SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

Koko: px
Aloita esitys sivulta:

Download "SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö"

Transkriptio

1 SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin koneissa on myös vanhempi versio 12., se ei kuitenkaan toimi. 1. Tietojen määrittely ja syöttö Ohjelman käynnistyttyä avautuu seuraava näkymä (tähän on jo valmiiksi syötetty esimerkkitapauksen muuttujat): Alhaalla nähdään kaksi välilehteä, Data View ja Variable View. Data View muistuttaa Excelin taulukkoa, johon jokaiseen sarakkeeseen tulee yhden mittaussuureen tiedot. Tilastolliset suureet määritellään Variable View-lehdellä. Esimerkki: Askelmittari Tutkitaan kahden eri askelmittarin kahden eri päivän aikana antamien askelten määriä. Kysymyksenasettelu on, eroavatko mittarien antamat lukemat toisistaan. Mittari 1 on uusi kehitysversio. Mittari 2 on jo kaupallisesti saatavilla oleva ja luotettavaksi tiedetty mittari. Koehenkilöitä on 2, joista 15 miestä ja 5 naista. Jokaiseen koehenkilöön liittyy henkilökohtainen tunnistus- eli ID-numero. Lisätietona on henkilön paino.

2 Tehdään Variable View-välilehdelle määritykset: Koska yleisimpiä sukupuolia ovat mies ja nainen, voidaan Sukupuoli-muuttujalle määritellä kaksi arvoa siten, että arvo nolla vastaa miestä ja arvo 1 naista (luvut voivat olla muitakin). Klikkaa hiirellä Values-ruutua muuttujan Sukupuoli kohdalla: Toinen asia, joka pitää tässä vaiheessa miettiä, minkälainen muuttuja on kyseessä. Tämä määritellään Measure-kenttään: Scale: Jatkuva asteikko. Muuttuja voi saada mitä tahansa arvoja (esim. askelmäärä) Ordinal: Järjestyslukuasteikko. Muuttujien arvot ovat järjestetty suhteessa toisiinsa. Esimerkiksi opiskelijan arvosanat voivat olla, 1, 2, 3, 4, 5 Nominal: Kategoria-asteikko eli luokitteluasteikko. Esimerkiksi sukupuoli voi olla yleensä vain mies tai nainen. Tässä esimerkissä koehenkilöt ovat kirjanneet muistiin molempien askelmittarien lukemat kahtena eri päivänä. Siksi käytössä on muuttuja Päivä_Nro, joka voi saada arvot 1 tai 2. Henkilöiden painoa ei ole järkevää tarkastella jatkuvana muuttujana, vaan luokitella se muutamaan luokkaan: Tässä SPSS-käyttäjä on luokitellut painot käsin. Luokittelu on mahdollista automatisoida (jos lukuja on paljon), mutta jätetään sen asian opiskelu tässä yhteydessä.

3 Itse data voidaan siirtää esimerkiksi Excel-taulukosta copy-pastella. Lopullinen taulukko on ohessa: Valmis tuotos kannattaa tallentaa viimeistään tässä vaiheessa. File Save-valikosta. SPSS-tiedoston tarkennin on.sav. Jo olemassa olevan tiedoston avaaminen tapahtuu vastaavasti File Open Data-valikosta. 2. Tilastollisten suureiden laskeminen Tilastoaineiston tarkastelu on yleensä syytä aloittaa yksinkertaisista raporteista, joista käy ilmi mitattujen suureiden keskiarvot, keskihajonnat ja muuttujien jakaumat. Tähän on useita vaihtoehtoja. Erä tapa on käyttää Analyze Reports Case Summaries valintaa. Tässä esimerkissä tarkasteltavia muuttujia (Variables) ovat siis Mittarin 1 ja Mittarin 2 antamat askelmäärät. Ryhmittelymuuttujina (Grouping Variables) määritellään ne ominaisuudet, joiden mukaan aineistoa jaotellaan eri ryhmiin, eli tässä niitä ovat sukupuoli, päivän numero ja paino:

4 Statistics-napin takaa löytyy lista niistä tilastollisista suureista, joista halutaan yhteenveto: SPSS työntää kaiken ulostuksensa Output-ikkunaan. Ohjelman mukana tulee erillinen Output Viewer-ohjelma, joka käynnistyy automaattisesti kun SPSS saa laskennan loppuun. Tulostuksen voi tallentaa tavalliseen tapaan Viewerin File-valikosta. Tulostus tallentuu.spo-tarkentimella varustettuun tiedostoon.

