Mittausepävarmuuden arviointi mikrobiologisissa viljelymenetelmissä. 1. Tilastollisesti riippumattomien epävarmuuskomponenttien yhdistäminen

Koko: px
Aloita esitys sivulta:

Download "Mittausepävarmuuden arviointi mikrobiologisissa viljelymenetelmissä. 1. Tilastollisesti riippumattomien epävarmuuskomponenttien yhdistäminen"

Transkriptio

1 1 Seppo Niemelä, Mittasepävarmden arviointi mikrobiologisissa viljelymenetelmissä 1. Tilastollisesti riippmattomien epävarmskomponenttien yhdistäminen Olkoon mitatt kahden riippmattoman lähtösreen A ja B arvot sekä arvioit niiden mittasepävarmdet A ja B (keskihajonnat). A:sta ja B:stä johdettjen sien mttjien (A+B), (A-B), AB ja A/B yhdistetyt epävarmdet vektorismman periaatteella laskien ovat: Smmamttjan (A+B) standardiepävarms + = + ( ) Erotsmttjan (A-B) standardiepävarms = + ( ) Tlomttjan (AB) standardiepävarms AB A B = AB + A B Osamäärämttjan (A/B) standardiepävarms ( A/ B) A A B = + B A B Motoa ( x /x) 2 olevat lasekkeet kaavoissa ovat ns. shteellisia variansseja. Niiden neliöjret ( x /x) ovat shteellisia standardiepävarmksia (shteellisia keskihajontoja). Koska ne ovat tlo- ja osamäärämotoisten lasekkeiden (kts. s. 3) yhdistetyn epävarmden laskemisessa keskeisiä, ja mikrobiologiassa tavallisin tapas, on käytännöllistä merkitä niitä yhdellä kirjainsymbolilla. Otetaan käyttöön merkintä shteellinen mittasepävarms ( x /x)= w x. Se ilmaistaan joko prosentteina tai desimaalilkna ja on mikrobiologiassa kaikkein käytännöllisin mittasepävarmden ilmaistapa. Kahdesta jälkimmäisestä kaavasta saadaan tämän seraksena w w w AB = = + ( AB) ( AB)

2 2 w w ( A/ B ) = + ( A/ B) 2. Laimennskertoimen epävarms Yhden vaiheen laimennskerroin lasketaan kaavasta ( a + b) f =, missä a a= siirroksen tilavs b= laimennsneste-erän tilavs Kaavan osoittajan ja nimittäjän epävarmdet ovat korreloitneita (sama a). Korrelaation takia laimennskertoimen standardiepävarms lasketaan kaavasta 1 w = + b w ( a+ b) 2 f b a b = laimennslioksen standardiepävarms (ml) w a = siirroksen shteellinen standardiepävarms On helpottavaa tietää, että kertoimen f=10 tapaksessa on seimmiten aivan riittävää olettaa, että w f = w a Esimerkki 1. Olkoon a= 1 ml ja b= 9 ml ja mittasten shteelliset standardiepävarmdet samassa järjestyksessä 2% ja 1% Näinollen w a = 0,02 (2%) ja w b = 0,01 (1%) Laskkaavassa tarvitaan b:n absolttista keskihajontaa eli b = 0,01x9ml= 0,09 ml. Täydellisestä kaavasta saadaan 1 1 w f = + = + = ,09 9 0,02 0,0081 0,0324 0,0201 Likimääräisolets: w f = w a = 0,02 pitää tässä tapaksessa hyvin paikkansa. Kokonaislaimennskerroin on yksittäisten laimennskertoimien tlo, joten k kpl laimennsvaiheita sisältävän sarjan kokonaiskerroin F = f... 1 f2 fk Sen shteellinen standardiepävarms on tlon motoisesta lasekkeesta johten yksittäisten kertoimien shteellisten standardiepävarmksien vektorismma (neliösmman neliöjri).

