6. helmikuuta Syventävien opintojen seminaari Joulupukin fysiikka. Juho Arjoranta

Koko: px
Aloita esitys sivulta:

Download "6. helmikuuta 2014. Syventävien opintojen seminaari juho.arjoranta@helsinki. Joulupukin fysiikka. Juho Arjoranta"

Transkriptio

1 Syventävien opintojen seminaari 6. helmikuuta 2014

2 Sisällysluettelo

3 Maapallolla on tällä hetkellä noin 7,2 milrdia ihmistä

4 Maapallolla on tällä hetkellä noin 7,2 milrdia ihmistä Noin 2.2 milrdia ihmisistä on lapsia (alle 18 v.)

5 Maapallolla on tällä hetkellä noin 7,2 milrdia ihmistä Noin 2.2 milrdia ihmisistä on lapsia (alle 18 v.) Noin 30% ihmisistä on kristittyjä

6 Maapallolla on siis noin 660 miljoonaa lasta, jotka uskovat Joulupukkiin

7 Maapallolla on siis noin 660 miljoonaa lasta, jotka uskovat Joulupukkiin Keskimäärin perheissä on kaksi lasta, joten pitää vierailla 330 miljoonassa kodissa

8 käytettävissä oleva aika Jos Joulupukki matkustaa idästä länteen, niin hänellä on noin 32 tuntia aikaa kaa kaikki laht

9 käytettävissä oleva aika Jos Joulupukki matkustaa idästä länteen, niin hänellä on noin 32 tuntia aikaa kaa kaikki laht täytyy käydä 2865 kodissa per sekunti

10 Asuttu pinta-ala Suurinosa ihmisistä asuu 45 asteen sisällä päiväntasaasta

11 Asuttu pinta-ala Suurinosa ihmisistä asuu 45 asteen sisällä päiväntasaasta } h = km => A asuttu = 2πRh 4, km 2

12 Asuttu pinta-ala Suurinosa ihmisistä asuu 45 asteen sisällä päiväntasaasta } h = km => A asuttu = 2πRh 4, km 2 Tästä noin 70 % on merta, joten A asuttu 2, km 2

13 Kokonaisuudessaan matkustettu matka Saatua asuttua pinta-alaa vastaava suorakulmio km 1 koti per 0,85 km km

14 Kokonaisuudessaan matkustettu matka Saatua asuttua pinta-alaa vastaava suorakulmio km 1 koti per 0,85 km km Keskimääräinen välimatka on noin 0.94 km

15 Kokonaisuudessaan matkustettu matka Saatua asuttua pinta-alaa vastaava suorakulmio km 1 koti per 0,85 km km Keskimääräinen välimatka on noin 0.94 km Kokonaisuudessaan matkustettu matka on 310,6 miljoonaa km

16 Kokonaisuudessaan matkustettu matka Saatua asuttua pinta-alaa vastaava suorakulmio km 1 koti per 0,85 km km Keskimääräinen välimatka on noin 0.94 km Kokonaisuudessaan matkustettu matka on 310,6 miljoonaa km keskinopeuden täytyy siis olla v pukki = 2690km/s

17 Poron säde Suomalainen poro on keskimäärin 2 metriä pitkä painaa 150 kg

18 Poron säde Suomalainen poro on keskimäärin 2 metriä pitkä painaa 150 kg Jos oletamme, että poron tiheys on suunnilleen sama kuin ihmisellä oletamme poron olevan sylinterin muotoinen m r poro = πhρ 15cm

19 Poron kokema ilmanvastus F = 1 2 ρ ilmav 2 pukki A poroc v = 1, N missä käytimme ρ ilma = 1, 3 kg/m 3, v pukki = 2690km/s, A poro = πr 2 poro C v = 0.42

20 Poron kokema ilmanvastus F = 1 2 ρ ilmav 2 pukki A poroc v = 1, N missä käytimme ρ ilma = 1, 3 kg/m 3, v pukki = 2690km/s, A poro = πr 2 poro C v = 0.42 Tämä vastaa sitä, että poroihin siirtyy energiaa teholla 375,6 PW

21 Poron kokema ilmanvastus Voisimme tietysti olettaa, että Joulupukki käyttää aerodynaamisia poro

22 Poron kokema ilmanvastus Voisimme tietysti olettaa, että Joulupukki käyttää aerodynaamisia poro Jos otamme C v = 0.04, niin poroihin siirtyy energiaa teholla 36 PW

23 Poron kokema ilmanvastus Voisimme tietysti olettaa, että Joulupukki käyttää aerodynaamisia poro Jos otamme C v = 0.04, niin poroihin siirtyy energiaa teholla 36 PW Tietysti myös porot olisivat volframia, jotta ne kestävät hyvin kitkan aiheuttaman lämpenemisen

24 Poron kokema ilmanvastus Voisimme tietysti olettaa, että Joulupukki käyttää aerodynaamisia poro Jos otamme C v = 0.04, niin poroihin siirtyy energiaa teholla 36 PW Tietysti myös porot olisivat volframia, jotta ne kestävät hyvin kitkan aiheuttaman lämpenemisen Tällöin kestäisi 3,23 ns ennen kuin porot saavuttaisivat kiehumispisteen

