BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 3) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

Koko: px
Aloita esitys sivulta:

Download "BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 3) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos"

Transkriptio

1 BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 3) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005

2 Yhden prosenttiosuuden/suhdeluvun testaaminen Oletetaan, että tutkittavan ryhmän koko on n ja k on niiden henkilöiden lukumäärä, joilla on jokin tietty ominaisuus. Arvioitu suhdeluku kyseisen ominaisuuden esiintyvyydelle on siten p k/n. Tämä on nk. piste estimaatti vastaavalle perusjoukon suureelle. Oletetaan että tutkija väittää että perusjoukon tuntematon osuus kiinnostavalle ominaisuudelle on pp 0 ja tätä vastaava vastaväite on että se ei ole p p 0. Tällöin voimme rakentaa testin kahdella tavalla: Normaalijakaumaan perustuen tai binomijakaumaan perustuen. Normaalijakaumaan perustuva : pˆ p0 Lasketaan testisuure z jonka jakauma on normaalinen (0,1). Nyt tarvitsemme se( p0 ) p *(1 p) prosenttiosuuden keskivirheen, joka lasketaan kaavasta se( p). Näin ollen n voimme suorittaa testin. Sama testi voidaan laskea myös binomijakaumaan perustuen ja se on suoraan SPSS:ssä helposti saatavilla. Katso esimerkki. Esimerkki Otetaan taas kolesterolia koskeva otoksemme (7.5, 4.8, 6.3, 5.4,.0 mmol/l) ja oletetaan että tutkija väittää että sellaisten henkilöiden osuus joiden kolesteroli on yli 5.0 mmol/l olisi 40 %. Edetään kuten edellä kuvattiin. 1. Hypoteesin muodostaminen H0: p0.4 ja HA:p 0.4. Lasketaan osuuden estimaattori otoksestamme (1,0,1,1,0) eli 3/50.6 eli 60 % Tallennetaan SPSS:ään muuttuja korkea jonka arvot ovat siis (1,0,1,1,0). SPSS: Tallennetaan SPSS:ään muuttuja korkea, jonka arvot ovat siis (1,0,1,1,0). Valikot: Analyze Non parametric tests Binomial. Määritellään test variable korkea ja test proportion 0,4. Tämän jälkeen klikataan kohdasta Ok. Biostatistiikkaa esimerkkien avulla Janne Pitkäniemi, syksy 005

3 Tulos: Binomial Test korkea Category N Observed Prop. Test Prop. Exact Sig. (1 tailed) Group 1 1,00 3,6,4,317 Group,00,4 Total 5 1,0 Tulkinta: Otoksemme korkeakolesterolisten osuus ei poikkea tilastollisesti merkitsevästi 40 %:sta P0,0317. Lasketaan sama vielä normaalijakaumaan perustuen 3. Lasketaan testisuure z *(1 0.4) katsomme normaalijakaumasta N(0,1) vastaavan todennäköisyysmassa joka jää tämän arvon oikealle tai arvon vasemmalle puolelle ja saamme p arvon Tällöin emme hylkää nollahypoteesia ja toteamme että oikea korkea kolesterolisten osuus väestössä voi olla 40 %. Tähän tarvitaan valmiiksi kirjoitettuja SPSS makroja, koska tätä yksinkertaista testiä ei ole SPSS:n perusvalikoissa. Vastaavia on saatavissa esimerkiksi osoitteesta: ja tarkemmin Matrix Run MATRIX procedure: n p SE z SIGz_TL SIGz_LTL SIGz_UTL 5,000,600,19,913,361,819,181 END MATRIX Biostatistiikkaa esimerkkien avulla 3 Janne Pitkäniemi, syksy 005