3 3 2 wf = wf + w... 1 f + + w 2 fk 3. Mikrobiologisten viljelymenetelmien yhdistetty mittasepävarms Koetloksen yhdistetyn mittasepävarmden koostaminen edellyttää koetloksen laskkaavan kirjoittamista näkyviin. Siitä nähdään, minkä mittasten yhdistelmä koetlos on ja millä tavalla osat shtatvat matemaattisesti toisiinsa. Mikrobiologian klassisten standardimenetelmien koetloksen laskkaava on kaikille menetelmille yhteinen ja voidaan esittää modossa y = VF v V= standarditilavs (vesihygieniassa yleensä 100 ml tai 1 ml) F= laimennskerroin (laimennksen monikerta, esim ) v= viljellyn koeannoksen tilavs (ml) = koeannoksesta laskett pesäkelkmäärä Osamäärä /v on tlkittavissa päätesspension mikrobipitoisden (kpl/ml) arvioksi. MPN-menetelmissä talkoiden tai tietokoneohjelmien tlos on yleensä annett soraan standarditilavtta (esim. 100 ml) kohti, joten kaava on yksinkertaisesti y = F MPN Molemmissa kaavoissa mttjat ovat tlon/osamäärän motoisessa shteessa toisiinsa, joten koetlosten yhdistetty (koostett) epävarms edellyttää vain tlo- ja osamäärämttjien epävarmden kaavoja (kts. s. 1). Poikkeksen modostaa laimennskertoimen epävarms, koska jokainen laimennsvaihe merkitsee kahden nestetilavden (siirros ja laimennslios) yhdistämistä. Laimennskertoimen laskkaava sisältää myös yhteenlaska (vrt. s. 2) Korjaskertoimet Toisin kin fysiikassa ja kemiassa, mikrobiologisissa mittaksissa ei ole tottt korjastermien ja kertoimien käyttöön. Tosin laimennskerroin on tlkittavissa tyypilliseksi korjaskertoimeksi, jonka avlla persmittaksen (pesäkkeiden laskennan) tlos korjataan vastaamaan näytteen pitoisstasoa. Aivan vastaavasti voitaisiin ajatella erilaisia kasvalstan viljavdesta, näytteen säilytyksen aikaisista menetyksistä, tilavsmittasten systemaattisista virheistä, viljelymenetelmän aihettamasta stressistä, väärien positiivisten tlosten osdesta tai henkilökohtaisesta työtavasta johtvia korjaksia. Kaikki mikrobiologisten menetelmien korjakset olisivat lonteeltaan tlon tekijöitä, joilla koetlokset pitäisi kertoa. Jokaisella kertoimella olisi oma mittasepävarmtensa, joka toisi tällöin lisänsä koetloksen yhdistettyyn mittasepävarmteen.

4 4 Oletetaan täydellisesti korjatt koetlos, jonka laskemisessa tarvitaan n kpl erilaisia korjaskertoimia. y = k... 1 k2 kn V F v Tlon motoisesta lasekkeesta johten koetloksen yhdistetty shteellinen epävarms w c arvioitaisiin kaavalla w = w + w w + w + w + w n c k1 k2 k F v Kaavassa ei esiinny standarditilavden (V) epävarmtta, koska standarditilavs on valitt vakio, eikä sen arvoon liity mitään epävarmtta. Myöskin on phtaasti valinnainen asia sisällytetäänkö laboratorionäytteen tai kenttäkohteen epähomogeeniss epävarmskomponenttien jokkoon. Korjaskertoimien ja midenkin tekijöiden epävarmden arvojen löytämisessä käytetään monia keinoja omakohtaisista kalibrointimittaksista ja kenttähavainnoista tilastolliseen teoriaan, kirjallisstietoihin ja valistneeseen arvakseen saakka. Laskesimerkit valaisevat asiaa. Esimerkki 2. Kalvosodatsmenetelmää käyttäen on viljelty soraan vesinäytteestä 10 ml koeannos. Koeannoksen mittaamiseen käytettiin 10 ml mittapipettiä. Inkboinnin jälkeen laborantti laski kalvolta 42 kohdeorganismin pesäkkeiksi olettamaansa pesäkettä. Alstava (varmistamaton) koetlos pyydetään ilmoittamaan 100 ml kohti ja varstamaan epävarmsarviolla. Epävarmden laskemisessa vähimmäisvaatims on ottaa homioon koeannoksen tilavsmittaksen epävarms ja havaittn pesäkemäärään liittyvä epävarms. Oletetaan, että kyseisessä laboratoriossa on tehty kerran persteellinen 10 ml:n mittapipettien tarkists pnnitsemalla. Tilavden keskiarvoksi saatiin 9,7 ml ja shteellisen keskihajonnan (shteellisen standardiepävarmden) arvoksi 0,5%. Koska laimennsta ei tarvitt, koetloksen laskkaava on y= V/v V= 100 ml = 42 v= 9,7 ml

