Paikkatietoa metsäbiomassan määrästä tarvitaan

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Paikkatietoa metsäbiomassan määrästä tarvitaan"

Transkriptio

1 Biomassan estimointi laseraineiston, ilmakuvien ja maastomittausten perusteella Esitys Metsätieteen Päivän Taksaattorisessiossa Reija Haapanen, Sakari Tuominen ja Risto Viitala Paikkatietoa metsäbiomassan määrästä tarvitaan Bioenergian käytön suunnittelu metsäenergiavarat alueittain taloudellisen kuljetusetäisyyden sisällä tietystä kohteesta olevat varat logistiikan suunnittelu Kasvihuonekaasupäästöjen ja hiilitaseiden inventointi Ilmastopolitiikka, kansainväliset sopimusvelvoitteet

2 Uuden sukupolven metsäsuunnittelujärjestelmä Metsävarojen inventointi perustuu laser ja ilmakuvaperusteiseen puustotulkintaan Tavoitteena tuottaa metsikkötasolla riittävän tarkat puustotiedot Tällä hetkellä tulkittava puuston määrä perustuu vain runkopuuositteen tilavuuteen Menetelmän voidaan olettaa tarjoavan hyvän pohjan myös muun kuin runkopuun määrän arviointiin (esim. oksa /lehti /latvusbiomassa), koska varsinkin laserkeilausdatan voidaan olettaa korreloivan hyvin esim. latvusbiomassan kanssa Mahdollisuus liittää järjestelmään metsäbiomassan kartoitus Tutkimuksemme kysymyksiä Miten ilmakuva ja laserpiirteet toimivat aputietona biomassan ennustamisessa? Vertailuna runkotilavuus Tarvitaanko ilmakuvaa lainkaan? Millaisissa metsiköissä ovat suurimmat virheet?

3 Prosessi kokonaisuudessaan 1. Maastokoealojen puustotunnusten mittaus 2. Biomassatunnusten johtaminen mallien avulla mitatuista puustotunnuksista 3. Laser ja ilmakuvapiirteiden irrottaminen 4. Laser ja ilmakuvapiirteiden testaus ja valinta estimointia varten 5. Biomassatunnusten estimointi teemakartaksi valittujen piirteiden avulla Tutkimusalue Evolla

4 Aineisto 263 maastokoealaa säde 9,77 m, mitattu puittain, yli 5 cm puut vain puustoiset koealat mukana 8346 mitattua puuta (puulaji, d, h, latvuksen alaraja ja latvusleveys) Biomassat lukupuista mitattuihin tunnuksiin perustuvien mallien avulla Tässä esityksessä tulokset maanpäälliselle biomassalle Kaukokartoitusaineistona harvapulssinen laserkeilaus sekä vääräväri ilmakuvat 102 laserpiirrettä 120 ilmakuvapiirrettä Biomassatunnusten laskenta Runkotilavuus: Laasasenahon (1982) tilavuusmallit männylle, kuuselle ja koivulle (pituus, lpm) Kuoribiomassa: Repolan (2008, 2009) mallit männylle, kuuselle ja koivulle (lpm, pituus) Oksabiomassa: Repolan mallit männylle, kuuselle ja koivulle (lpm, pituus, elävän latvuksen pituus) Lehdet/neulaset: Repolan mallit männylle, kuuselle (lpm, pituus, elävän latvuksen pituus) ja koivulle (lpm, elävän latvuksen pituus) Maanpäällinen kokonaisbiomassa: Repolan mallit männylle, kuuselle (lpm, pituus, elävän latvuksen pituus) ja koivulle (lpm, pituus) Huom. Kaikissa tunnuksissa lpm = läpimitta rinnankorkeudelta

5 Piirteet Laserkorkeuksien, intensiteetin ja ilmakuvan sävyarvojen keskiarvot ja keskihajonnat m ikkunasta. Lisäksi ilmakuvasta johdetut piirteet NDVI ja NIR/R Laserin pituushavaintojen variaatiokerroin, maksimi, prosenttipisteiden korkeudet, laserpisteiden suhteellinen määrä eri prosentuaalisilla korkeuksilla, yli 2 m havaintojen osuus kaikista havainnoista Laserkorkeuksien, intensiteetin ja ilmakuvan tekstuuritunnuksia (Haralick) 20 x 20 m ikkunasta Laserkorkeuksien, intensiteetin ja ilmakuvan keskihajontoja erikokoisiin blokkeihin jaetusta pikselin ikkunasta Piirteet standardoitiin keskiarvoon 0 ja keskihajontaan 1 Menetelmät Testattiin seuraavia lähtöaineistoja aputietona: Pelkkä ilmakuva Pelkkä laser Yhdistelmä Kaikissa em. ryhmissä piirrejoukkoa supistettiin geneettisen algoritmin avulla Aputiedon avulla estimoitiin seuraavat tunnukset kokonaistilavuus ja biomassa, puulajeittaiset tilavuudet ja biomassat Estimointimenetelmänä knn, luotettavuuden arviointi ristiinvalidoinnilla Toimittiin koealatasolla (aluepohjainen)

6 Geneettinen algoritmi piirrevalinnassa Piirrevektorit ovat genomeja, piirteet ovat geenejä Jos piirre on käytössä, sen arvo genomissa on 1, muuten 0 Eli satelliittikuvan 7 kanavan muodostamia genomeja olisivat esim: (kaikki kanavat käytössä) (vain 7. kanava käytössä) jne Yksinkertainen GA 1. Luo satunnainen alkupopulaatio 2. Määrittele kunkin piirreyhdistelmän hyvyys (laske tilavuuden RMSE k nn:llä ristiinvalidointia käyttäen) 3. Valitse haluamasi määrä piirteistä parhaasta päästä lähtien 4. Anna parhaiden piirrevektorien vaihtaa osia keskenään (crossing over) 5. Lisää haluamasi määrä mutaatioita jälkeläisiin 6. Palaa kohtaan 2 ja jatka tarpeeksi monen sukupolven ajan

7 GA:n parametrit Aloituspopulaatio 300, sukupolvia 30, crossing over todennäköisyys 80 %, mutaation todennäköisyys 1 %. Minimoitiin kokonaisbiomassan tai kokonaistilavuuden RMSE:tä Puulajeittaisessa estimoinnissa huomioitiin kokonaistilavuuden (45 %), männyn (15 %), kuusen (15 %) ja muun puulajin (15 %) suhteelliset RMSE:t suluissa esitetyin painoin Tulokset Biomassa vs. tilavuus: Tulokset olivat kokonaisbiomassalle hieman paremmat kuin kokonaistilavuudelle ( 22,5 % vs. 23,4 % havaintojen keskiarvoista). Ero korostui vaadittaessa myös puulajien estimoinnin onnistumista (kuva): kokonaisbiomassan virhe oli 24,8 %, puulajeittaisten biomassojen virheiden ollessa %, kun taas tilavuuden virheet olivat 27,5 % ja %.