4 Kahden riippumattoman otoksen prosenttiosuuksien testaaminen Suhdelukujen testi kahden riippumattoman otoksen tapauksessa Oletetaan, että tutkittavien ryhmien koot ovat n1 ja n ja k1 ja k ovat niiden henkilöiden lukumäärä, joilla on jokin tietty ominaisuus. Arvioitu suhdeluku kyseisen ominaisuuden esiintyvyydelle on siten p1 k1/n1 ja pk/n. Oletetaan että tutkija väittää että perusjoukon tuntematon osuus kiinnostavalle ominaisuudelle on p 1 p eli p 1 p 0 ja tätä vastaava vastaväite on että se ei ole p 1 p. Jos väitteemme olisi tosi niin voisimme laskea arvioin ryhmien yhteiselle ominaisuuden k1 + k osuudelle kaavasta p. Tällöin voimme rakentaa testin seuraavan n1 + n pˆ ˆ 1 p testisuureen avulla z. se( p p ) 1 Esimerkki: Oletetaan että olemme saaneet seuraavat kaksi otosta: toinen 50 henkeä normaaliväestöstä (otos 1) ja toinen 40 hengen otos sokeritautiin sairastuneista henkilöistä. Koska metabolinen syndrooma vaikuttaa myös kolesteroli arvoihin haluamme nyt testata onko korkea kolesterolisten osuus (>5.0 mmol/l) kahdessa otoksessa sama. otos 1: (3.96, 4.31, 5.9, 4.47, 3.5, 4.6,.73, 3.1, 4.16, 4.07, 4.14, 4.73,.85, 4.77, 4.6, 4.7, 4.73,.5, 3.98, 5, 3.14, 3.11, 4.5, 5.46, 4.4, 4.13, 4.67, 5.56, 4.49, 4.16,.0, 5.48, 5.69, 3.74, 4.4, 5.48, 4.84, 3.1, 5.05, 5.76,.8, 4.88, 5.01, 3.87, 5.84, 3.9, 5.6, 3.14, 5.73, 5.00) lasketaan korkea kolesterolisten lukumäärä 1 eli suhteellinen osuus on 1/500.4 otos : (5.5, 4.7, 4.5, 6.94, 5.97, 5.56, 4.05, 4.99, 5.9, 5.9, 3.64, 4.79, 5., 5.78, 6.7, 7.08, 6.7, 5.33, 4.6, 4.7, 6.18, 4.65, 5.87, 6.15, 5.65, 4.5, 4.19, 4.79, 4.4, 3.45, 3.56, 6.09, 4.77, 5.61, 4.15, 5.05, 5.1, 4.4, 4.08, 5.) lasketaan korkea kolesterolisten lukumäärä 1 eli suhteellinen osuus on 1/ Jatketaan esimerkkiä seuraavassa kappaleessa. Biostatistiikkaa esimerkkien avulla 4 Janne Pitkäniemi, syksy 005

5 Khi nelikenttätesti Käyttötilanne: Oletetaan, että vertaillaan kahta toisistaan riippumatonta ryhmää. Riippumattomuus tarkoittaa, että ryhmät muodostuvat eri havaintoyksiköistä; esim. eri henkilöistä. Kaksiarvoinen (binomiaalinen) lopputulosmuuttuja (kyllä, ei) Kahden suhdeluvun vertailu Lopputulos Kyllä Ei Yhteensä Ryhmä 1 a b a+b c d c+d Yhteensä a+c b+d n Huom. Lukujen a, b, c ja d tulee olla lukumääriä eikä esimerkiksi prosenttilukuja. Testisuure: χ (a d b c) n (a + c) (b + d) (a + b) (c + d) Testisuure Yatesin jatkuvuuskorjauksella: n ( a d b c ) n χ C (a + c) (b + d) (a + b) (c + d) Kummassakin tapauksessa vapausasteita (df) on 1 ja Vertailtavat suhdeluvut ovat: p 1 a/(a + b) ja p c/(c + d). Esim. SPSS: Tallennetaan edellinen aineisto hieman eri näköisessä muodossa olevat muuttujat group (1 otos 1, otos ), korkea (0 kolesteroli <5.0 mmol/l, 1kolesteroli >5.0 mmol/l) ja lkm joka on edellä olevat muuttujien ehdot täyttävien havaintojen lukumäärä Biostatistiikkaa esimerkkien avulla 5 Janne Pitkäniemi, syksy 005