5 Tässä tapauksessa yhteenveto on varsin suuri, mutta siitä löytyy paljon hyödyllistä tietoa. Case Processing Summary(a) Mittari_1 * Sukupuoli * Päivä_Nro * Paino Mittari_2 * Sukupuoli * Päivä_Nro * Paino a Limited to first 1 cases. Cases Included Excluded Total N Percent N Percent N Percent 4 1,%,% 4 1,% 39 97,5% 1 2,5% 4 1,% Seuraava tulostus on niin suuri, että se saa Wordin kaatumaan systemaattisesti, jos sitä yrittää liittää tähän, Hienoa, Bill! Laitetaan vähän alkua Eli tässä on luokiteltuna miehet, ensin 1. päivän tulokset ja myöhemmin (ei näy) 2. päivän tulokset. Kolmantena luokitteluperusteena oli paino, josta jokaisesta ryhmästä näkyy tilastolliset suureet. Tässä vielä tulostusta naisten osalta:

6 Toinen tapa tehdä yhteenveto on valita Analyze -> Compare Means -> Means ja sieltä Dependent List -muuttujiksi mittarit ja Independent List -muuttujiksi muut sukupuoli, päivä ja paino: Tulostus:

7 Case Processing Summary Cases Included Excluded Total N Percent N Percent N Percent Mittari_1 * Sukupuoli 4 1,%,% 4 1,% Mittari_2 * Sukupuoli 39 97,5% 1 2,5% 4 1,% Mittari_1 * Päivä_Nro 4 1,%,% 4 1,% Mittari_2 * Päivä_Nro 39 97,5% 1 2,5% 4 1,% Mittari_1 * Paino 4 1,%,% 4 1,% Mittari_2 * Paino 39 97,5% 1 2,5% 4 1,% Excluded-arvo tarkoittaa, että yksi arvo puuttuu (yksi koehenkilö unohti nollata mittarin). Mittari_1 Mittari_2 * Sukupuoli Sukupuoli Mittari_1 Mittari_2 mies Mean 815,4 792,689 7 N 3 29 Std. Deviation 3159, ,81 11 nainen Mean 7855,1 699,6 N 1 1 Std. Deviation 1372, ,97 31 Total Mean 842, ,82 5 N 4 39 Std. Deviation 285, ,389 5 Mittari_1 Mittari_2 * Päivä_Nro Päivä_Nro Mittari_1 Mittari_2 1, Mean 784,55 742,35 N 2 2 Std. Deviation 2645, , , Mean 8245,1 7949,315 8 N 2 19 Std. Deviation 31, ,8 91 Total Mean 842, ,82 5 N 4 39

8 Std. Deviation 285, ,389 5 Mittari_1 Mittari_2 * Päivä_Nro Päivä_Nro Mittari_1 Mittari_2 1, Mean 784,55 742,35 N 2 2 Std. Deviation 2645, , , Mean 8245,1 7949,315 8 N 2 19 Std. Deviation 31, ,8 91 Total Mean 842, ,82 5 N 4 39 Std. Deviation 285, , Kuvaajien piirtäminen Yhden muuttujan histogrammi: Graphs -> Histogram:

9 12 1 Frequency , 4, 6, 8, 1, 12, 14, 16, Mean =842,825 Std. Dev. =285, 9653 N =4 Mittari_1 Edellä on siis esitetty, miten Mittarin 1 mittaamat askelmäärät askelmäärät jakaantuvat. Jos tietoja halutaan edelleen luokitella ryhmiin, se voidaan tehdä Panel By -asetuksen avulla. Esimerkiksi histogrammit eri painoluokille:

10 Paino < Frequency , 4, 6, 8, , 4, 6, 8, Mittari_ , 4, 6, 8, Vaaka-akselin numerot vaatisivat vähän muotoilua. Sen voi tehdä kaksoiklikkaamalla tätä kuvaa, jolloin käynnistyy Chart Editor. Tässä tilanteessa on muutettava vaakaakselin teksti verticaliksi.