8 Tulokset Piirteet, laser vs. ilmakuva: Pelkkä laser tuotti tarkemmat estimaatit kokonaismäärille kuin laserin ja ilmakuvan yhdistelmä GA ei pystynyt pudottamaan kaikkia tuloksia heikentäviä ik piirteitä pois Puulajeittaisessa estimoinnissa ilmakuvasta oli hieman apua, tilavuudella enemmän kuin biomassalla Laserin korkeushavaintojen keskiarvo oli aina mukana piirrejoukoissa, samoin kuin ns. kasvillisuusosuus (yli 2 m havainnot per kaikki havainnot) Tulokset Piirteet, pelkkä laser: Puulajeittaisessa estimoinnissa ilmakuvapiirteet korvattiin suhteellisilla korkeuksilla olevilla suhteellisilla osuuksilla

9 Tulokset Piirteet, yhdistetty joukko: Pelkkiä kokonaismääriä ennustettaessa riitti vähäisempi määrä piirteitä kuin huomioitaessa myös puulajit Laserpiirteet hallitsivat valikoiduissa piirrejoukoissa Puulajeittaiseen estimointiin valikoitui enemmän ilmakuvapiirteitä kuin kokonaismäärien estimointiin, samoin tilavuuden estimointiin enemmän kuin biomassan estimointiin. Lähes kaikki mukaan valikoituneet ilmakuvapiirteet olivat tekstuuripiirteitä. Kasvillisuusindeksi tai NIR/R eivät menestyneet valinnassa. Keskustelu ja päätelmät Latvuksen ominaisuudet vaikuttavat laserpiirteisiin enemmän kuin rungon laser soveltuu maanpäällisen biomassan estimointiin hyvin Tässä annoimme geneettisen algoritmin valita piirteet, ja valikoiduista piirteistä voidaan sanoa seuraavaa: Ilmakuvaa ei tarvita Jos siitä on vähäistä hyötyä, kyseessä ovat tekstuuripiirteet Laserista mukaan valikoitui aina muutama peruspiirre (korkeuksien ka, kasvillisuusosuus)

10 Keskustelu ja päätelmät Kuten tyypillistä, puulajeittaisessa estimoinnissa oli moninkertaiset virheet kokonaismääriin verrattuna. Evolla puulajisuhteet melko tasan, joten puulajien virheet olivat keskenään samaa luokkaa Huom! Piirrevalinnassa vaikutti puulajin suhteellinen virhe 15% painolla, joten piirteiksi luonnollisesti valikoitui sellaisia, jotka saivat suurimpia virheitä painettua alas. Keskustelu ja päätelmät Tuloksia punnittaessa on huomioitava, että tässä verrataan puutunnusmalleihin perustuvia biomassoja toisiinsa. Kohdealue (Evon opetusmetsä) on suomalaiseksi metsäksi hyvin vaihtelevaa: koealojen kokonaisrunkotilavuus oli 190,9 m 3 /ha ja keskihajonta 109 m 3 /ha Maanpäällisen kokonaisbiomassan keskiarvo oli 96,4 tonnia/ha ja keskihajonta 50,4 tonnia/ha Puulajeja paljon, nyt kaadettiin luokkaan muut

11 Keskustelu ja päätelmät Tulosten perusteella uuden sukupolven metsäsuunnittelujärjestelmän voisi tarvittaessa laajentaa myös biomassan kartoitukseen

Metsien kaukokartoitus ja avoimet aineistot

Metsien kaukokartoitus ja avoimet aineistot Geoinformatiikan valtakunnallinen tutkimuspäivä 2013 Metsien kaukokartoitus ja avoimet aineistot Sakari Tuominen, MMT METLA Valtakunnan metsien inventointi Metsäntutkimuslaitos Skogsforskningsinstitutet

Lisätiedot

Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus

Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus Puustotietojen keruun tekniset vaihtoehdot, kustannustehokkuus ja tarkkuus Janne Uuttera Metsätehon seminaari 8.5.2007 Metsävaratietojärjestelmien tulevaisuus Tausta Tietojohtamisen välineissä, kuten metsävaratietojärjestelmissä,

Lisätiedot

MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset:

MARV Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä. Ruuduille lasketut puustotunnukset: MARV1-11 Metsikkökoealaharjoitus Aluepohjaiset laserpiirteet puustotunnusten selittäjinä Metsikkökoealojen puuston mittaukseen käytetty menetelmä, jossa puut etsitään laseraineistosta/ilmakuvilta ja mitataan

Lisätiedot

Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen

Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen Vaihtoehtoisia malleja puuston kokojakauman muodostamiseen Jouni Siipilehto, Harri Lindeman, Jori Uusitalo, Xiaowei Yu, Mikko Vastaranta Luonnonvarakeskus Geodeettinen laitos Helsingin yliopisto Vertailtavat

Lisätiedot

VMI-koealatiedon ja laserkeilausaineiston yhdistäminen metsäsuunnittelua varten

VMI-koealatiedon ja laserkeilausaineiston yhdistäminen metsäsuunnittelua varten VMI-koealatiedon ja laserkeilausaineiston yhdistäminen metsäsuunnittelua varten Kuortaneen metsäsuunnitteluseminaari 10.09.2007 Aki Suvanto, Joensuun yliopisto Petteri Packalén, Joensuun yliopisto Matti

Lisätiedot

Laserkeilauspohjaiset laskentasovellukset

Laserkeilauspohjaiset laskentasovellukset Laserkeilauspohjaiset laskentasovellukset Petteri Packalén Matti Maltamo Laseraineiston käsittely: Ohjelmistot, formaatit ja standardit Ei kovin monia ohjelmia laserpisteaineiston käsittelyyn» Terrasolid

Lisätiedot

Puun kasvu ja runkomuodon muutokset

Puun kasvu ja runkomuodon muutokset Puun kasvu ja runkomuodon muutokset Laserkeilaus metsätieteissä 6.10.2017 Ville Luoma Helsingin yliopisto Centre of Excellence in Laser Scanning Research Taustaa Päätöksentekijät tarvitsevat tarkkaa tietoa

Lisätiedot

PUUSTOBIOMASSAN ENNUSTAMINEN HARVAPULSSISELLA LENTOLASERKEILAUSAINEISTOLLA

PUUSTOBIOMASSAN ENNUSTAMINEN HARVAPULSSISELLA LENTOLASERKEILAUSAINEISTOLLA PUUSTOBIOMASSAN ENNUSTAMINEN HARVAPULSSISELLA LENTOLASERKEILAUSAINEISTOLLA Aapo Lindberg Maisterintutkielma Helsingin Yliopisto Metsätieteiden laitos Metsävaratiede- ja teknologia Toukokuu 2016 Tiedekunta/Osasto