6 Data view: group korkea lkm 1,00,00 38,00 1,00 1,00 1,00,00,00 19,00,00 1,00 1,00 Seuraavaksi kerromme SPSS:lle että jokaista group ja korkea yhdistelmää vastaakin itse asiassa lkm muuttujan osoittama määrä havaintoja. Tämä tapahtuu valikosta Data Weight cases klikkaa Weight cases by ja valitse muuttuja lkm. Seuraavaksi teemme varsinaisen testin : Analyze Crosstabs. Määritellään row variable group ja column variable korkea. Tämän jälkeen valitaan Statistics ja klikataan Chi square, jolloin saamme testien tulokset näkyviin. Lopuksi klikataan kohdasta Ok. Tulos: Count group group * korkea Crosstabulation korkea,00 1,00 Total 1, , Total Chi Square Tests Value df Asymp. Sig. ( sided) Exact Sig. ( sided) Exact Sig. (1 sided) Pearson Chi Square 7,773(b) 1,005 Continuity Correction(a) 6,594 1,010 Likelihood Ratio 7,89 1,005 Fisher's Exact Test,008,005 Linear by Linear Association 7,686 1,006 N of Valid Cases 90 a Computed only for a x table b 0 cells (,0%) have expected count less than 5. The minimum expected count is 14,67. Tulkinta: Korkeakolesterolisten (>5.0 mmol/l) osuus poikkeaa tilastollisesti merkitsevästi väestön ja sokeritautia sairastavien välillä (P0,010). Biostatistiikkaa esimerkkien avulla 6 Janne Pitkäniemi, syksy 005

7 Prosenttiosuuksien testaaminen parittaisessa aineistossa McNemarin testi Käyttötilanne: Lopputulos on kaksiarvoinen (Kyllä, Ei) ja kyseessä on jokin seuraavista parittaisista asetelmista: Samat henkilöt mitattu kahtena eri ajankohtana ja tarkastellaan muutosta lopputulosmuuttujassa Ristikkäistutkimusasetelma Kaltaistettu tapaus verrokki asetelma McNemarin testi McNemar's test on parittaisten aineistojen luokiteltujen muuttujien riippuvuustesti. Esim. Yksi potilasjoukko, jolle on suoritettu jokin interventio ja halutaan tutkia tapahtuuko intervention johdosta muutosta mittarissa, joka on joko laatueroasteikollinen tai luokiteltu muuttuja. Parittaisessa aineistossa lopputulosvaihtoehtoja on siten neljä: (Kyllä, Kyllä), (Kyllä, Ei), (Ei, Kyllä) ja (Ei, Ei). Olkoon e, f, g ja h näihin vaihtoehtoihin liittyvät havaintoaineiston perusteella lasketut lukumäärät. Ristikkäistutkimuksessa lopputulos taulukkomuotoon tiivistettynä on siten: Ristikkäistutkimus Vaste hoitoon A Yhteensä Kyllä Ei Vaste hoitoon B Kyllä e f e+f Ei g h g+h Yhteensä e+g f+h n ja kaltaistetussa tapaus verrokki tutkimuksessa vastaavasti: Kaltaistettu tapausverrokki tutkimus Verrokit Altistus Yhteensä Kyllä Ei Tapaukset Altistus Kyllä e f e+f Ei g h g+h Yhteensä e+g f+h n Biostatistiikkaa esimerkkien avulla 7 Janne Pitkäniemi, syksy 005