5 5 Koetlos y = 100x42/9,7= 433/100 ml (pyöristetään vasta lopptlosta ilmoitettaessa). Maljan ilmoitett pesäkelkmäärä 42 saattaa olla epävarma siitä syystä, että se perst silmämäärin tehtyyn laskentaan, johon liittyy myöskin tlkintaa. Jos oletetaan, että laboratoriolla ei ole mitään käsitystä kysymyksessä olevan laborantin tlosten lkemisepävarmdesta, voidaan joko olettaa lk 42 absolttisen varmaksi tai käyttää mta katta (esim. kirjalliss) saata tietoa laskemiseen liittyvästä epävarmdesta. Se on selvissä tapaksissa (esim. phdasviljelmäpesäkkeet) yleensä 1-2%. Merkitään tässä esimerkin voksi tloksen shteellista lkemaepävarmtta w T :llä ja oletetaan sen arvoksi 2% (0,02). Koetlokseksi ei yleensä riitä koeannoksen pesäkelkmäärä, vaan vesinäytteen mikrobipitoiss. Niin tässäkin tapaksessa. Vaikka koetlos ei siitä mt, niin silloin mkaan tlee si merkittävä epävarmskomponentti: hikkastilastollinen hajonta. Koeannokseen sattva todellinen mikrobimäärä näet vaihtelee satnnaisesti, niin että se olisi sattmalta voint olla paljonkin 42:sta poikkeava jossakin toisessa pipetillisessä. Tästä vaihtelsta johtvaa epävarmtta voidaan arvioida tilastollisen teorian ja kokemksen persteella. Täysin onnistneesti sekoitetissa näytteissä vaihtel nodattaa Poisson-jakamaa siten, että pesäkelkmäärän () shteellinen varianssi on 1/. Todellisdessa :n paikalla pitäisi käyttää jakaman oikeaa keskiarvoa. Se ei kitenkaan ole tiedossa. Ainoa sitä koskeva tieto on kokeessa havaitt pesäkemäärä 42. Tässä kokeessa shteelliset epävarmskomponentit olivat siis: Koeannoksen tilavden sht. epävarms w v = 0,005 Tloksen sht. lkemaepävarms w T = 0,02 1 Shteellinen hikkastilastollinen hajonta w = = 0, Yhdistetty shteellinen epävarms on 2 1 wc = w + wt + wv = + 0, , 005 = 0, , , 0000 = 0, Yhdistetty epävarms on siis 0,156 eli 15,6%. Se määräytyy melkein yksinomaan hikkastilastollisesta hajonnasta, joka jo yksin on srdeltaan 0,154. Milla epävarmskomponenteilla ei tässä tapaksessa ollt merkittävää vaiktsta. Koetlos ja sen epävarms voitaisiin ilmaista esimerkiksi seraavasti Näytteen alstava mikrobipitoiss oli 430/100 ml ja koetloksen shteellinen mittasepävarms 15,6%.

Seppo I. Niemelä: Mikrobiologian kvantatiivisten

Seppo I. Niemelä: Mikrobiologian kvantatiivisten Jlkais J1/001 MITTATEKNIIKAN KESKUS Jlkais J1/001 MIKROBIOLOGIAN KVANTITATIIVISTEN VILJELYMÄÄRITYSTEN MITTAUSEPÄVARMUUS Seppo I. Niemelä KEMIAN JAOSTO Mikrobiologian työryhmä Helsinki 001 ALKUSANAT Mikrobiologisten

Lisätiedot

KEMI-TORNION AMMATTIKORKEAKOULU. Tutkimus laboratoriomittausten mittausepävarmuudesta kahdessa testausympäristössä

KEMI-TORNION AMMATTIKORKEAKOULU. Tutkimus laboratoriomittausten mittausepävarmuudesta kahdessa testausympäristössä KEMI-TORNION AMMATTIKORKEAKOULU Ttkims laoratoriomittasten mittasepävarmdesta kahdessa testasympäristössä Riikka Vaara Teknologiaosaamisen johtamisen koltsohjelman opinnäytetyö Knnossapito Insinööri(YAMK)

Lisätiedot

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016

763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016 7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaist 5 Kevät 26. Aberraatio shteellissteoriassa a) Tlkoon valo kten tehtävän kvassa (x, y)-tason x, y > neljänneksestä: x ˆx + y ŷ c cos θ ˆx c sin θ ŷ. () Lorenz