Lisätiedot

Laserkeilauksen hyödyntäminen metsätaloudellisissa

Laserkeilauksen hyödyntäminen metsätaloudellisissa Metsätieteen aikakauskirja 4/2008 Tieteen tori Matti Maltamo, Petteri Packalén, Janne Uuttera, Esa Ärölä ja Juho Heikkilä Laserkeilaustulkinnan hyödyntäminen metsäsuunnittelun tietolähteenä Johdanto Laserkeilauksen

Lisätiedot

NUMEERISET ILMAKUVAT TAIMIKON PERKAUSTARPEEN MÄÄRITTÄMISESSÄ

NUMEERISET ILMAKUVAT TAIMIKON PERKAUSTARPEEN MÄÄRITTÄMISESSÄ NUMEERISET ILMAKUVAT TAIMIKON PERKAUSTARPEEN MÄÄRITTÄMISESSÄ Selvitettiin numeeristen ilmakuva-aineistojen hyödyntämismahdollisuuksia taimikon puustotunnusten ja perkaustarpeen määrittämisessä. Tuukka

Lisätiedot

Laserkeilaus yksityismetsien inventoinnissa

Laserkeilaus yksityismetsien inventoinnissa Kuvat Arbonaut Oy Laserkeilaus yksityismetsien inventoinnissa Laserkeilaus ja korkeusmallit Maanmittauslaitoksen seminaari 9.10.2009 Juho Heikkilä Metsätalouden kehittämiskeskus Tapio Sisältö Kuva Metla

Lisätiedot

Puukarttajärjestelmä hakkuun tehostamisessa. Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola

Puukarttajärjestelmä hakkuun tehostamisessa. Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola Puukarttajärjestelmä hakkuun tehostamisessa Timo Melkas Mikko Miettinen Jarmo Hämäläinen Kalle Einola Tavoite Tutkimuksessa selvitettiin hakkuukoneeseen kehitetyn puukarttajärjestelmän (Optical Tree Measurement

Lisätiedot

Trestima Oy Puuston mittauksia

Trestima Oy Puuston mittauksia Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen

Lisätiedot

Kehittyvien satelliittiaineistojen mahdollisuudet

Kehittyvien satelliittiaineistojen mahdollisuudet VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Kehittyvien satelliittiaineistojen mahdollisuudet Forest Big Data loppuseminaari, Heureka 8.3.2016 Tuomas Häme, Laura Sirro, Yrjö Rauste VTT VTT:n satelliittikuvatutkimusaiheet

Lisätiedot

Jakaumamallit MELA2009:ssä. MELA käyttäjäpäivä Kari Härkönen

Jakaumamallit MELA2009:ssä. MELA käyttäjäpäivä Kari Härkönen Jakaumamallit MELA29:ssä MELA käyttäjäpäivä 11.11.29 Kari Härkönen Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Aineistonmuodostuksessa useita vaihtoehtoisia

Lisätiedot

Metsävarojen inventoinnin keskeinen kiinnostuksen

Metsävarojen inventoinnin keskeinen kiinnostuksen Metsätieteen aikakauskirja 1/2015 Ville Kankare, Mikko Niemi, Mikko Vastaranta, Markus Holopainen ja Juha Hyyppä Puustobiomassan kartoituksen ja seurannan kehittäminen e e m t a Luonnonvarariskien hallinta

Lisätiedot

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa

Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa Miehittämättömän lennokin ottamien ilmakuvien käyttö energiakäyttöön soveltuvien biomassojen määrän nopeassa arvioinnissa Anna Lopatina, Itä-Suomen yliopisto, Metsätieteiden osasto, Anna.lopatina@uef.fi

Lisätiedot

Kehittyvä puun mallinnus ja laskenta

Kehittyvä puun mallinnus ja laskenta Kehittyvä puun mallinnus ja laskenta Metsätieteen päivät 2011 Jouko Laasasenaho emeritusprof. Historiallinen tausta Vuonna 1969 Suomessa siirryttiin puun mittauksessa kuorelliseen kiintokuutiometrin käyttöön

Lisätiedot

Tuuli- lumituhojen ennakointi. Suomen metsäkeskus, Pohjois-Pohjanmaa Julkiset palvelut K. Maaranto

Tuuli- lumituhojen ennakointi. Suomen metsäkeskus, Pohjois-Pohjanmaa Julkiset palvelut K. Maaranto Tuuli- lumituhojen ennakointi Suomen metsäkeskus, Pohjois-Pohjanmaa Julkiset palvelut K. Maaranto Tuuli- lumituhojen ennakointi 1. Ilmastonmuutos 2. Kaukokartoitusperusteinen metsien inventointi Laserkeilaus

Lisätiedot

Laatua kuvaavien kasvumallien kehittäminen. Annikki Mäkelä, Anu Kantola, Harri Mäkinen HY Metsäekologian laitos, Metla

Laatua kuvaavien kasvumallien kehittäminen. Annikki Mäkelä, Anu Kantola, Harri Mäkinen HY Metsäekologian laitos, Metla Laatua kuvaavien kasvumallien kehittäminen Annikki Mäkelä, Anu Kantola, Harri Mäkinen HY Metsäekologian laitos, Metla Taustaa» Kasvumallit antavat puustoennusteen kiertoaikana, kun tunnetaan» kasvupaikkatiedot»

Lisätiedot

Kuusen kasvun ja puutavaran laadun ennustaminen

Kuusen kasvun ja puutavaran laadun ennustaminen 1/13 Kuusen kasvun ja puutavaran laadun ennustaminen Anu Kantola Työ on aloitettu omana hankkeenaan 1.1.21 Suomen Luonnonvarain Tutkimussäätiön rahoittamana, siirtyi Puro-hankkeen rahoittamaksi 1.1.24

Lisätiedot

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003

Männyn laaturajojen integrointi runkokäyrän ennustamisessa. Laura Koskela Tampereen yliopisto 9.6.2003 Männyn laaturajojen integrointi runkokäyrän ennustamisessa Laura Koskela Tampereen yliopisto 9.6.2003 Johdantoa Pohjoismaisen käytännön mukaan rungot katkaistaan tukeiksi jo metsässä. Katkonnan ohjauksessa

Lisätiedot

METKA-maastolaskurin käyttäjäkoulutus 9.12.2010 Tammela Matti Kymäläinen METKA-hanke 27.3.2014 1

METKA-maastolaskurin käyttäjäkoulutus 9.12.2010 Tammela Matti Kymäläinen METKA-hanke 27.3.2014 1 METKA-maastolaskurin käyttäjäkoulutus 9.12.2010 Tammela Matti Kymäläinen METKA-hanke 27.3.2014 1 METKA-maastolaskuri: Harvennusmetsien energiapuun kertymien & keskitilavuuksien laskentaohjelma Lask ent

Lisätiedot

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Ari Nikula Metsäntutkimuslaitos Rovaniemen toimintayksikkö Ari.Nikula@metla.fi / Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest

Lisätiedot

Tervasroso. Risto Jalkanen. Luonnonvarakeskus. Rovaniemi. Luonnonvarakeskus. Luonnonvarakeskus. Lapin metsätalouspäivät, Rovaniemi

