

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut

Lisätiedot

MS-C2{04 Tilastollisen analyysin perusteet

MS-C2{04 Tilastollisen analyysin perusteet MS-C2{04 Tilastollisen analyysin perusteet Tentti 7.4.20 4A/irtanen Kirjoita selvästi jokaiseen koepaperiin alla mainitussa järjestyksessä: OHlprrn (i) (ii) MS-C204 TAP 7.4.204 opiskelijanumero + kirjain

Lisätiedot

Tilastolliset menetelmät: Tilastolliset testit

Tilastolliset menetelmät: Tilastolliset testit Tilastolliset meetelmät Tilastolliset testit Tilastolliset meetelmät: Tilastolliset testit 8. Tilastollie testaus 9. Testejä suhdeasteikollisille muuttujille. Testejä järjestysasteikollisille muuttujille.

Lisätiedot

Altisteiden ja sairauksien mittaaminen. Biostatistiikan näkökulmasta EPIDEMIOLOGIAN JA BIOSTATISTIIKAN PERUSTEET. L2 kevät 2007

Altisteiden ja sairauksien mittaaminen. Biostatistiikan näkökulmasta EPIDEMIOLOGIAN JA BIOSTATISTIIKAN PERUSTEET. L2 kevät 2007 EPIDEMIOLOGIAN JA BIOSTATISTIIKAN PERUSTEET L2 kevät 2007 mittaaminen Biostatistiikan näkökulmasta Janne Pitkäniemi VTM, MSc (biometry) HY, Kansanterveystieteen laitos 1 Perusjoukon ja otoksen käsitteet

Lisätiedot

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?

SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON? SISÄLTÖ 1 TILASTOJEN KÄYTTÖ...7 MITÄ TILASTOTIEDE ON?...7 TILASTO...7 TILASTOTIEDE...8 HISTORIAA...9 TILASTOTIETEEN NYKYINEN ASEMA...9 TILASTOLLISTEN MENETELMIEN ROOLIT ERI TYYPPISET AINEISTOT JA ONGELMAT...10

Lisätiedot

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!

KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä! VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun

Lisätiedot

Muuttujien väliset riippuvuudet esimerkkejä

Muuttujien väliset riippuvuudet esimerkkejä Tarja Heikkilä Muuttujien väliset riippuvuudet esimerkkejä Sisältö MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN TILASTOLLINEN TESTAUS MERKITSEVYYSTASO MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN SPSS-OHJELMALLA

Lisätiedot

Hypoteesin testaus Alkeet

Hypoteesin testaus Alkeet Hypoteesin testaus Alkeet Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Johdanto Kokeellinen tutkimus: Varmennetaan teoreettista olettamusta fysikaalisen systeemin käyttäytymisestä

Lisätiedot

Tilastollisten aineistojen kuvaaminen

Tilastollisten aineistojen kuvaaminen Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten

Lisätiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot

Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille. Testit järjestysasteikollisille muuttujille: Esitiedot TKK (c Ilkka Melli (004 Johdatus tilastotieteesee TKK (c Ilkka Melli (004 : Mitä opimme? Tarkastelemme tässä luvussa seuraavia järjestysasteikolliste muuttujie testejä: ja merkkitesti parivertailuille

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 14.4.2012 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003

Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman

Lisätiedot

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011

Tutkimuksen suunnittelu / tilastolliset menetelmät. Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Tutkimuksen suunnittelu / tilastolliset menetelmät Marja-Leena Hannila Itä-Suomen yliopisto / Terveystieteiden tdk 25.8.2011 Kvantitatiivisen tutkimuksen vaiheet Suunnittelu Datan keruu Aineiston analysointi

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 7.6.2011 Ratkaisut ja arvostelu 1.1 Noudattakoon satunnaismuuttuja X normaalijakaumaa a) b) c) d) N(5, 15). Tällöin P (1.4 < X 12.7) on likimain