8 Approksimattivinen testisuure: χ (f g) f + g Testisuure Yatesin jatkuvuuskorjauksella: χ c (( f g 1) f + g Testisuure noudattaa kummassakin tapauksessa likimain jakaumaa vapausastein 1. Esimerkki : Tarkastellaan datasetb aineistoa. Tutkija on kiinnostunut onko korkeissa kolesteroliarvoissa (>15.0 mmol/l) tapahtunut muutosta vuosien 1950 ja 196 välillä. Olemme luoneet kaksiluokkaiset muuttujat highchol1950 ja highchol196 (1 kolesteroli >15.0 ja 0 muuten) Hypoteesit: H 0 : Ei muutosta kolesteroliarvoissa H 1 : Muutosta kolesteroliarvoissa SPSS: Luodaan uusi muuttuja : compute Transform ja highchol196chol196>15.0. Valikot: Analyze Non parametric tests related samples. Valitse McNemar. Tämän jälkeen valitaan muuttujapari highcho1950 ja highchol196 ja ok Tulos: Crosstabs highchol1950 & highchol196 highchol highchol (33 34) Testit: Ei jatkuvuuskorjattu χ 0.015, P 0, Biostatistiikkaa esimerkkien avulla 8 Janne Pitkäniemi, syksy 005

9 McNemar Test N Chi Square a Asymp. Sig. Test Statistics b Exact Sig. ( tailed) Exact Sig. (1 tailed) Point Probability a. Continuity Corrected b. McNemar Test highchol1950 & highchol196 00,000 1,000 1,000,500,096 Tulkinta: Korkeakolesterolisten osuus ei ole muuttunut vuosien 1950 ja 196 välillä (p0.903). Yhteensopivuuden testaaminen luokittelumuuttujalla Joskus biologian tai aikaisemmat empiiriset tulokset antavat meille jakauman johon haluaisimme verrata havaittuja lukumääriä. Yhteensopivuustestien avulla voidaan selvittä, onko otoksena saatu havaintoaineisto peräisin populaatiosta, jonka jakauma tunnetaan ennalta. Hypoteesit: H 0 havaitut lukumäärät noudattavat annettua todennäköisyysjakaumaa H A Ainakin osa todennäköisyyksistä on erilaisia Testisuure: χ L l 1 ( o l e ) e l l Biostatistiikkaa esimerkkien avulla 9 Janne Pitkäniemi, syksy 005

10 missä l on luokkien lukumäärä, o l havaittu lukumäärä, e l odotettu lukumäärä joka perustuu siis hypoteettiseen jakaumaan kun havaintojen kokonaislukumäärä on tunnettu. Tämä testisuure noudattaa khii toiseen jakaumaa vapausastein (L 1) eli luokkien lukumäärä 1. Esimerkki : Oletetaan että tutkija tietää aikaisempien tutkimustulosten perusteella että kasvattaessaan bakteeriviljelmää tietyllä ravinteella bakteerityyppejä (A, B, C, D) pitäisi muodostua seuraavasti: 10 % A, 10 % B, 10 % C ja 70 % D. Tutkija tekee 00 viljelmää ja havaitsee bakteerityyppejä seuraavat lukumäärät A 4 B 11 C 0 D 145. Ovatko tutkijan havaitsemat lukumäärät (osuudet) yhteensopivat sen kanssa mitä on aikaisemmin väitetty? Lasketaan ensin testisuure havaittu lukumäärä (o) hypoteettiset osuudet (p) odotettu lukumäärä (e00*p) (o e) (oe) (o e) /e A B C D Yhteensä Saimme siis testisuureen arvoksi 5.09 joka on khii toiseen jakautunut vapausastein Lasketaan nyt sama koneella SPSS: Tallennetaan edellinen aineisto muodossa muuttujat kanta seuraavat rivit( 4, 11,0,145) 4,00 11,00 0,00 145,00 Data view: kanta Biostatistiikkaa esimerkkien avulla 10 Janne Pitkäniemi, syksy 005