Lisätiedot

4. Derivointi useammassa ulottuvuudessa

4. Derivointi useammassa ulottuvuudessa 6 VEKTORIANALYYSI Lento 3 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f f ( r) f ( x, y, z) on kolmen mttjan fnktio, jonka arvo yleensä mtt,

Lisätiedot

= + + = 4. Derivointi useammassa ulottuvuudessa

= + + = 4. Derivointi useammassa ulottuvuudessa 30 VEKTORIANALYYSI Lento 4 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f= f( r) = f( xyz,, ) on kolmen mttjan fnktio, jonka arvo yleensä mtt,

Lisätiedot

Päijät-Hämeen ja Mäntsälän museoiden työryhmän kokous SOPENKORVEN KOKOELMAKESKUS

Päijät-Hämeen ja Mäntsälän museoiden työryhmän kokous SOPENKORVEN KOKOELMAKESKUS Päijät-Hämeen ja Mäntsälän mseoiden työryhmän kokos 10.4.2019 SOPENKORVEN KOKOELMAKESKUS Asialista 10.4.2019 1. Kokoelmaohjelmien kokoelmien historiaa, kehitystä ja nykytilaa koskevan osden lyhyt käsittely,

Lisätiedot

Kasvupaikka ja boniteetti metsätalouden suunnittelussa

Kasvupaikka ja boniteetti metsätalouden suunnittelussa Kasvpaikka ja boniteetti metsätaloden snnittelssa Viljelymetsien kasv ja totos seminaari 31.10.2018 Risto Ojans 1 Snnittel perst ennstamisen Toimintaympäristön mtokset Ptavaran kysyntä (määrä, laat) Hinnat

Lisätiedot

Mikrobiologisten tulosten laskeminen

Mikrobiologisten tulosten laskeminen Vastuuhenkilö Tuula Johansson Sivu/sivut 1 / 6 1 Pesäkkeiden laskeminen maljoilta 1.1 Yleistä Pesäkkeitä laskettaessa tarvittaessa apuna käytetään suurennuslasilla varustettua pesäkelaskijaa. Siihen kuuluu

Lisätiedot

MIKROTEORIA, HARJOITUS 3 KYSYNTÄ YLI AJAN JA EPÄVARMUUDEN VALLITESSA, OSTAJANA JA MYYJÄNÄ, SEKÄ TYÖN TARJONTA

MIKROTEORIA, HARJOITUS 3 KYSYNTÄ YLI AJAN JA EPÄVARMUUDEN VALLITESSA, OSTAJANA JA MYYJÄNÄ, SEKÄ TYÖN TARJONTA MIKROTEORI, HRJOITUS 3 KYSYNTÄ YLI JN J EPÄVRMUUEN VLLITESS, OSTJN J MYYJÄNÄ, SEKÄ TYÖN TRJONT Voistojen eistämässä kylässä kasvatetaan ainoana elinkeinona vehnää Sadot vaihtelevat vosittain, siten, että

Lisätiedot

Turvallista koulumatkaa!

Turvallista koulumatkaa! Trvallista kolmatkaa! Kolkljetkset hallinto-oikeden näköklmasta Lonais-Somen alehallintovirasto 23.5.2017 Hallinto-oikestomari Hannele Sarell ja hallinto-oikestomari Marja Peltoniemi Trn hallinto-oikes

Lisätiedot

Päijät-Hämeen ja Mäntsälän museoiden työryhmän kokous MUSEOKIOSKI

Päijät-Hämeen ja Mäntsälän museoiden työryhmän kokous MUSEOKIOSKI Päijät-Hämeen ja Mäntsälän mseoiden työryhmän kokos 8.4.2019 MUSEOKIOSKI Asialista 8.4.2019 1. Kokoelmaohjelmien kokoelmien historiaa, kehitystä ja nykytilaa koskevan osden lyhyt käsittely, mikäli tässä

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu

Rahoitusriskit ja johdannaiset Matti Estola. luento 10 Binomipuut ja optioiden hinnoittelu Rahoitsriskit ja johdannaiset Matti Estola lento 1 Binomipt ja optioiden hinnoittel 1. Optiohintojen mallintaminen Esimerkki. Oletetaan, että osakkeen spot -krssi on $ ja spot -krssilla 3 kk:n kltta on