25 Reen yhteispaino Jos kaikki lapset toivovat Joulupukilta uutta ipad Airia (470 g), niin laht painavat yhteensä tonnia

26 Reen yhteispaino Poro voi vetää perässään noin tuplasti oman painonsa verran, joten tarvitaan poroa vetämään rekeä Jos kaikki lapset toivovat Joulupukilta uutta ipad Airia (470 g), niin laht painavat yhteensä tonnia

27 Reen yhteispaino Jos kaikki lapset toivovat Joulupukilta uutta ipad Airia (470 g), niin laht painavat yhteensä tonnia Poro voi vetää perässään noin tuplasti oman painonsa verran, joten tarvitaan poroa vetämään rekeä Tällöin reki yhteensä painaa tonnia

28 v pukki = 2690 km/s Oletetaan, että Pukki käyttää 1/3 asta kiihdyttämiseen/ hidastamiseen Pukin kokemat G-voimat t = 1/2865 s per koti

29 v pukki = 2690 km/s Oletetaan, että Pukki käyttää 1/3 asta kiihdyttämiseen/ hidastamiseen a 313 m/s 2 32 g Pukin kokemat G-voimat t = 1/2865 s per koti

30 v pukki = 2690 km/s Oletetaan, että Pukki käyttää 1/3 asta kiihdyttämiseen/ hidastamiseen a 313 m/s 2 32 g Hävittäjä lentäjät kestävät 6 g:tä ilman lisävarusteita Pukin kokemat G-voimat t = 1/2865 s per koti

31 v pukki = 2690 km/s Oletetaan, että Pukki käyttää 1/3 asta kiihdyttämiseen/ hidastamiseen a 313 m/s 2 32 g Hävittäjä lentäjät kestävät 6 g:tä ilman lisävarusteita 18 g:tä aiheuttaa vaurioita verisuoniin Pukin kokemat G-voimat t = 1/2865 s per koti

32 v pukki = 2690 km/s Oletetaan, että Pukki käyttää 1/3 asta kiihdyttämiseen/ hidastamiseen a 313 m/s 2 32 g Hävittäjä lentäjät kestävät 6 g:tä ilman lisävarusteita 18 g:tä aiheuttaa vaurioita verisuoniin Ihminen on selvinnyt parhaimmillaan 46,2 g:stä Pukin kokemat G-voimat t = 1/2865 s per koti

33 v pukki = 2690 km/s Oletetaan, että Pukki käyttää 1/3 asta kiihdyttämiseen/ hidastamiseen a 313 m/s 2 32 g Hävittäjä lentäjät kestävät 6 g:tä ilman lisävarusteita 18 g:tä aiheuttaa vaurioita verisuoniin Ihminen on selvinnyt parhaimmillaan 46,2 g:stä Pukin kokemat G-voimat t = 1/2865 s per koti

34 Pukin kokemat G-voimat Olettaen, että Joulupukki painaa 160 kg F 50kN

35 Pukin kokemat G-voimat Olettaen, että Joulupukki painaa 160 kg F 50kN voima, jonka matkusta kokee törmätessään autolla seinään vauhdilla 70 km/h Yllä oletimme, että auton pysähtymismatka on 60 cm

36 on noin v pukki = 2690 km/s

37 on noin v pukki = 2690 km/s Kitkan vaikutuksesta porot saavuttavat kiehumispisteen noin 3 ns

38 on noin v pukki = 2690 km/s Kitkan vaikutuksesta porot saavuttavat kiehumispisteen noin 3 ns Reki - poroineen lahjoijeen - painaa yhteensä tonnia

39 on noin v pukki = 2690 km/s Kitkan vaikutuksesta porot saavuttavat kiehumispisteen noin 3 ns Reki - poroineen lahjoijeen - painaa yhteensä tonnia Joulupukilla on noin viiden hävittäjälentäjän kunto

40 on noin v pukki = 2690 km/s Kitkan vaikutuksesta porot saavuttavat kiehumispisteen noin 3 ns Reki - poroineen lahjoijeen - painaa yhteensä tonnia Joulupukilla on noin viiden hävittäjälentäjän kunto Ainoa järkevä johtopäätös on siis, että Joulupukki toimii magialla

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

Luvun 12 laskuesimerkit

Luvun 12 laskuesimerkit Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä.

Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä. Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma, joka löytyy netistä. Alla on a)-vaiheen monivalintakysymyksiä. Pääsykokeessa on joko samoja tai samantapaisia. Perehdy siis huolella niihin.