Tervasroso. Risto Jalkanen. Luonnonvarakeskus. Rovaniemi. Luonnonvarakeskus. Luonnonvarakeskus. Lapin metsätalouspäivät, Rovaniemi Tervasroso Risto Jalkanen Luonnonvarakeskus Rovaniemi 1 Lapin metsätalouspäivät, Rovaniemi Perinteinen tervasroso Peridermium pini - männystä mäntyyn 2 Lapin metsätalouspäivät, Rovaniemi Aggressiivinen

Lisätiedot

Kuusen kasvun ja puutavaran laadun ennustaminen

Kuusen kasvun ja puutavaran laadun ennustaminen Kuusen kasvun ja puutavaran laadun ennustaminen Anu Kantola Työ on aloitettu omana hankkeenaan 1.1.21 Suomen Luonnonvarain Tutkimussäätiön rahoittamana, siirtyi Puro -hankkeen rahoittamaksi 1.1.24 Biomassa-aineiston

Lisätiedot

Korkearesoluutioisten E-SAR-tutkakuvien tarkkuus puusto tunnusten koealatason estimoinnissa

Korkearesoluutioisten E-SAR-tutkakuvien tarkkuus puusto tunnusten koealatason estimoinnissa Metsätieteen aikakauskirja t u t k i m u s a r t i k k e l i Markus Holopainen, Sakari Tuominen, Mika Karjalainen, Juha Hyyppä, Hannu Hyyppä, Mikko Vastaranta, Teppo Hujala ja Timo Tokola Korkearesoluutioisten

Lisätiedot

Taimikonhoidon vaikutus. Taimikonhoidon vaikutus kasvatettavan puuston laatuun

Taimikonhoidon vaikutus. Taimikonhoidon vaikutus kasvatettavan puuston laatuun Taimikonhoidon vaikutus kasvatettavan puuston laatuun Taimikonhoidon teemapäivä 26.8.2010 MMT Metsäntutkimuslaitos, Suonenjoki Varhaishoito Pintakasvillisuuden torjunta - kilpailun vaikutukset Taimikonhoidon

Lisätiedot

Mikä on taimikonhoidon laadun taso?

Mikä on taimikonhoidon laadun taso? Mikä on taimikonhoidon laadun taso? MMT Timo Saksa Luonnonvarakeskus Suonenjoen toimipaikka Pienten taimikoiden laatu VMI:n mukaan Tyydyttävässä taimikossa kasvatettavien taimien määrä on metsänhoito-suositusta

Lisätiedot

Tervasrosoon vaikuttavat tekijät - mallinnustarkastelu

Tervasrosoon vaikuttavat tekijät - mallinnustarkastelu Tervasrosoon vaikuttavat tekijät - mallinnustarkastelu Ville Hallikainen Kuva: Risto Jalkanen Tutkimuskysymykset Mitkä luonnossa vallitsevat ekologiset ja metsänhoidolliset ym. tekijät vaikuttavat tervasroson

Lisätiedot

VMI9 ja VMI10 maastotyövuodet

VMI9 ja VMI10 maastotyövuodet VMI ja VMI maastotyövuodet VMI: alueittain VMI: koko maa vuosittain Puuston kokonaistilavuus kaikki puulajit VMI: milj. m³ VMI: 8 milj. m³ Muutos: +8 milj. m³ (+%) 8 Lappi VMI VMI Lehtipuut Kuusi Mänty

Lisätiedot

Metsävaratieto ja sen käytön mahdollisuudet. 4.12.2014 Raito Paananen Metsätietopäällikkö Suomen metsäkeskus Julkiset palvelut, Keski-Suomi

Metsävaratieto ja sen käytön mahdollisuudet. 4.12.2014 Raito Paananen Metsätietopäällikkö Suomen metsäkeskus Julkiset palvelut, Keski-Suomi Metsävaratieto ja sen käytön mahdollisuudet 4.12.2014 Raito Paananen Metsätietopäällikkö Suomen metsäkeskus Julkiset palvelut, Keski-Suomi Sisältö 1. Julkisin varoin kerättävien metsävaratietojen keruun

Lisätiedot

Laserkeilaus puustotunnusten arvioinnissa

Laserkeilaus puustotunnusten arvioinnissa Uusi Teknologia mullistaa puun mittauksen Metsäpäivät 7.11.2008 Laserkeilaus puustotunnusten arvioinnissa Markus Holopainen Helsingin yliopisto Metsävarojen käytön laitos markus.holopainen@helsinki.fi

Lisätiedot

Biomassatulkinta LiDARilta

Biomassatulkinta LiDARilta Biomassatulkinta LiDARilta 1 Biomassatulkinta LiDARilta Jarno Hämäläinen (MMM) Kestävän kehityksen metsävarapalveluiden yksikkö (REDD and Sustainable Forestry Services) 2 Sisältö Referenssit Johdanto Mikä

Lisätiedot

Suomen metsäkeskus. SMK:n ja VMI:n inventointien yhteistyömahdollisuuksia. Taksaattoriklubin kevätseminaari Helsinki, 20.3.

Suomen metsäkeskus. SMK:n ja VMI:n inventointien yhteistyömahdollisuuksia. Taksaattoriklubin kevätseminaari Helsinki, 20.3. Suomen metsäkeskus SMK:n ja VMI:n inventointien yhteistyömahdollisuuksia Taksaattoriklubin kevätseminaari Helsinki, 20.3.2015 Juho Heikkilä Sisältöä 1. SMK:n metsävaratiedosta lyhyesti 2. VMI-SMK yhteistyön

Lisätiedot

Suomen metsävarat metsäkeskuksittain

Suomen metsävarat metsäkeskuksittain Metsätieteen aikakauskirja m e t s ä v a r a t Kari T. Korhonen, Antti Ihalainen, Juha Heikkinen, Helena Henttonen ja Juho Pitkänen Suomen metsävarat metsäkeskuksittain 24 26 ja metsävarojen kehitys 1996

Lisätiedot

Katkonnanohjaus evoluutiolaskennan keinoin

Katkonnanohjaus evoluutiolaskennan keinoin Katkonnanohjaus evoluutiolaskennan keinoin Askel kohti optimaalista tavaralajijakoa Veli-Pekka Kivinen HY, Metsävarojen käytön laitos Katkonnanohjauksen problematiikkaa Miten arvo-/tavoitematriisit tulisi

Lisätiedot

MOBIDEC 1.1. Pikaohje 30.3.2011

MOBIDEC 1.1. Pikaohje 30.3.2011 MOBIDEC 1.1 Pikaohje 30.3.2011 SISÄLTÖ 1 ALOITUS... 1 1.1 Laitteet... 1 1.2 Datasiirtomaksut... 1 1.3 Soveltuvuus... 1 1.4 Aloitussivu... 1 2 REKISTERÖITYMINEN... 2 2.1 Yleistä... 2 2.2 Virhetilanteet...