Lisätiedot

Mittausepävarmuuden laskeminen ISO mukaisesti. Esimerkki: Campylobacter

Mittausepävarmuuden laskeminen ISO mukaisesti. Esimerkki: Campylobacter Mittausepävarmuuden laskeminen ISO 19036 mukaisesti. Esimerkki: Campylobacter Marjaana Hakkinen Erikoistutkija, Elintarvike- ja rehumikrobiologia Mikrobiologisten tutkimusten mittausepävarmuus 18.3.2019

Lisätiedot

OULUN YLIOPISTO Konetekniikan osasto 460071A Autojen ja työkoneiden rakennejärjestelmät I 5 op Mauri Haataja. 1. Pyöräajoneuvojen ominaisohjaus

OULUN YLIOPISTO Konetekniikan osasto 460071A Autojen ja työkoneiden rakennejärjestelmät I 5 op Mauri Haataja. 1. Pyöräajoneuvojen ominaisohjaus OUUN YIOPISTO Konetekniikan osasto 467A Atojen ja työkoneiden rakennejärjestelmät I 5 op Mari Haataja. Pyöräajonevojen ominaisohjas. Henkilöatojen pyöräntenta Hyötyajonevojen ajo-ominaisksiin vaikttavat

Lisätiedot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot

Lukujonon raja-arvo 1/7 Sisältö ESITIEDOT: lukujonot Lukujonon raja-arvo 1/7 Sisältö Esimerkki lukujonon raja-arvosta Lukujonossa a 1,a 2,a 3,... (jossa on äärettömän monta termiä) voivat luvut lähestyä jotakin arvoa, kun jonossa edetään yhä pidemmälle.

Lisätiedot

4. Taajuusalueen suodatus 4.1. Taustaa. 4.2. Perusteita

4. Taajuusalueen suodatus 4.1. Taustaa. 4.2. Perusteita 4. Taajsaleen sodats 4.. Tastaa Forier esitti. 87 idean että laskien yhteen jaksollisia painotettja fnktioita oidaan esittää kinka tahansa monimtkainen jaksollinen fnktio. Ka 4.. esittää tällaista. Jaksolliset

Lisätiedot

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen

Oletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä

Lisätiedot

Helsingin hengessä sopua ja sovittelua työyhteisön arkeen

Helsingin hengessä sopua ja sovittelua työyhteisön arkeen Helsingin hengessä sopa ja sovittela työyhteisön arkeen Helsingin kapngin toimintaohje ristiriitojen rakentavaan käsittelyyn ja sovitteln Tässä oppaassa määritellään, mitä ovat epäasiallinen kohtel ja

Lisätiedot

Identifiointiprosessi

Identifiointiprosessi Identifiointiprosessi Koesnnittel, identifiointikoe Mittastlosten / datan esikäsittely Ei-parametriset menetelmät: - transientti-, korrelaatio-, taajs-, Forier- ja spektraalianalyysi => askel-, implssi-

Lisätiedot

Optioiden hinnoittelu binomihilassa

Optioiden hinnoittelu binomihilassa Mat-2.3114 Investointiteoria Optioien hinnoittel binomihilassa 26.3.2015 Yksiperioiset optiot 1/3 Olkoon S kohe-eten arvo perioin alssa siten, että perioin päättyessä sen arvo on S toennäköisyyellä p tai

Lisätiedot

Tesomajärven koulusta Tesoman kouluksi

Tesomajärven koulusta Tesoman kouluksi Tesomajärven kolsta Tesoman kolksi Tesomajärven kol aloitti toimintansa v.1967 Kola käytiin kahdessa vorossa, parhaimmillaan kola kävi yli 1000 oppilasta Tesomajärven alakoln liitettiin myöhemmin Ikrin

Lisätiedot

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017 MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden

Lisätiedot

Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon

Σ on numeroituvasti ääretön. Todistus. Muodostetaan bijektio f : N Σ seuraavasti. Olkoon 17 Nmeroitat ja linmeroitat jokot Määritelmä 110 Jokko X on nmeroitasti ääretön, jos on olemassa bijektio f : N X Jokko on nmeroita, jos se on äärellinen tai nmeroitasti ääretön Jokko, joka ei ole nmeroita

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on 763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla

Lisätiedot

Käyttöarvon kvantitatiivisesta mittaamisesta. Tommi Höynälänmaa 19. marraskuuta 2012