11 Seuraavaksi kerromme SPSS:lle että jokaista group ja korkea yhdistelmää vastaakin itse asiassa lkm muuttujan osoittama määrä havaintoja. Tämä tapahtuu valikosta Data Weight cases klikkaa Weight cases by ja valitse muuttuja kanta. Valikot: Analyze Non parametric tests Chi square. Määritellään test variable korkea ja test proportion 0,4. Tämän jälkeen klikataan kohdasta Expected kohta values ja syötetään yksi kerralaan hypoteettinen jakauma 0,1 0,1 0,1 ja 0,7 (Huomaa, ei piste) Tulos: NPar Tests Chi Square Test Frequencies kanta 11,00 0,00 4,00 145,00 Total Observed N Expected N Residual 11 0,0 9,0 0 0,0,0 4 0,0 4, ,0 5,0 00 Test Statistics Chi Square a df Asymp. Sig. kanta 5,09 3,170 a. 0 cells (,0%) have expected frequencies less than 5. The minimum expected cell frequency is 0,0. Tulkinta: Nollahypoteesia ei hylätä joten havaitut lukumäärät voivat olla peräisin annetusta jakaumasta(p0,170). Biostatistiikkaa esimerkkien avulla 11 Janne Pitkäniemi, syksy 005

12 Diagnostisen testin sensitiivisyys ja spesifisyys Diagnoosien teko on keskeisellä sijalla lääketieteessä ja siksi onkin tärkeää että diagnoosien tekoa yritettään parantaa. Jotta diagnoosia voitaisiin arvioida täytyy diagnoosin hyvyys jotenkin kvantifioida tilastollisesti. Seuraava jakso esittelee diagnostisen testin peruskäsiteet sensitiivisyys, spesifisyys, positiivinen prediktiivinen arvo ja negatiivinen prediktiivinen arvo. Aloitetaan taulukosta jotta T on testi ja T + kertoo että testin tulos oli positiivinen ja vastaavasti T kertoo että testin tulos oli negatiivinen. Merkitään taudin statusta D:llä ja D + tarkoittaa että yksilöllä on tauti (D ei tautia) Tehdään seuraava x taulukko Testi Tauti + + a b a+b c d c+d a+c b+d n Esimerkki (Altman): Oletetaan että tutkija diagnosoi maksasyöpää (testi) ja toisaalta patologi ottaa näyteen jonka perusteella päätetään onko maksasyöpä vai ei (tauti). saadaan seuraava taulukko: patologin löydös (tauti) + (epänormaali) (normaali) Maksasyöpä diagnoosi maksan skannaukseen perustuen (tässä siis testi) yhteensä d Määritellään seuraavat todennäköisyydet: 1) Todennäköisyys että yksilön testin tulos on positiivinen ehdolla että on tauti saadaan kun luetaan siis ensimmäiseltä sarakkeelta a/(a+c) ja sitten hieman muodollisemmin a T + D + ). a + c Tämä on testin sensitiivisyys eli testin kyky löytää positiivisten testin tuloksen saaneet sairaiden joukosta. Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005