11 4. Tilastollinen testaus Testataan, eroavatko tietyn henkilön kahden mittarin askelmäärien keskiarvot tilastollisesti merkittävästi toisistaan. Tähän voidaan käyttää Paired Samples T-Testiä. Tulosteessa tärkein luku on oikeassa alakulmassa oleva merkitsevyysarvo (Sig (2- tailed)). Tämä on ns. p-arvo, joka on sitä lähempänä nollaa, mitä merkitsevämmin kahden muuttujan arvot eroavat toisistaan. Yleensä p-arvot luokitellaan niin, että p >.1: Ero ei ole merkitsevä.1 > p >.5 : Ero on melkein merkitsevä

12 .5 > p >.1: Ero on merkitsevä p <.1: Ero on erittäin merkitsevä Tässä esimerkissä siis mittarien askelmäärien ero ei ole tilastollisesti merkisevä (p=.157) Toinen tapa on tarkastella aineistoja kahtena kokonaisuutena eikä verrata tuloksia koehenkilökohtaisesti pareittain. Silloin verrataan kaikkia Mittarin 1 askelmääriä Mittarin 2 askelmääriin. Luokitellaan aineisto vielä sukupuolen mukaan: Haetaan jälleen taulukosta Sig, ja todetaan että askelmäärissä ei ole tilastollisesti merkitsevää eroa sukupuolten välillä.

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana

Tilastolliset ohjelmistot 805340A. Pinja Pikkuhookana Tilastolliset ohjelmistot 805340A Pinja Pikkuhookana Sisältö 1 SPSS 1.1 Yleistä 1.2 Aineiston syöttäminen 1.3 Aineistoon tutustuminen 1.4 Kuvien piirtäminen 1.5 Kuvien muokkaaminen 1.6 Aineistojen muokkaaminen

Lisätiedot

SPSS OPAS. Metropolia Liiketalous

SPSS OPAS. Metropolia Liiketalous 1 Metropolia Liiketalous SPSS OPAS Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio 8 8.Korrelaatio

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

2. Aineiston kuvailua

2. Aineiston kuvailua 2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla 4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

SPSS-ohjeita. Metropolia Pertti Vilpas

SPSS-ohjeita. Metropolia Pertti Vilpas 1 Metropolia Pertti Vilpas SPSS-ohjeita Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

Frequencies. Frequency Table

Frequencies. Frequency Table GET FILE='C:\Documents and Settings\haukkala\My Documents\kvanti\kvanti_harjo'+ '_label.sav'. DATASET NAME DataSet WINDOW=FRONT. FREQUENCIES VARIABLES=koulv paino /ORDER= ANALYSIS. Frequencies [DataSet]

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

IBM SPSS Statistics 21 (= SPSS 21)

IBM SPSS Statistics 21 (= SPSS 21) Tarja Heikkilä IBM SPSS Statistics 21 (= SPSS 21) SPSS = Statistical Package for Social Sciences Ohjelman käynnistys Aloitusikkuna Päävalikot Työkalut Muuttujat (Variables) Tapaukset (Cases) Tyhjä datataulukko

Lisätiedot

Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 6

Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 6 Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 6 Käytännön asioita seminaariin liittyen Vastaanotto 2.2. -16.3. To 13.00-13.45 huone TF 112 Sähköposti: ihtesem@cs.tut.fi

Lisätiedot

KAHDEN RYHMÄN VERTAILU

KAHDEN RYHMÄN VERTAILU 10.3.2015 KAHDEN RYHMÄN VERTAILU Jouko Miettunen Center for Life-Course and Systems Epidemiology jouko.miettunen@oulu.fi Luennon sisältö Luokitellut muuttujat Ristiintaulukko, prosentit Khiin neliötesti