Käyttöarvon kvantitatiivisesta mittaamisesta. Tommi Höynälänmaa 19. marraskuuta 2012 Käyttöarvon kvantitatiivisesta mittaamisesta Tommi Höynälänmaa 19. marraskta 2012 1 1 Yleistä Ajan t mittainen henkilötyöaika keskimääräistyötä (tehokkdeltaan keskimääräistä työtä) saa tavarantotannossa

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

Shakkilinna

Shakkilinna k Shakkilinna www.shakkilinna.fi info@shakkilinna.fi Kningatar on shakkipelin liikkvin nappla. Se liikk kin tornin ja lähen yhdistelmä. Siis jokaiseen sntaan, ja niin pitkälle kin mahdollista. eitä katselee,

Lisätiedot

Otoskoko 107 kpl. a) 27 b) 2654

Otoskoko 107 kpl. a) 27 b) 2654 1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää

Lisätiedot

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan

Lisätiedot

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y.

S uay uvaxy uv 2 Ax 2 y... uv i Ax i y uv i wx i y. 3.8 Yhtedettömien kielten rajoitksista Yhtedettömille kielille on oimassa säännöllisten kielten pmppaslemman astine. Nt kitenkin merkkijonoa on pmpattaa samanaikaisesti kahdesta paikasta. Lemma 3.9 ( -lemma

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

10. Optiohinnoittelu binomihilassa

10. Optiohinnoittelu binomihilassa 10. Optiohinnoittel binomihilassa 1. Sijoitskohteien hintaprosessit Moniperioisten investointitehtävien tarkastel eellyttää sijoitskohteien hintojen kehittymisen mallintamista joko iskreetteinä tai jatkvina

Lisätiedot

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P

r = r f + r M r f (Todistus kirjassa sivulla 177 tai luennon 6 kalvoissa sivulla 6.) yhtälöön saadaan ns. CAPM:n hinnoittelun peruskaava Q P Markkinaportfolio on koostuu kaikista markkinoilla olevista riskipitoisista sijoituskohteista siten, että sijoituskohteiden osuudet (so. painot) markkinaportfoliossa vastaavat kohteiden markkina-arvojen

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely

T Luonnollisten kielten tilastollinen käsittely T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 3, ti 11.2.2003, 16:15-18:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:

Lisätiedot

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.

r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit. A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät

Lisätiedot

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4 DEE- Lineaariset järjestelmät Harjoits 8, rataisehdotset Tämän harjoitsen ideana on opetella -mnnosen ättöä differenssihtälöiden rataisemisessa. Lisäsi ätetään -mnnosen ehäpä hödllisintä ominaistta, eli

Lisätiedot

Biokasvu Oy. Maatalouden ja teollisuuden sivutuotteiden jatkojalostus ja uusiokäyttö kestävän kehityksen ehdoin

Biokasvu Oy. Maatalouden ja teollisuuden sivutuotteiden jatkojalostus ja uusiokäyttö kestävän kehityksen ehdoin Biokasv Oy Toiminta-ajats: Maataloden ja teollisden sivtotteiden jatkojalosts ja siokäyttö kestävän kehityksen ehdoin 1 Biokasv Oy Totekehitykseen voimakkaasti panostava, laaja-alaisen kokemksen omaava

Lisätiedot

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen

ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI. Mikko Kylliäinen ASUINKERROSTALON ÄÄNITEKNISEN LAADUN ARVIOINTI Mikko Kylliäinen Insinööritoimisto Heikki Helimäki Oy Dagmarinkatu 8 B 18, 00100 Helsinki kylliainen@kotiposti.net 1 JOHDANTO Suomen rakentamismääräyskokoelman

Lisätiedot

TOIMEKSIANTOSOPIMUS. 1. Sopijapuolet. 2. Yhteyshenkilöt. 3. Sopimuksen tausta ja tavoitteet. Osoite: Kasurilantie 1, PL 5, 71801, Siilinjärvi

TOIMEKSIANTOSOPIMUS. 1. Sopijapuolet. 2. Yhteyshenkilöt. 3. Sopimuksen tausta ja tavoitteet. Osoite: Kasurilantie 1, PL 5, 71801, Siilinjärvi TOIMEKSIANTOSOPIMUS 1. Sopijapolet Toimeksiantaja: Siilinjärven knta (Jäljempänä Asiakas ) Osoite: Kasrilantie 1, PL 5, 71801, Siilinjärvi Y-tnns: 0172718-0 Toimeksiannon saaja: Vaktsmeklari Novm Oy (Jäljempänä