13 ) Todennäköisyys että testitulos on negatiivinen ehdolla että yksilöllä EI ole tautia saadaan kun luetaan taulukon toiselta sarakkeelta d/(b+d) ja sitten hieman muodollisemmin d T D ). b + d Tämä on testin spesifisyys eli testin kyky löytää negatiiviset terveiden yksilöiden joukosta. Esimerkki (jatkuu) Lasketaan esimerkki aineistosta sensitiivisyys ja spesifisyys: sensitiivisyys eli tautisten osuus jotka testimme löysi 31/ ja voimme todeta että odottaisimme 90% potilaista joilla on epänormaali maksa (patologi) niin myös diagnosoidaan maksasyöväksi. spesifisyys eli terveiden osuus negatiivisen testin omaavien joukosta 54/ ja voimme todeta että 63 % niistä joilla on normaali maksa niin ei todeta tautia myöskään lääkärin maksakartoituksessa (scan) Huomatkaa että taudin esiintyvyys (prevalenssi), jota merkitään D+), on (a+c)/n, ja havaitusta aineistosta laskemamme sensitiivisyys ja spesifisyys perustuvat siihen että juuri tässä aineistossa taudin prevalenssi on se mitä olemme laskeneet. USEIN haluaisimme tietää miten testi toimii jos sovellamme testiä johonkin toiseen populaatioon jolla on erilainen prevalenssi. Tällöin kysymys kuuluu mikä on taudin todennäköisyys kun testitulos on positiivnen. Tämän laskemiseen tarvitaan ns. Bayes kaavaa joka on seutaavanlainen D + T + ) T T + D + ) D + ) + D + ) D + ) + T + D ) D ) Tämä on positiivinen prediktiivinen arvo (PPV) vastaavasti voidaan määrittää negatiivinen prediktiivinen arvo (NPV) D T ) T T D ) D ) D + ) D + ) + T D ) D ) Biostatistiikkaa esimerkkien avulla 13 Janne Pitkäniemi, syksy 005

14 Esimerkki (jatkuu) Lasketaan esimerkki aineistosta PPV. Tätä varten tarvitsemme taudin esiintyvyyden (prevalenssi, D+) ). Se on 58/ eli 75%. Sijoitetaan yo kaavaan D + T + ) T T + D + ) D + ) + D + ) D + ) + T + D ) D ) 0.90 * * (1 0.63) *(1 0.75) 0.88 eli 88% Sama saataisiin laskemalla 31/ eli 63 potilaasta jotka diagnosoitiin (testattiin) olevan maksasyöpä 31:llä oli oikeasti maksassa patologinen lsyöpä öydös ja tästä saadaan oikeiden diagnoosien osuus. Vastaavasti voidaan laskea NPV:n. HUOM!!! Tärkeää on kuitenkin huomata PPV:n kaavasta sen riippuvan taudin esiintyvyydestä. SIIS sama testi sovellettuna toiseen populaatioon, jossa taudin prevalenssi on erilainen antaa erilaisen PPV:n arvon. Tehtävä: laske PPV kun prevalenssi on 5 %. Biostatistiikkaa esimerkkien avulla 14 Janne Pitkäniemi, syksy 005

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

voidaan hylätä, pienempi vai suurempi kuin 1 %?

voidaan hylätä, pienempi vai suurempi kuin 1 %? [TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine

Lisätiedot

voidaan hylätä, pienempi vai suurempi kuin 1 %?

voidaan hylätä, pienempi vai suurempi kuin 1 %? [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 4) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 4) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 4) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005

Lisätiedot

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9

Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 Sisällysluettelo SISÄLLYSLUETTELO...6 LYHYT SANASTO VASTA-ALKAJILLE...7 1. JOHDATUS PARAMETRITTOMIIN MENETELMIIN...9 1.1 PARAMETRITTOMIEN MENETELMIEN LYHYT HISTORIA 11 1.2 PARAMETRITTOMAT MENETELMÄT IHMISTIETEISSÄ

Lisätiedot

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,

Lisätiedot

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Luottamusväli, määritelmä 23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi

Tilastollinen testaaminen tai Tilastollinen päättely. Geneettinen analyysi Tilastollinen testaaminen tai Tilastollinen päättely Geneettinen analyysi Tilastollisen testaamisen tarkoitus Tilastollisten testien avulla voidaan tutkia otantapopulaatiota (perusjoukkoa) koskevien väittämien

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai

Lisätiedot

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle

Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen

Lisätiedot

Testit laatueroasteikollisille muuttujille

Testit laatueroasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu 10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 2. luento: Tilastolliset testit Kai Virtanen 1 Tilastollinen testaus Tutkimuksen kohteena olevasta perusjoukosta esitetään väitteitä oletuksia joita