Lisätiedot

Harjoittele tulkintoja

Harjoittele tulkintoja Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1

Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1 Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1 Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta I Summamuuttujien muodostus Olemassa olevista muuttujista voidaan laskea

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle] Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

Aki Taanila VARIANSSIANALYYSI

Aki Taanila VARIANSSIANALYYSI Aki Taanila VARIANSSIANALYYSI 18.5.2007 VARIANSSIANALYYSI 1 JOHDANTO...2 VARIANSSIANALYYSI...3 Yksisuuntainen varianssianalyysi...3 Kaksisuuntainen varianssianalyysi ilman toistoja...6 Kaksisuuntainen

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

SPSS* - tilastoanalyyttinen ohjelma, vrs 9.0

SPSS* - tilastoanalyyttinen ohjelma, vrs 9.0 SPSS* - tilastoanalyyttinen ohjelma, vrs 9.0 = monipuolinen ohjelma, jolla voi tilastollisesti analysoida tieteellistä aineistoa ja se tuottaa myös graafisia tulosteita. SPSS:n oma avustus (help) SPSS:ssä

Lisätiedot

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten.

VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. Tilastollinen tietojenkäsittely / SPSS Harjoitus 1 VIIKON VINKKI: Kannattaa tutustua ensin koko tehtävänantoon ja tehdä tehtävä vasta sitten. 1. Avaa SPSS-ohjelma. Tarkoitus olisi muodostaa tämän sivun

Lisätiedot

SEM1, työpaja 2 (12.10.2011)

SEM1, työpaja 2 (12.10.2011) SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):

Lisätiedot

Aineistokoko ja voima-analyysi

Aineistokoko ja voima-analyysi TUTKIMUSOPAS Aineistokoko ja voima-analyysi Johdanto Aineisto- eli otoskoon arviointi ja tutkimuksen voima-analyysi ovat tilastollisen tutkimuksen suunnittelussa keskeisimpiä asioita. Otoskoon arvioinnilla

Lisätiedot

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat:

Tarkista vielä ennen analysoinnin aloittamista seuraavat seikat: Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,

Lisätiedot

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1 ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)

Lisätiedot

Vaikuttamisindeksi

Vaikuttamisindeksi Ohjeita viidensien mikroharjoitusten (vk 8) tekemiseksi omatoimisesti: 1. 2 7 12 17 27 32 Vaikuttamisindeksi Käynnistä Tixel-ohjelma työpöydän kuvakkeella, paina Enable Content, avaa ADD-INS, valitse Tixel8-valikosta

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KURSSIN SISÄLTÖ Johdanto Mittaaminen ja aineiston hankinta Mitta-asteikot Otanta Aineiston esittäminen ja data-analyysi Havaintomatriisi Yksiulotteisen

Lisätiedot

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT

JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos

Lisätiedot

(Jos et ollut mukana viime viikolla, niin kopioi myös SPSS-havaintoaineistotiedostot Yritys2 ja neljän kunnan tiedot.)

(Jos et ollut mukana viime viikolla, niin kopioi myös SPSS-havaintoaineistotiedostot Yritys2 ja neljän kunnan tiedot.) Tilastollinen tietojenkäsittely / SPSS Harjoitus 2 Kopioi (ÄLÄ SIIS AVAA TIEDOSTOJA VIELÄ!) U-palvelimen hakemiston STAT2100 SPSS kansiosta Aineistoja harjoituksiin 2 tiedosto loputkunnat (SPSS-havaintoaineisto)

Lisätiedot

Opinnäytetyön ja harjoitustöiden tekijöille

Opinnäytetyön ja harjoitustöiden tekijöille SPSS-OPAS Opinnäytetyön ja harjoitustöiden tekijöille Petri Kainulainen 15.5.2008 Iisalmen tulosalue Opas SISÄLTÖ 1 YLEISTÄ... 3 2 AINEISTON TALLENNUS... 3 3 MUUTTUJIEN MITTA-ASTEIKOT... 7 4 MUUTTUJIEN

Lisätiedot

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa

Lisätiedot

HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET

HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET OHJELMAN KÄYNNISTÄMINEN Käynnistääksesi ohjelman valitse All Programs > > IBM SPSS Statistics 2x, tai käynnistä ohjelma työpöydän kuvakkeesta.