Lisätiedot

Tesomajärven koulusta Tesoman kouluksi

Tesomajärven koulusta Tesoman kouluksi Tesomajärven kolsta Tesoman kolksi Tesomajärven kol aloitti toimintansa v.1967 Kola käytiin kahdessa vorossa, parhaimmillaan kola kävi yli 1000 oppilasta Tesomajärven alakoln on liitetty myöhemmin Ikrin

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1

T Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti , 8:30-10:00 Kollokaatiot, Versio 1.1 T-61.281 Luonnollisen kielen tilastollinen käsittely Vastaukset 3, ti 10.2.2004, 8:30-10:00 Kollokaatiot, Versio 1.1 1. Lasketaan ensin tulokset sanaparille valkoinen, talo käsin: Frekvenssimenetelmä:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

Mittaustulosten tilastollinen käsittely

Mittaustulosten tilastollinen käsittely Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot

Järkeä ja logiikkaa maahanmuuttokeskusteluun. Panu Raatikainen Tampereen yliopisto

Järkeä ja logiikkaa maahanmuuttokeskusteluun. Panu Raatikainen Tampereen yliopisto Järkeä ja logiikkaa maahanmttokesksteln Pan Raatikainen Tampereen yliopisto Johdanto Yhteisknnallisessa keskstelssa erilaiset kannat kilpailevat Kaikki mielipiteet eivät ole samanarvoisia Voidaan kysyä,

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q

Tasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,

Lisätiedot

SAT-ongelman rajoitetut muodot

SAT-ongelman rajoitetut muodot SAT-ongelman rajoitetut muodot olemme juuri osoittaneet että SAT on NP-täydellinen perusidea on nyt osoittaa joukolle kiinnostavia ongelmia A NP että SAT p m A, jolloin kyseiset A myös ovat NP-täydellisiä

Lisätiedot

Uraohjaukseen tarvitaan oikea-aikaisuutta ja monikanavaisuutta

Uraohjaukseen tarvitaan oikea-aikaisuutta ja monikanavaisuutta Uraohjas2020-hanke, Uraohjasta kartoittaneen kyselyn tlokset Joona Tarja, Mäkelä Pentti ja Venhovaara Pirjo Uraohjakseen tarvitaan oikea-aikaistta ja monikanavaistta Keväällä 2018 kysyimme ammatillista

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

Tehtävät 1/10. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)

Tehtävät 1/10. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin) 1/10 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Tehtävien

Lisätiedot

Mittausepävarmuuden laskeminen

Mittausepävarmuuden laskeminen Mittausepävarmuuden laskeminen Mittausepävarmuuden laskemisesta on useita standardeja ja suosituksia Yleisimmin hyväksytty on International Organization for Standardization (ISO): Guide to the epression

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4

Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...

Lisätiedot

Hoitoketjut sotealueella. Jukka Mattila Johtajaylilääkäri Lapin sairaanhoitopiiri

Hoitoketjut sotealueella. Jukka Mattila Johtajaylilääkäri Lapin sairaanhoitopiiri Hoitoketjt sotealeella Jkka Mattila Johtajaylilääkäri Lapin sairaanhoitopiiri 23.11.2017 Valinnanvapaslakilonnos Lasntokierroksella 15.12.2017 asti 4 Asiakkaan oikes valita Asiakkaalla on oikes valita

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

havainnollistus, muokkaus ja viimeistely

havainnollistus, muokkaus ja viimeistely Tekstin havainnollists, mokkas ja viimeistely Lettavs ja merkintätavat Tiina Airaksinen Kappaleiden jäsentäminen Kappale = asiakokonaiss Testi: Pystytkö keksimään otsikon? Ei yhden virkkeen / yhden sivn

Lisätiedot

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden 1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

Maanjäristyksen kestävien kytkentäkotelotelineiden suunnittelu

Maanjäristyksen kestävien kytkentäkotelotelineiden suunnittelu Lari Nosiainen Maanjäristyksen kestävien kytkentäkotelotelineiden snnittel Metropolia Ammattikorkeakol Insinööri (AMK) Kone- ja totantotekniikka Insinöörityö 3.4.14 Tiivistelmä Tekijä Otsikko Sivmäärä

Lisätiedot

Muutokset matematiikan opetuksessa

Muutokset matematiikan opetuksessa Muutokset matematiikan opetuksessa Digitaalisten aineistojen pedagoginen hyödyntäminen matematiikassa, fysiikassa ja kemiassa Avauskeskustelu Päivän ohjelma ja esittely Päivä 1: Digitaaliset aineistot