Lisätiedot

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta

Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Ympäristön aktiivinen kaukokartoitus laserkeilaimella: tutkittua ja tulevaisuutta Sanna Kaasalainen Kaukokartoituksen ja Fotogrammetrian Osasto Ilmastonmuutos ja ääriarvot 13.9.2012 Ympäristön Aktiivinen

Lisätiedot

Porolaidunten mallittaminen metsikkötunnusten avulla

Porolaidunten mallittaminen metsikkötunnusten avulla Porolaidunten mallittaminen metsikkötunnusten avulla Ville Hallikainen Tutkimukseen osallistuneet: Ville Hallikainen, Mikko Hyppönen, Timo Helle, Eero Mattila, Kari Mikkola, Jaakko Repola Metsäntutkimuslaitos

Lisätiedot

METSÄSUUNNITTELU. Metsäkurssi JKL yo 2014 syksy. Petri Kilpinen, Metsäkeskus, Keski-Suomi

METSÄSUUNNITTELU. Metsäkurssi JKL yo 2014 syksy. Petri Kilpinen, Metsäkeskus, Keski-Suomi METSÄSUUNNITTELU Metsäkurssi JKL yo 2014 syksy Petri Kilpinen, Metsäkeskus, Keski-Suomi 1 SISÄLTÖ metsäsuunnitelman sisältö metsävaratiedon keruu Muut tuotteet / palvelut Metsävaratiedon keruu tulevaisuudessa.

Lisätiedot

Taimikonhoidon omavalvontaohje

Taimikonhoidon omavalvontaohje Omavalvonnalla laatua ja tehoa metsänhoitotöihin Taimikonhoidon omavalvontaohje Taimikonhoidon merkitys Taimikonhoidolla säädellään kasvatettavan puuston puulajisuhteita ja tiheyttä. Taimikonhoidon tavoitteena

Lisätiedot

VMI kasvututkimuksen haasteita

VMI kasvututkimuksen haasteita VMI kasvututkimuksen haasteita Annika Kangas & Helena Henttonen 18.8.2016 1 Teppo Tutkija VMIn aikasarjat mahdollistavat kasvutrendien tutkimuksen 2 Korhonen & Kangas Missä määrin kasvu voidaan ennustaa?

Lisätiedot

Puuston runkolukusarjan ja laatutunnusten mittaus kaukokartoituksella

Puuston runkolukusarjan ja laatutunnusten mittaus kaukokartoituksella Metsätehon raportti 223 1.8.2013 Puuston runkolukusarjan ja laatutunnusten mittaus kaukokartoituksella Esiselvitys ja käytännön testi Jari Vauhkonen Ville Kankare Topi Tanhuanpää Markus Holopainen Mikko

Lisätiedot

Estimointi. Vilkkumaa / Kuusinen 1

Estimointi. Vilkkumaa / Kuusinen 1 Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman

Lisätiedot

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto

Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa. Tapio Nummi Tampereen yliopisto Tilastolliset mallit hakkuukoneen katkonnan ohjauksessa Tapio Nummi Tampereen yliopisto Runkokäyrän ennustaminen Jotta runko voitaisiin katkaista optimaalisesti pitäisi koko runko mitata etukäteen. Käytännössä

Lisätiedot

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta

Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta Laskennallinen menetelmä puun biomassan ja oksien kokojakauman määrittämiseen laserkeilausdatasta Pasi Raumonen, Mikko Kaasalainen ja Markku Åkerblom Tampereen teknillinen ylipisto, Matematiikan laitos

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Puusto poiminta- ja pienaukkohakkuun jälkeen

Puusto poiminta- ja pienaukkohakkuun jälkeen Puusto poiminta- ja pienaukkohakkuun jälkeen Metsälakiseminaari 22.10.2014 Lahti Johtava metsänhoidon asiantuntija Eljas Heikkinen Suomen metsäkeskus Eri-ikäisrakenteisen metsän rakennepiirteitä Sekaisin

Lisätiedot

SMK:n ja VMI:n inventointien yhteistyömahdollisuuksia: VMI:n näkökulma

SMK:n ja VMI:n inventointien yhteistyömahdollisuuksia: VMI:n näkökulma SMK:n ja VMI:n inventointien yhteistyömahdollisuuksia: VMI:n näkökulma Kai Mäkisara Luonnonvarakeskus Muita Luke:sta projektissa mukana olevia/olleita: Erkki Tomppo, Helena Henttonen, Nea Kuusinen, Nina

Lisätiedot

LASERKEILAUS METSÄVAROJEN HALLINNASSA. markus.holopainen@helsinki.fi, juha.hyyppa@fgi.fi, mikko.vastaranta@helsinki.fi, hannu.hyyppa@aalto.

LASERKEILAUS METSÄVAROJEN HALLINNASSA. markus.holopainen@helsinki.fi, juha.hyyppa@fgi.fi, mikko.vastaranta@helsinki.fi, hannu.hyyppa@aalto. The Photogrammetric Journal of Finland, Vol. 22, No. 3, 2011 LASERKEILAUS METSÄVAROJEN HALLINNASSA Markus Holopainen 1, Juha Hyyppä 2, Mikko Vastaranta 1 ja Hannu Hyyppä 3 1 Helsingin yliopisto, Metsätieteiden

Lisätiedot

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI

KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI KUITUPUUN KESKUSKIINTOMITTAUKSEN FUNKTIOINTI Asko Poikela Samuli Hujo TULOSKALVOSARJAN SISÄLTÖ I. Vanha mittauskäytäntö -s. 3-5 II. Keskusmuotolukujen funktiointi -s. 6-13 III.Uusi mittauskäytäntö -s.

Lisätiedot

Metsätieto 2020 1 Tavoitetila

Metsätieto 2020 1 Tavoitetila Metsätieto 2020-25.6.2015 Metsätieto 2020 1 SISÄLLYSLUETTELO TIIVISTELMÄ 3 1 JOHDANTO... 4 2 HANKKEEN TAVOITTEET... 4 3 AINEISTOT JA MENETELMÄT... 5 4 NYKYTILAN KUVAUS... 6 4.1 Valtakunnan metsien inventointi...