Lisätiedot

Sukupuu -ohjelma. Ossi Väre (013759021) Joni Virtanen (013760641)

Sukupuu -ohjelma. Ossi Väre (013759021) Joni Virtanen (013760641) Sukupuu -ohjelma Ossi Väre (013759021) Joni Virtanen (013760641) 7.11.2011 1 Johdanto Toteutimme C -kielellä sukupuuohjelman, johon käyttäjä voi lisätä ja poistaa henkilöitä ja määrittää henkilöiden välisiä

Lisätiedot

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi

Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Muuttujien määrittely

Muuttujien määrittely Tarja Heikkilä Muuttujien määrittely Määrittele muuttujat SPSS-ohjelmaan lomakkeen kysymyksistä. Harjoitusta varten lomakkeeseen on muokattu kysymyksiä kahdesta opiskelijoiden tekemästä Joupiskan rinneravintolaa

Lisätiedot

SPSS* - tilastoanalyyttinen ohjelma

SPSS* - tilastoanalyyttinen ohjelma SPSS* - tilastoanalyyttinen ohjelma = monipuolinen ohjelma, jolla voi tilastollisesti analysoida tieteellistä aineistoa ja se tuottaa myös graafisia tulosteita. Käytettävissä mikroverkossa, versio 10.0,

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Aineistoihin tutustutaan mm. erilaisten

Lisätiedot

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä.

Ennen seuraavia tehtäviä tarkista, että KUNNAT-aineistossasi on 12 muuttujaa ja 416 tilastoyksikköä. Tilastollinen tietojenkäsittely / SPSS Harjoitus 3 Tällä harjoituskerralla tarkastellaan harjoituksissa 2 tehtyjä SPSS-havaintoaineistoja KUNNAT, kyselya ja kyselyb. Jos epäilet, että aineistosi eivät

Lisätiedot

Tilastolliset toiminnot

Tilastolliset toiminnot -59- Tilastolliset toiminnot 6.1 Aineiston esittäminen graafisesti Tilastollisen aineiston tallentamisvälineiksi TI-84 Plus tarjoaa erityiset listamuuttujat L1,, L6, jotka löytyvät 2nd -toimintoina vastaavilta

Lisätiedot

Määrällisen aineiston esittämistapoja. Aki Taanila

Määrällisen aineiston esittämistapoja. Aki Taanila Määrällisen aineiston esittämistapoja Aki Taanila 24.4.2017 1 Kategoriset muuttujat Lukumääriä Prosentteja (muista n-arvot) Pylväitä 2 Yhteenvetotaulukko (frekvenssitaulukko) TAULUKKO 1. Asunnon tyyppi

Lisätiedot

MASSER Loader V2.00. käyttö- ja asennusohje 5.5.2014

MASSER Loader V2.00. käyttö- ja asennusohje 5.5.2014 MASSER Loader V2.00 käyttö- ja asennusohje 5.5.2014 Masser Oy Tel. +358 400 904 500 BID No 0665142-9 Jämytie 1 Fax. +358 16 282 554 VAT No. FI06651429 FI-96910 Rovaniemi, Finland Domicile Rovaniemi OHJELMAN

Lisätiedot

I. Ristiintaulukointi Excelillä / Microsoft Office 2010

I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Savonia-ammattikorkeakoulu Liiketalous Kuopio Tutkimusmenetelmät Likitalo & Mäkelä I. Ristiintaulukointi Excelillä / Microsoft Office 2010 Tässä ohjeessa on mainittu ensi Excelin valinnan/komennon englanninkielinen