Lisätiedot

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle

Lisätiedot

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan

Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan 17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten

Lisätiedot

Testejä suhdeasteikollisille muuttujille

Testejä suhdeasteikollisille muuttujille Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

11. laskuharjoituskierros, vko 15, ratkaisut

11. laskuharjoituskierros, vko 15, ratkaisut 11. laskuharjoituskierros vko 15 ratkaisut D1. Geiger-mittari laskee radioaktiivisen aineen emissioiden lukumääriä. Emissioiden lukumäärä on lyhyellä aikavälillä satunnaismuuttuja jonka voidaan olettaa

Lisätiedot

Seulontatutkimusten perusperiaatteet

Seulontatutkimusten perusperiaatteet Seulontatutkimusten perusperiaatteet Ilona Autti-Rämö, dos Finohta / Sikiöseulontojen yhtenäistäminen / Ilona Autti-Rämö 1 Seulontatutkimuksen yleiset periaatteet Tutkitaan sovittu ryhmä oireettomia henkilöitä,

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A

χ 2 -yhteensopivuustestissä käytetään χ 2 -testisuuretta χ = Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Estimointi, Havaittu frekvenssi, Heterogeenisuus,

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta

Lisätiedot

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit

Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 2) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 2005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy

Lisätiedot

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta

H0: otos peräisin normaalijakaumasta H0: otos peräisin tasajakaumasta 22.1.2019/1 MTTTA1 Tilastomenetelmien perusteet Luento 22.1.2019 Luku 3 2 -yhteensopivuus- ja riippumattomuustestit 3.1 2 -yhteensopivuustesti H0: otos peräisin tietystä jakaumasta H1: otos ei peräisin

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1

Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1 Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

HAVAITUT JA ODOTETUT FREKVENSSIT

HAVAITUT JA ODOTETUT FREKVENSSIT HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies

Lisätiedot

/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin

/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin 30.11.2017/1 MTTTP5, luento 30.11.2017 Kertausta H 0 : µ = µ 0 Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin = / ~ 0,1. Kaava 5.1 30.11.2017/2 Esim. Tutkija

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2

Lisätiedot

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia. Tehtävien ratkaisuja 4. Palloja yhteensä 60 kpl. a) P(molemmat vihreitä) = P((1. pallo vihreä) ja (. pallo vihreä)) = P(1. pallo vihreä) P(. pallo vihreä 1. pallo vihreä) = 0.05 (yleinen kertolaskusääntö)

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:

/1. MTTTP1, luento Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: 2.10.2018/1 MTTTP1, luento 2.10.2018 7.4 Normaalijakauma (kertausta) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 2.10.2018/2

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden

Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden 1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

pisteet Frekvenssi frekvenssi Yhteensä

pisteet Frekvenssi frekvenssi Yhteensä 806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-

Lisätiedot

Tutkimus peliohjaimen käytöstä Super Smash Bros. Melee pelissä. Aleksanteri Karanka

Tutkimus peliohjaimen käytöstä Super Smash Bros. Melee pelissä. Aleksanteri Karanka Tutkimus peliohjaimen käytöstä Super Smash Bros. Melee pelissä Aleksanteri Karanka Sisällysluettelo Johdanto... 3 Aikaisemmat tutkimukset... 3 Tutkimuksen toteutus... 3 Taitotaso-ongelma... 3 Tutkimustulokset...