Lisätiedot

Taimikonhoidon laatu ja laadun. Kouvola 2.11.2011 Kustannustehokas metsänhoito seminaarisarja 2011

Taimikonhoidon laatu ja laadun. Kouvola 2.11.2011 Kustannustehokas metsänhoito seminaarisarja 2011 Taimikonhoidon laatu ja laadun hallinta Ville Kankaanhuhta Kouvola 2.11.2011 Kustannustehokas metsänhoito seminaarisarja 2011 Metsäpalvelun osaamiskeskittymä tutkimus ja kehittämisverkosto http://www.metla.fi/metinfo/metsanhoitopalvelut/

Lisätiedot

Kiertoaika. Uudistaminen. Taimikonhoito. Ensiharvennus. Harvennushakkuu

Kiertoaika. Uudistaminen. Taimikonhoito. Ensiharvennus. Harvennushakkuu Metsäomaisuuden hyvä hoito Kiertoaika Uudistaminen Taimikonhoito Ensiharvennus 1 Harvennushakkuu Metsän kiertoaika Tarkoittaa aikaa uudistamisesta päätehakkuuseen. Vaihtelee alueittain 60 120 vuotta Kierron

Lisätiedot

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet

Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Teledyne Optech Titan -monikanavalaser ja sen sovellusmahdollisuudet Jan Biström TerraTec Oy TerraTec-ryhmä Emoyhtiö norjalainen TerraTec AS Liikevaihto 2015 noin 13 miljoonaa euroa ja noin 90 työntekijää

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Avainsanojen poimiminen Eeva Ahonen

Avainsanojen poimiminen Eeva Ahonen Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle

Lisätiedot

Taimikonhoidon laatu ja laadun. Mikkeli Kustannustehokas metsänhoito seminaarisarja 2011

Taimikonhoidon laatu ja laadun. Mikkeli Kustannustehokas metsänhoito seminaarisarja 2011 Taimikonhoidon laatu ja laadun hallinta Ville Kankaanhuhta Mikkeli 17.11.2011 Kustannustehokas metsänhoito seminaarisarja 2011 Mistä hakea tietoa? Metsänhoitopalvelut portaali Metinfossa http://www.metla.fi/metinfo/metsanhoitopalvelut/

Lisätiedot

UAV-kuvauksella tuotetun fotogrammetrisen aineiston käyttö puustotulkinnassa

UAV-kuvauksella tuotetun fotogrammetrisen aineiston käyttö puustotulkinnassa UAV-kuvauksella tuotetun fotogrammetrisen aineiston käyttö puustotulkinnassa Sakari Tuominen, Andras Balazs METLA, VMI Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi

Lisätiedot

Taimikonhoidon vaikutukset metsikön

Taimikonhoidon vaikutukset metsikön Taimikonhoidon vaikutukset metsikön jatkokehitykseen ja tuotokseen Saija Huuskonen Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Sisältö 1. Taimikonhoidon

Lisätiedot

Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella

Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella Metsätieteen aikakauskirja t u t k i m u s a r t i k k e l i Aki Suvanto, Matti Maltamo, Petteri Packalén ja Jyrki Kangas Aki Suvanto Matti Maltamo Petteri Packalén Kuviokohtaisten puustotunnusten ennustaminen

Lisätiedot

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy.

AS Automaation signaalinkäsittelymenetelmät. Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. AS-84.161 Automaation signaalinkäsittelymenetelmät Tehtävä 1. Käynnistä fuzzy-toolboxi matlabin komentoikkunasta käskyllä fuzzy. Tämän jälkeen täytyy: 1. Lisätä uusi sisääntulo edit->add input 2. nimetä

Lisätiedot

Lahopuu ja tekopökkelöt: vaikutukset lahopuukovakuoriaislajistoon. Juha Siitonen, Harri Lappalainen. Metsäntutkimuslaitos, Vantaan toimintayksikkö

Lahopuu ja tekopökkelöt: vaikutukset lahopuukovakuoriaislajistoon. Juha Siitonen, Harri Lappalainen. Metsäntutkimuslaitos, Vantaan toimintayksikkö Lahopuu ja tekopökkelöt: vaikutukset lahopuukovakuoriaislajistoon Juha Siitonen, Harri Lappalainen Metsäntutkimuslaitos, Vantaan toimintayksikkö Lahopuusto, aineisto ja menetelmät Lahopuut 1 cm mitattiin

Lisätiedot

n.20,5 ha

n.20,5 ha 476-406-0- n.20,5 476-406-0- n.20,5 Maununsuo kt. 476-406-0- Peruskartta Mittakaava :5000 Koordinaatisto Keskipiste Tulostettu ETRS-TM35FIN (508095, 6988752) Copyright Maanmittauslaitos 206/Copyright Lantmäteriverket

Lisätiedot

Pohjois-Karjalan metsäkeskuksen alueen metsävarat ja niiden kehitys

Pohjois-Karjalan metsäkeskuksen alueen metsävarat ja niiden kehitys Pohjois-Karjalan metsäkeskuksen alueen metsävarat 2004 2006 ja niiden kehitys 2000-2006 Kari T. Korhonen Valtakunnan metsien inventointi/metla Kari.t.Korhonen@metla.fi VMI10/ 9.8.2007 1 VMI10 Maastotyöt

Lisätiedot

NUORTEN METSIEN RAKENNE JA KEHITYS

NUORTEN METSIEN RAKENNE JA KEHITYS NUORTEN METSIEN RAKENNE JA KEHITYS Saija Huuskonen Metsäntutkimuslaitos, Vantaa Tutkimuksen tavoitteet 1. Selvittää 198-luvulla onnistuneesti perustettujen havupuuvaltaisten taimikoiden metsänhoidollinen

Lisätiedot

METSÄ SUUNNITELMÄ 2013 2027

METSÄ SUUNNITELMÄ 2013 2027 METSÄ SUUNNITELMÄ 2013 2027 Omistaja: Itä-Suomen yliopisto Osoite: Yliopistokatu 2, 80101 Joensuu Tila: Suotalo 30:14 Kunta: Ilomantsi 2 SISÄLTÖ 1 JOHDANTO... 3 2 METSÄN NYKYTILA... 4 2.1 Kasvupaikkojen

Lisätiedot

Suomen metsien kasvihuonekaasuinventaario

Suomen metsien kasvihuonekaasuinventaario Suomen metsien kasvihuonekaasuinventaario Aleksi Lehtonen Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Sisältö 1. Johdanto sopimukset ja hiilitase 2. Nykyinen

Lisätiedot

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu

Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu Monitavoitteiseen optimointiin soveltuvan evoluutioalgoritmin tarkastelu (Valmiin työn esittely) 11.4.2011 Ohjaaja: Ville Mattila Valvoja: Raimo Hämäläinen Työn tavoite Tutkia evoluutioalgoritmia (Lee

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe.6.009 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on tuntia (klo 1.00 14.00). Kokeesta saa poistua aikaisintaan klo 1.0..