Lisätiedot

Tilastomenetelmien lopputyö

Tilastomenetelmien lopputyö Tarja Heikkilä Tilastomenetelmien lopputyö Lopputyössä on esimerkkejä erilaisista tilastomenetelmistä. Datatiedosto Harjoitusdata.sav on muokattu tätä harjoitusta varten, joten se ei vastaa kaikkien muuttujien

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 2) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 2) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 2005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6

ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 Sisällysluettelo ALKUSANAT 4 ALKUSANAT E-KIRJA VERSIOON 5 SISÄLLYSLUETTELO 6 1 PERUSASIOITA JA AINEISTON SYÖTTÖ 8 11 PERUSNÄKYMÄ 8 12 AINEISTON SYÖTTÖ VERSIOSSA 9 8 Muuttujan määrittely versiossa 9 11

Lisätiedot

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas

TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas KAKSIULOTTEISEN EMPIIRISEN JAKAUMAN TARKASTELU Jatkuvat muuttujat: hajontakuvio Koehenkilöiden pituus 75- ja 80-vuotiaana ID Pituus 75 Pituus 80 1 156

Lisätiedot

RACE-KEEPER COMPARO PC-OHJELMAN PIKAOHJE

RACE-KEEPER COMPARO PC-OHJELMAN PIKAOHJE RACE-KEEPER COMPARO PC-OHJELMAN PIKAOHJE SISÄLLYS 1 Mittausten (outing) avaus ja analysointi 2 HD videoiden teko 1 MITTAUSTEN AVAUS JA ANALYSOINTI Asenna Comparo PC-ohjelma ja käynnistä ohjelma pikakuvakkeesta.

Lisätiedot

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen

Lisätiedot

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33.

Til.yks. x y z 1 2 1 20.3 2 2 1 23.5 9 2 1 4.7 10 2 2 6.2 11 2 2 15.6 17 2 2 23.4 18 1 1 12.5 19 1 1 7.8 24 1 1 9.4 25 1 2 28.1 26 1 2-6.2 33 1 2 33. Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1

Estimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1 Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta

Lisätiedot

P2P (ALUSTA) RAPORTOINNIN OHJEET (ANALYTICS)

P2P (ALUSTA) RAPORTOINNIN OHJEET (ANALYTICS) Ostoreskontra P2P (Alusta) Raportointi Sivu 1 / 9 P2P (ALUSTA) RAPORTOINNIN OHJEET (ANALYTICS) Sisällys 1 Raporttien avaaminen... 2 2 Raportit... 2 2.1 Finanssiraporti\Maksuennuste... 5 1 Ostoreskontra

Lisätiedot

HARJOITUS 3: Asennetaan Windows Vista koneeseen Windows 7 Professional upgrade ohjelmisto (Windows 7 käyttöjärjestelmän asennus)

HARJOITUS 3: Asennetaan Windows Vista koneeseen Windows 7 Professional upgrade ohjelmisto (Windows 7 käyttöjärjestelmän asennus) HARJOITUS 3: Asennetaan Windows Vista koneeseen Windows 7 Professional upgrade ohjelmisto (Windows 7 käyttöjärjestelmän asennus) Microsoft Windows Vista Business Microsoft Winodows 7 Professional Upgrade

Lisätiedot

Käyttöohje. Energent MagiCAD plugin

Käyttöohje. Energent MagiCAD plugin Käyttöohje Energent MagiCAD plugin Sisältö 1. Yleistä 1 Dokumentin sisältö... 1 Ohjelman asennus... 1 Vaadittavat ohjelmistot... 1 Asennus... 1 Ohjelman käynnistys... 2 2. Toiminnallisuudet 3 Insert Energent

Lisätiedot

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli Group Statistics Luk1 Kirj1 Kielt1 Khuol1 Kirjall1 Ilmharj1 äyt1 Viest1 Sanaluokat1 Luk2 Kirj2

Lisätiedot

LABORAATIOSELOSTUSTEN OHJE H. Honkanen

LABORAATIOSELOSTUSTEN OHJE H. Honkanen LABORAATIOSELOSTUSTEN OHJE H. Honkanen Tämä ohje täydentää ja täsmentää osaltaan selostuskäytäntöä laboraatioiden osalta. Yleinen ohje työselostuksista löytyy intranetista, ohjeen on laatinut Eero Soininen