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Tilastollinen aineisto Luottamusväli

Tilastollinen aineisto Luottamusväli Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden

Lisätiedot

Teema 9: Tilastollinen merkitsevyystestaus

Teema 9: Tilastollinen merkitsevyystestaus Teema 9: Tilastollinen merkitsevyystestaus Tärkeä päättelyn osa-alue on tilastollinen merkitsevyystestaus, johon päästään luontevasti edellisen teeman aiheista: voidaan kysyä, menevätkö kahden vertailtavan

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas

TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Bayesiläinen tilastollinen vaihtelu

Bayesiläinen tilastollinen vaihtelu Bayesiläinen tilastollinen vaihtelu Janne Pitkäniemi FT, dos. (biometria), joht. til. tiet Suomen Syöpärekisteri Hjelt-instituutti /Helsingin yliopisto Periaatteet Tilastollinen vaihtelu koskee perusjoukon

Lisätiedot

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto

Geenikartoitusmenetelmät. Kytkentäanalyysin teoriaa. Suurimman uskottavuuden menetelmä ML (maximum likelihood) Uskottavuusfunktio: koko aineisto Kytkentäanalyysin teoriaa Pyritään selvittämään tiettyyn ominaisuuteen vaikuttavien eenien paikka enomissa Perustavoite: löytää markkerilokus jonka alleelit ja tutkittava ominaisuus (esim. sairaus) periytyvät

Lisätiedot

1 Johdanto 2. 2 Aineistot 2. 3 Henkilöstön koulutustausta ja työkokemus 3. 4 Aikuissosiaalityön sisältö 5. 5 Henkilöstön osaaminen 12

1 Johdanto 2. 2 Aineistot 2. 3 Henkilöstön koulutustausta ja työkokemus 3. 4 Aikuissosiaalityön sisältö 5. 5 Henkilöstön osaaminen 12 Sisällysluettelo 1 Johdanto 2 2 Aineistot 2 3 Henkilöstön koulutustausta ja työkokemus 3 4 Aikuissosiaalityön sisältö 5 5 Henkilöstön osaaminen 12 6 Asiakkaiden elämäntilanteisiin vastaaminen 20 7 Asiakkaiden

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Logistinen regressioanalyysi Vastemuuttuja Y on luokiteltu muuttuja Pyritään mallittamaan havaintoyksikön todennäköisyyttä kuulua

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

TAPAUS-VERROKKITUTKIMUS

TAPAUS-VERROKKITUTKIMUS TAPAUS-VERROKKI TUTKIMUKSEN TYYPIT JA TULOSTEN ANALYYSI Simo Näyhä Jari Jokelainen Kansanterveystieteen ja yleislääketieteen laitoksen jatkokoulutusmeeting.3.4.2007 TAPAUS-VERROKKITUTKIMUS Idea Tutkimusryhmät

Lisätiedot

Tilastollisia peruskäsitteitä ja Monte Carlo

Tilastollisia peruskäsitteitä ja Monte Carlo Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia

Lisätiedot

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastotieteen kertaus. Kuusinen/Heliövaara 1 Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa

Lisätiedot

10. laskuharjoituskierros, vko 14, ratkaisut

10. laskuharjoituskierros, vko 14, ratkaisut 10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset

Lisätiedot

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely 3.12.2018/1 MTTTP5, luento 3.12.2018 6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely H 0 : = 0 Oletetaan, että populaatiossa viallisia %. Olkoon X 1, X

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin

Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta

Lisätiedot

1. Tilastollinen malli??

1. Tilastollinen malli?? 1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen

Lisätiedot

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi. 9.10.2018/1 MTTTP1, luento 9.10.2018 KERTAUSTA TESTAUKSESTA, p-arvo Asetetaan H 0 H 1 Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi. Lasketaan otoksesta testisuureelle arvo. 9.10.2018/2

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1 Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

tilastotieteen kertaus

tilastotieteen kertaus tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla

Lisätiedot

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto

Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Mitä tarvitsee tietää biostatistiikasta ja miksi? Matti Uhari Lastentautien klinikka Oulun yliopisto Tutkimusaineistomme otantoja Hyödyt Ei tarvitse tutkia kaikkia Oikein tehty otanta mahdollistaa yleistämisen

Lisätiedot