Lisätiedot

S SÄHKÖTEKNIIKKA

S SÄHKÖTEKNIIKKA S55.103 SÄHKÖTEKNIIKK. välikoe 7.4.1998 Kimmo Silvonen 1. Kva esittää yhdellä diodilla hätäratkaisna tehtyä kokoaaltotasasntaajaa. Sen toiminta ei tietenkään ole kovin ideaalista. Laske diodin ominaiskäyrän

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

corporate governance Tämä on lyhennetty versio Cinia-konsernin laajemmasta, sisäisestä ohjeistuksesta

corporate governance Tämä on lyhennetty versio Cinia-konsernin laajemmasta, sisäisestä ohjeistuksesta corporate governance Tämä on lyhennetty versio Cinia-konsernin laajemmasta, sisäisestä ohjeistksesta 1 1.1 Omistajarakenne Cinia Oy:n omistajarakenne koost Somen valtiosta (liikenne- ja viestintäministeriö)

Lisätiedot

k S P[ X µ kσ] 1 k 2.

k S P[ X µ kσ] 1 k 2. HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu

x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu 2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)

Lisätiedot

Lohkoasetelmat. Vilkkumaa / Kuusinen 1

Lohkoasetelmat. Vilkkumaa / Kuusinen 1 Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

x = x x 2 + 2y + 3 y = x + 2y f 2 (x, y) = 0. f 2 f 1

x = x x 2 + 2y + 3 y = x + 2y f 2 (x, y) = 0. f 2 f 1 Matematiikan K/P syksy Laskharjoits 9 Mallivastakset Tehtävän differentiaaliyhtälösysteemi: x = x x + y + y = x + y Merkitään f (x, y) = x x + y + ja f (x, y) = x + y Kriittisessä pisteessä f (x, y) =

Lisätiedot

k = kiinteistötyypin mukainen kerroin seuraavan taulukon mukaan:

k = kiinteistötyypin mukainen kerroin seuraavan taulukon mukaan: 1 VESIHUOLTOLAITOKSEN TAKSA Liite PatL 2 / 17.12.2015 KIRKKONUMMEN KUNTA/VESIHUOLTOLAITOS Voimaantlopäivä 1.4.2016 Vesiholtolaitos perii, liittymistä ja käyttöä koskevat sopimsten ehdot ja yleiset toimitsehdot

Lisätiedot

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä

Huom! (5 4 ) Luetaan viisi potenssiin neljä tai viisi neljänteen. 7.1 Potenssin määritelmä 61 7.1 Potenssin määritelmä Potenssi on lyhennetty merkintä tulolle, jossa kantaluku kerrotaan itsellään niin monta kertaa kuin eksponentti ilmaisee. - luvun toinen potenssi on nimeltään luvun neliö o

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Yhteistyötä teatterista & Taiteesta tuotteeksi -hankkeet

Yhteistyötä teatterista & Taiteesta tuotteeksi -hankkeet Yhteistyötä teatterista & Taiteesta totteeksi -hankkeet Iisalmi, Keitele, Kirvesi, Lapinlahti, Pielavesi, Sonkajärvi ja Vieremä 10.8.2015 10.03.2016 Sisällys Johdanto... 3 Yhdistystoiminta ja osallistminen...

Lisätiedot

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:

A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla: 11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Kehitysvammaisen ravitsemuksen erityispiirteitä. Heli Pyrhönen laillistettu ravitsemusterapeutti MKS 13.1.2016

Kehitysvammaisen ravitsemuksen erityispiirteitä. Heli Pyrhönen laillistettu ravitsemusterapeutti MKS 13.1.2016 Kehitysvammaisen ravitsemksen erityispiirteitä Heli Pyrhönen laillistett ravitsemsterapetti MKS 13.1.2016 Hyvä roka hellii aisteja, mieltä ja kehoa Hermoston kehityshäiriöillä on homattava vaikts ravitsemstilaan.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS

LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS LASKENTATOIMEN OSAAMINEN vs. LIIKETALOUDELLINEN ENNUSTETARKKUUS Helsinki 26..200 4 2 5 Seminaari 26..200 Mikko Hakola Laskentatoimen osaaminen Testatut tahot Selvittäjiä Yrittäjiä KLT-kirjanpitäjiä Virallisen

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13 Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne

Lisätiedot