Lisätiedot

Aki Taanila TILASTOLLINEN PÄÄTTELY

Aki Taanila TILASTOLLINEN PÄÄTTELY Aki Taanila TILASTOLLINEN PÄÄTTELY 17.6.2010 SISÄLLYS 0 JOHDANTO... 1 1 TILASTOLLINEN PÄÄTTELY... 2 2 YHTÄ MUUTTUJAA KOSKEVA PÄÄTTELY... 7 2.1 Normaalijakautuneisuuden testaaminen... 7 2.2 Keskiarvon luottamusväli...

Lisätiedot

2 Eläinlistan kautta voidaan tallentaa tietoja kuolleille eläimille

2 Eläinlistan kautta voidaan tallentaa tietoja kuolleille eläimille Sisällys: Sisällys:... 1 WebLammas versio 1.0.8.3 korjaukset ja uudet ominaisuudet... 2 1 Eläin - välilehdelle tuodaan Tilan elossa olevat eläimet... 2 2 Eläinlistan kautta voidaan tallentaa tietoja kuolleille

Lisätiedot

Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi

Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Ihminen ja tekniikka seminaari Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 5 Seuraava etappi Datan keruu alkanut 9.2.2005 2.välinäyttönä palautetaan aineisto SPSS-tiedostona 14.2. palaute tiedostosta

Lisätiedot

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.

Tavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset. Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,

Lisätiedot

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS 1 Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS Tutkimuksen aineiston keräämisessä voidaan käyttää joko laadullista tai määrällistä tutkimusmenetelmää. Tutkimusmenetelmiä voidaan myös yhdistää,

Lisätiedot

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat:

Mat-2.104 Tilastollisen analyysin perusteet. Testit suhdeasteikollisille muuttujille. Avainsanat: Mat-.04 Tilastollise aalyysi perusteet / Ratkaisut Aiheet: Avaisaat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahde riippumattoma otokse t-testit, Nollahypoteesi, p-arvo, Päätössäätö, Testi,

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

Estimointi. Otantajakauma

Estimointi. Otantajakauma Otantajakauma Otantajakauma kuvaa jonkin parametrin arvojen (esim. keskiarvon) jakauman kaikille tietyn kokoisille otoksille. jotka perusjoukosta voidaan muodostaa Histogrammissa otantajakauman parametrin

Lisätiedot

CEM DT-3353 Pihtimittari

CEM DT-3353 Pihtimittari CEM DT-3353 Pihtimittari Sivu 1/5 CEM DT-3353 Pihtimittari Ongelma Mittarin ohjelmisto ilmoittaa NO DATA vaikka tiedonsiirtokaapeli on kytketty tietokoneen ja mittarin välille, mittarissa on virta päällä

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Aki Taanila. PASW Statistics 18

Aki Taanila. PASW Statistics 18 Aki Taanila PASW Statistics 18 10.10.2010 SISÄLLYS 0 JOHDANTO... 1 1 AINEISTO... 3 1.1 Excel tai teksti -muotoisen aineiston avaaminen... 3 1.2 Muuttujien määrittelyt... 3 1.3 Aineiston syöttäminen...

Lisätiedot

Kansionäkymä listasta suuriin kuvakkeisiin

Kansionäkymä listasta suuriin kuvakkeisiin Sirpa Leinonen Kansionäkymä listasta suuriin kuvakkeisiin Riippuen koneen Windows versiosta hieman eroja miten näkymä valitaan 1. Tiedosto 2. Näytä välilehdellä valinta kansio näkymlle Suurimmat tai suuret

Lisätiedot

Kuksa -jäsenrekisterin käyttöohje ryhmänjohtajille

Kuksa -jäsenrekisterin käyttöohje ryhmänjohtajille Kuksa -jäsenrekisterin käyttöohje ryhmänjohtajille Mistä löydän ryhmäni tiedot? 1) Valitse ylävalikosta Ryhmät. Hakukentän alla näet ryhmiesi tiedot. Klikkaamalla ryhmän nimeä pääset ryhmän tietoihin.