Lisätiedot

Kainuun metsäkeskuksen alueen metsävarat ja niiden kehitys

Kainuun metsäkeskuksen alueen metsävarat ja niiden kehitys Kainuun metsäkeskuksen alueen metsävarat 2004 2006 ja niiden kehitys 2001-2006 Kari T. Korhonen Valtakunnan metsien inventointi/metla Kari.t.Korhonen@metla.fi VMI10/ 9.8.2007 1 VMI10 Maastotyöt 2004 2008

Lisätiedot

Suometsien kasvatuksen kannattavuus

Suometsien kasvatuksen kannattavuus Suometsien kasvatuksen kannattavuus Esitelmän sisältö: Lyhyt aikajänne Sijoitetun pääoman tuotto kunnostusojituksessa Pitkä aikajänne Yhden kiertoajan nettotulojen nykyarvo Optimointi Uudistaminen turvemailla

Lisätiedot

PURO Osahanke 3. Elintoimintoihin perustuvat mallit: Tavoitteet. PipeQual-mallin kehittäminen. PipeQual-mallin soveltaminen

PURO Osahanke 3. Elintoimintoihin perustuvat mallit: Tavoitteet. PipeQual-mallin kehittäminen. PipeQual-mallin soveltaminen PURO Osahanke 3 Annikki Mäkelä, HY Anu Kantola Harri Mäkinen Elintoimintoihin perustuvat mallit: Tavoitteet PipeQual-mallin kehittäminen mänty: puuaineen ominaisuudet mallit männyn kasvumalliin mallin

Lisätiedot

Suomen metsien inventointi

Suomen metsien inventointi Suomen metsien inventointi Metsäpäivä Kuhmo 26.3.2014 Kari T. Korhonen / Metla, VMI Sisältö 1. Mikä on valtakunnan metsien inventointi? 2. Metsävarat ja metsien tila Suomessa 3. Metsävarat t ja metsien

Lisätiedot

METSÄ SUUNNITELMÄ 2013 2027

METSÄ SUUNNITELMÄ 2013 2027 METSÄ SUUNNITELMÄ 2013 2027 Omistaja: Itä-Suomen yliopisto Osoite: Yliopistokatu 2, 80100 Joensuu Tila: Ahola 1:6 Kunta: Ilomantsi 2 SISÄLTÖ 1 JOHDANTO... 3 2 METSÄN NYKYTILA... 4 2.1 Kasvupaikkojen kokonaispuusto...

Lisätiedot

- jl,, ' ',, I - '' I ----=-=--=--~ '.:i -

- jl,, ' ',, I - '' I ----=-=--=--~ '.:i - -~ "' ' ',, I - '' I ----=-=--=--~ - jl,, '.:i - Vedenpää Mittakaava 1 :10000 TAPIO. Koordinaatista ETRS-TM35FIN ~ Keskipiste (490822, 7065779) Tulostettu 23.6.2016?()6 26;3.:.i 10-71 1 / 0 A - TAPIO.

Lisätiedot

Kuusen kasvun ja puutavaran laadun ennustaminen

Kuusen kasvun ja puutavaran laadun ennustaminen Kuusen kasvun ja puutavaran laadun ennustaminen Anu Kantola Työ on aloitettu omana hankkeenaan 1.1.21 Suomen Luonnonvarain Tutkimussäätiön rahoittamana, siirtyi Puro-hankkeen rahoittamaksi 1.1.24 Biomassa-aineiston

Lisätiedot

Kaukokartoitusaineistot ja maanpeite

Kaukokartoitusaineistot ja maanpeite Kansallinen maastotietokanta hanke Maasto-työpaja 20.9.2016 Kaukokartoitusaineistot ja maanpeite Pekka Härmä Suomen Ympäristökeskus 1 Sisältö SYKE tietotarpeet Tietolähteet maanpeitetiedon tuottamisessa

Lisätiedot

Satelliittipaikannuksen tarkkuus hakkuukoneessa. Timo Melkas Mika Salmi Jarmo Hämäläinen

Satelliittipaikannuksen tarkkuus hakkuukoneessa. Timo Melkas Mika Salmi Jarmo Hämäläinen Satelliittipaikannuksen tarkkuus hakkuukoneessa Timo Melkas Mika Salmi Jarmo Hämäläinen Tavoite Tutkimuksen tavoite oli selvittää nykyisten hakkuukoneissa vakiovarusteena olevien satelliittivastaanottimien

Lisätiedot

BOREAALISEN METSÄN SITOMAN SÄTEILYN (FPAR) ARVIOIMINEN SATELLIITTIMITTAUKSISTA SATELLIITTIMITTAUSTEN PERUSTEITA METSÄTIETEEN PÄIVÄN TAKSAATTORIKLUBI

BOREAALISEN METSÄN SITOMAN SÄTEILYN (FPAR) ARVIOIMINEN SATELLIITTIMITTAUKSISTA SATELLIITTIMITTAUSTEN PERUSTEITA METSÄTIETEEN PÄIVÄN TAKSAATTORIKLUBI BOREAALISEN METSÄN SITOMAN SÄTEILYN (FPAR) ARVIOIMINEN SATELLIITTIMITTAUKSISTA METSÄTIETEEN PÄIVÄN TAKSAATTORIKLUBI Titta Majasalmi 1 *, Miina Rautiainen 1, Pauline Stenberg 1 and Terhikki Manninen 2 1

Lisätiedot

ENERGIAPUUKOHTEEN TUNNISTAMINEN JA OHJAAMINEN MARKKINOILLE

ENERGIAPUUKOHTEEN TUNNISTAMINEN JA OHJAAMINEN MARKKINOILLE ENERGIAPUUKOHTEEN TUNNISTAMINEN JA OHJAAMINEN MARKKINOILLE METSÄ metsänomistajat PROMOOTTORI metsäsuunnittelu ja -neuvonta MARKKINAT polttopuu- ja lämpöyrittäjät metsäpalveluyrittäjät energiayhtiöt metsänhoitoyhdistykset

Lisätiedot

Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI)

Forest Big Data (FBD) -tulosseminaari Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI) Forest Big Data (FBD) -tulosseminaari 8.3.2016 Helsingin yliopiston metsätieteiden laitos & Maanmittauslaitoksen paikkatietokeskus (FGI) Markus Holopainen, Aluepohjaista inventointia vai yksinpuintulkintaa?

Lisätiedot

Nikkarilan Laserkeilausprojekti

Nikkarilan Laserkeilausprojekti Tomi Miettinen Nikkarilan Laserkeilausprojekti Opinnäytetyö Metsätalouden koulutusohjelma Toukokuu 2009 Opinnäytetyön päivämäärä 6.5.2009 Tekijä Tomi Miettinen Koulutusohjelma ja suuntautuminen Metsätalouden

Lisätiedot

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola

Liikehavaintojen estimointi langattomissa lähiverkoissa. Diplomityöseminaari Jukka Ahola Liikehavaintojen estimointi langattomissa lähiverkoissa Diplomityöseminaari Jukka Ahola ESITYKSEN SISÄLTÖ Työn tausta Tavoitteen asettelu Johdanto Liikehavaintojen jakaminen langattomassa mesh-verkossa

Lisätiedot

Leimikon arvosaanto ja puukaupan tehostaminen. Jukka Malinen, Harri Kilpeläinen, Tapio Wall & Erkki Verkasalo

Leimikon arvosaanto ja puukaupan tehostaminen. Jukka Malinen, Harri Kilpeläinen, Tapio Wall & Erkki Verkasalo Leimikon arvosaanto ja puukaupan tehostaminen Jukka Malinen, Harri Kilpeläinen, Tapio Wall & Erkki Verkasalo / Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi

Lisätiedot

Laskelma Jyväskylän kaupungin metsien kehityksestä

Laskelma Jyväskylän kaupungin metsien kehityksestä Laskelma Jyväskylän kaupungin metsien kehityksestä Metsävara-asiantuntija Mikko Lumperoinen Tapio Silva Oy Tammikuu 218 Jyväskylän kaupungin metsävarat tässä hakkuulaskelmassa Nykytilanne 27.11.217 Pinta-ala:

Lisätiedot

METSÄNTUTKIMUSLAITOKSEN MÄÄRÄYS PUUTAVARAN MITTAUKSEEN LIITTYVISTÄ YLEISISTÄ MUUNTOLUVUISTA

METSÄNTUTKIMUSLAITOKSEN MÄÄRÄYS PUUTAVARAN MITTAUKSEEN LIITTYVISTÄ YLEISISTÄ MUUNTOLUVUISTA Metsäntutkimuslaitos Jokiniemenkuja 1 01370 VANTAA MÄÄRÄYS Nro 1/2013 Päivämäärä 27.6.2013 Dnro 498/62/2013 Voimassaoloaika 1.7.2013 toistaiseksi Valtuutussäännökset Laki puutavaran mittauksesta (414/2013)

Lisätiedot

Energiapuukorjuukohteiden tarkastustulokset ja Hyvän metsänhoidon suositusten näkökulma. Mikko Korhonen Pohjois-Karjalan metsäkeskus

Energiapuukorjuukohteiden tarkastustulokset ja Hyvän metsänhoidon suositusten näkökulma. Mikko Korhonen Pohjois-Karjalan metsäkeskus Energiapuukorjuukohteiden tarkastustulokset ja Hyvän metsänhoidon suositusten näkökulma Mikko Korhonen Pohjois-Karjalan metsäkeskus Mitä on korjuujälki? Metsikön puuston ja maaperän tila puunkorjuun jälkeen.

Lisätiedot

Energiapuun korjuu ja kasvatus

Energiapuun korjuu ja kasvatus Energiapuun korjuu ja kasvatus Jaakko Repola Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi Metsähakkeen käyttö Suomen ilmasto- ja energiastrategia 2001:

Lisätiedot

Taimettuminen ja taimikon hoito männyn luontaisessa uudistamisessa Eero Kubin ja Reijo Seppänen Metsäntutkimuslaitos Oulu

Taimettuminen ja taimikon hoito männyn luontaisessa uudistamisessa Eero Kubin ja Reijo Seppänen Metsäntutkimuslaitos Oulu Taimettuminen ja taimikon hoito männyn luontaisessa uudistamisessa Eero Kubin ja Reijo Seppänen Metsäntutkimuslaitos Oulu Metsänuudistaminen pohjoisen erityisolosuhteissa Tutkimushankkeen loppuseminaari

Lisätiedot

Metsävaratiedon saatavuus ja käytettävyys energiapuun hankinnassa

Metsävaratiedon saatavuus ja käytettävyys energiapuun hankinnassa Metsävaratiedon saatavuus ja käytettävyys energiapuun hankinnassa Dos. Jari Vauhkonen Yliopistonlehtori, HY (-> 28.2.2014) Yliopistotutkija, ISY (1.3.2014 ->) Sisältöä 1. Kaukokartoituspohjainen metsävaratieto

Lisätiedot

Keskijännitteisten ilmajohtojen vierimetsien hoidon kehittäminen

Keskijännitteisten ilmajohtojen vierimetsien hoidon kehittäminen Keskijännitteisten ilmajohtojen vierimetsien hoidon kehittäminen Risto Ranta, Hannu Niemelä 9.10.2013 08.10.13 1 Taustaa MTK:n/SLC:n ja Energiateollisuus ry:n yhteinen suositus Viime vuosien myrskyt Sähkömarkkinalain

Lisätiedot

Metsään peruskurssi. Sisältö

Metsään peruskurssi. Sisältö Laserkuva Metla Metsään peruskurssi Metsäomaisuuden hoito 19.3.2013 Metsävaratieto ja sen hyödyntäminen Marko Mustonen Metsäneuvoja Suomen metsäkeskus, Julkiset palvelut / Keski-Suomi Sisältö 1. Yleistä

Lisätiedot

Energiapuun korjuu koneellisesti tai miestyönä siirtelykaataen

Energiapuun korjuu koneellisesti tai miestyönä siirtelykaataen TTS:n tiedote Metsätyö, -energia ja yrittäjyys 1/2011 (746) BIOENERGIA Energiapuun korjuu koneellisesti tai miestyönä siirtelykaataen Tutkijat Kaarlo Rieppo ja Arto Mutikainen, TTS Metsurin tekemään siirtelykaatoon

Lisätiedot

ARVOMETSÄ METSÄN ARVO 15.3.2016

ARVOMETSÄ METSÄN ARVO 15.3.2016 SISÄLTÖ MAA JA PUUSTO NETTONYKYARVO NETTOTULOT JA HAKKUUKERTYMÄT ARVOMETSÄ METSÄN ARVO 15.3.2016 KUNTA TILA REK.NRO 1234567892 LAATIJA: Antti Ahokas, Metsäasiantuntija 2 KASVUPAIKKOJEN PINTAALA JA PUUSTO

Lisätiedot

Kuusen kasvun ja puutavaran laadun ennustaminen

Kuusen kasvun ja puutavaran laadun ennustaminen Kuusen kasvun ja puutavaran laadun ennustaminen Anu Kantola Työ on aloitettu omana hankkeenaan 1.1.2001 Suomen Luonnonvarain Tutkimussäätiön rahoittamana, siirtyi Puro -hankkeen rahoittamaksi 1.1.2004

Lisätiedot

TAIMIKON KÄSITTELYN AJOITUKSEN VAIKUTUS TYÖN AJANMENEKKIIN

TAIMIKON KÄSITTELYN AJOITUKSEN VAIKUTUS TYÖN AJANMENEKKIIN TAIMIKON KÄSITTELYN AJOITUKSEN VAIKUTUS TYÖN AJANMENEKKIIN Projektiryhmä Simo Kaila, Reima Liikkanen Rahoittajat Metsähallitus, Metsäliitto Osuuskunta, Stora Enso Oyj, UPM-Kymmene Oyj ja Yksityismetsätalouden

Lisätiedot

Dendron Resource Surveys Inc. Arbonaut Oy Finnish Forest Research Institute University of Joensuu

Dendron Resource Surveys Inc. Arbonaut Oy Finnish Forest Research Institute University of Joensuu METLA Dendron Resource Surveys Inc. Arbonaut Oy Finnish Forest Research Institute University of Joensuu Northern Boreal Forest Information Products Based on Earth Observation Data (2005 2007) LocalMELA

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi lyhyesti. a) a, c, e, g, b),,, 7,, Ratkaisut: a) i ja k - oikea perustelu ja oikeat kirjaimet, annetaan

Lisätiedot