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

Tilastomenetelmien lopputyö

Tilastomenetelmien lopputyö Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli Group Statistics Luk1 Kirj1 Kielt1 Khuol1 Kirjall1 Ilmharj1 äyt1 Viest1 Sanaluokat1 Luk2 Kirj2

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 5.4.2014 klo. 9.00-12.00 saleissa L1,L3 Koealue: luentojen luvut 7-11

Lisätiedot

Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla

Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla 1 Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla Raija Leppälä Opetusmoniste B 53 3. uudistettu painos Matematiikan, tilastotieteen ja filosofian laitos Toukokuu

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Kaksisuuntainen varianssianalyysi. Heliövaara 1

Kaksisuuntainen varianssianalyysi. Heliövaara 1 Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een

031021P Tilastomatematiikka (5 op) kertausta 2. vk:een 031021P Tilastomatematiikka (5 op) kertausta 2. vk:een Jukka Kemppainen Mathematics Division 2. välikokeeseen Toinen välikoe on la 31.03.2012 klo. 9.00-12.00 saleissa L1,L3 Jukka Kemppainen Mathematics

Lisätiedot

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET

Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET Aki Taanila TILASTOLLISEN PÄÄTTELYN ALKEET 21.5.2014 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 1.1 Tiekartta... 4 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 5 2.1 Keskiarvon luottamusväli... 5 2.2

Lisätiedot

Lauri Tarkkonen: Erottelu analyysi

Lauri Tarkkonen: Erottelu analyysi Lauri Tarkkonen: Erottelu analyysi Erotteluanalyysin ongelma on kaksijakoinen:. Mikä havaittujen muuttujien (x i ) lineaarinen yhdistely erottaa mahdollisimman hyvin toisistaan tunnetut ryhmät? Siis selitettävä

Lisätiedot

LEHDISTÖTIEDOTE EUROALUEEN RAHALAITOSTEN KORKOTILASTOJEN JULKISTAMINEN 1

LEHDISTÖTIEDOTE EUROALUEEN RAHALAITOSTEN KORKOTILASTOJEN JULKISTAMINEN 1 10 December 3 LEHDISTÖTIEDOTE EUROALUEEN RAHALAITOSTEN KORKOTILASTOJEN JULKISTAMINEN 1 Euroopan keskuspankki (EKP) julkaisee tänään ensimmäisen kerran uudet yhdenmukaistetut korkotilastot. Tilastotiedot

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

PSYKOLOGIAN VALINTAKOE TILASTOMATEMATIIKAN LISÄMATERIAALI 2016

PSYKOLOGIAN VALINTAKOE TILASTOMATEMATIIKAN LISÄMATERIAALI 2016 PSYKOLOGIAN VALINTAKOE TILASTOMATEMATIIKAN LISÄMATERIAALI 06 HELSINGIN YLIOPISTO PSYKOLOGIAN VALINTAKOE 06 Tilastomatematiikan lisämateriaali Copyright Helsingin yliopisto, käyttäytymistieteiden laitos

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Perhevapaiden palkkavaikutukset

Perhevapaiden palkkavaikutukset Perhevapaiden palkkavaikutukset Perhe ja ura tasa-arvon haasteena seminaari, Helsinki 20.11.2007 Jenni Kellokumpu Esityksen runko 1. Tutkimuksen tavoite 2. Teoria 3. Aineisto, tutkimusasetelma ja otos

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua Havaintoaineiston perusteella näyttää ilmeiseltä, että alkuperäisen laastin sidoslujuus on suurempi. Ero sattumasta johtuvaa? Palataan tuonnempana. Tension bond strength data for Portland Cement formulation

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011

Kuvioita, taulukoita ja tunnuslukuja. Aki Taanila 2.2.2011 Kuvioita, taulukoita ja tunnuslukuja Aki Taanila 2.2.2011 1 Tilastokuviot Pylväs Piirakka Viiva Hajonta 2 Kuviossa huomioitavia asioita 1 Kuviolla tulee olla tarkoitus ja tehtävä (minkä tiedon haluat välittää

Lisätiedot