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

4 Riippuvuus 1. Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta

4 Riippuvuus 1. Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta 4 Riippuvuus 1 Esimerkki 4. Korrelaation laskeminen SPSS-ohjelmalla rajatusta aineistosta x 2 = sisaruksien luku- Tarkastellaan äidin ja lapsen pituuden välistä riippuvuutta havaintomatriisilla, joka on

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

DATALOGGERI DT-171 PIKAKÄYTTÖOHJE V 1.2

DATALOGGERI DT-171 PIKAKÄYTTÖOHJE V 1.2 DATALOGGERI DT-171 PIKAKÄYTTÖOHJE V 1.2 S&A Matintupa 2007 Ohjelman käynnistys Ohjelma käynnistyy tuplaklikkaamalla DATALOGGER ohjelmakuvaketta. Ohjelma avautuu tuplaklikkaamalla Datalogger kuvaketta.

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016

Lisätiedot

Webropol-kyselyt. Tarja Heikkilä

Webropol-kyselyt. Tarja Heikkilä Webropol-kyselyt Tarja Heikkilä Internet-kyselyt Soveltuvat kyselyihin, joissa kaikilla perusjoukon jäsenillä on mahdollisuus internetin käyttöön, toisin sanoen on mahdollisuus edustavan aineiston saamiseen.

Lisätiedot

Til.yks. x y z

Til.yks. x y z Tehtävien ratkaisuja. a) Tilastoyksiköitä ovat työntekijät: Vatanen, Virtanen, Virtanen ja Voutilainen; muuttujina: ikä, asema, palkka, lasten lkm (ja nimikin voidaan tulkita muuttujaksi, jos niin halutaan)

Lisätiedot

MONISTE 2 Kirjoittanut Elina Katainen

MONISTE 2 Kirjoittanut Elina Katainen MONISTE 2 Kirjoittanut Elina Katainen TILASTOLLISTEN MUUTTUJIEN TYYPIT 1 Mitta-asteikot Tilastolliset muuttujat voidaan jakaa kahteen päätyyppiin: kategorisiin ja numeerisiin muuttujiin. Tämän lisäksi

Lisätiedot

OTTELUN TILASTOINTI NUORTEN VALTAKUNNALLISET SARJAT

OTTELUN TILASTOINTI NUORTEN VALTAKUNNALLISET SARJAT OTTELUN TILASTOINTI NUORTEN VALTAKUNNALLISET SARJAT OTTELUN ALOITTAMINEN - TILASTON LOG-TIEDOSTON HAKEMINEN BASKETHOTELLISTA (tilasto ei livenä) Kirjaudu joukkueen yhteyshenkilön tunnuksilla baskethotelliin.

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,

Lisätiedot

Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla

Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla 1 Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla Raija Leppälä Opetusmoniste B 53 3. uudistettu painos Matematiikan, tilastotieteen ja filosofian laitos Toukokuu

Lisätiedot

Raija Leppälä. Ohjeita tilastollisen tutkimuksen toteuttamiseksi IBM SPSS Statistics -ohjelmiston avulla

Raija Leppälä. Ohjeita tilastollisen tutkimuksen toteuttamiseksi IBM SPSS Statistics -ohjelmiston avulla Raija Leppälä Ohjeita tilastollisen tutkimuksen toteuttamiseksi IBM SPSS Statistics -ohjelmiston avulla TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 55/2017 TAMPERE 2017 TAMPEREEN YLIOPISTO

Lisätiedot

Text Mining. Käyttöopas

Text Mining. Käyttöopas Text Mining Käyttöopas Webropol Analytics: Text Mining Mitä tarkoittaa kun asiakkaat tai henkilöstö antavat arvosanan 3.1 Keskiarvoa informatiivisempaa ovat taustalla olevat syyt Onko sinulla aikaa lukea

Lisätiedot