Lisätiedot

Rauhallista ja makoisaa joulua

Rauhallista ja makoisaa joulua Rauhallista ja makoisaa joulua Sekä onnellista ja menestyksellistä vuotta 2008 Toivoo Lahden Klubitalon väki Pikku perinteitä jouluksi Päivä isännän puolelle eli pitenee jo kukonaskeleella. Tuuli ja sade

Lisätiedot

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 25 26

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 15.11.2012 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

AMMATIKKA top

AMMATIKKA top AMMATIKKA top 6..006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA. Tekniikka ja liikenne: O. Matkailu-,

Lisätiedot

AMMATIKKA top 16.11.2006

AMMATIKKA top 16.11.2006 AMMATIKKA top 16.11.2006 Toisen asteen ammatillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU Nimi Oppilaitos Koulutusala Luokka Sarjat: MERKITSE OMA SARJA 1. Tekniikka ja liikenne: O 2.

Lisätiedot

Katteen palovaatimus vaakasuorassa palokatkossa

Katteen palovaatimus vaakasuorassa palokatkossa TUTKIMUSRAPORTTI VTT-R-02407-13 Katteen palovaatimus vaakasuorassa palokatkossa Kirjoittaja: Luottamuksellisuus: Esko Mikkola Julkinen 2 (5) Sisällysluettelo 1 Tehtävä... 3 2 Aineisto... 3 3 Palotekninen

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:

Mekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä: Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN alculus Lukion M Geometia Paavo Jäppinen lpo Kupiainen Matti Räsänen Otava PIKTESTIN J KERTUSKOKEIEN TEHTÄVÄT RTKISUINEEN Geometia (M) Pikatesti ja ketauskokeet Tehtävien atkaisut 1 Pikatesti (M) 1 Määitä

Lisätiedot

Henkilöauton energiankäyttö ja hybridiauton energiatehokkuus

Henkilöauton energiankäyttö ja hybridiauton energiatehokkuus Henkilöauton energiankäyttö ja hybridiauton energiatehokkuus Markku Ikonen Turun ammattikorkeakoulu markku.ikonen@turkuamk.fi 1 Miksi polttoaineenkulutuksta pitäisi alentaa? Päästöt ja säästöt 1. HIILIDIOKSIDIPÄÄSTÖT

Lisätiedot

Muunnokset ja mittayksiköt

Muunnokset ja mittayksiköt Muunnokset ja mittayksiköt 1 a Mitä kymmenen potenssia tarkoittavat etuliitteet m, G ja n? b Mikä on massan (mass) mittayksikkö SI-järjestelmässäa? c Mikä on painon (weight) mittayksikkö SI-järjestelmässä?

Lisätiedot

Ilmanvaihtosäleikko. Mitat

Ilmanvaihtosäleikko. Mitat Ilmanvaihtosäleikko B Mitat B+/A+ B-/A- Tuotekuvaus B on kiinteillä vaakasäleillä varustettu suorakaiteen muotoinen alumiinisäleikkö. B soveltuu käytettäväksi sekä tulo- että poistoilmalle, ja vakiotoimitukseen

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

MATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:. AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2)

SMG-4500 Tuulivoima. Kuudennen luennon aihepiirit. Tuulivoimalan energiantuotanto-odotukset AIHEESEEN LIITTYVÄ TERMISTÖ (1/2) SMG-4500 Tuulivoima Kuudennen luennon aihepiirit Tuulivoimalan energiantuotanto-odotukset Aiheeseen liittyvä termistö Pinta-alamenetelmä Tehokäyrämenetelmä Suomen tuulivoimatuotanto 1 AIHEESEEN LIITTYVÄ

Lisätiedot

MATEMATIIKKA PAOJ2 Harjoitustehtävät

MATEMATIIKKA PAOJ2 Harjoitustehtävät MATEMATIIKKA PAOJ2 Harjoitustehtävät 6. Laske kuvan suorakulmion pinta-ala. ( T ) 1. Täytä taulukko m 12 1,45 0,805 2. Täytä taulukko mm 12345 4321 765 23,5 7. Laske kuvan suorakulmion pinta-ala.( T )

Lisätiedot

Tehnyt 9B Tarkistanut 9A

Tehnyt 9B Tarkistanut 9A Tehnyt 9B Tarkistanut 9A Kuitinmäen koulu Syksy 2006 Avaruusgeometrian soveltavia tehtäviä... 3 1. Päästäänkö uimaan?... 3 2. Mummon kahvipaketti... 3 3. Tiiliseinä... 4 4. SISUSTUSTA... 5 5. Kirkon torni...

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

2.11 Väliaineen vastus

2.11 Väliaineen vastus Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa

Lisätiedot

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1

Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Tekijät: Tarja Kokkila, Maija Salmivaara OuLUMA, sivu 1 Mittakaava Avainsanat: yhdenmuotoisuus, suurennos, pienennös, mittakaava, mittaaminen, pinta-ala, tilavuus, suhde Luokkataso: 3-9 Välineet: kynä,

Lisätiedot

KANTTIKONE MAGNEETTIPURISTUKSELLA

KANTTIKONE MAGNEETTIPURISTUKSELLA KANTTIKONE MAGNEETTIPURISTUKSELLA Puristusalue Kantin terä (kapeampi) Teräsäätö Jatkoleuka Magneettipöytä Kääntövarsi Mahdollista Ei mahdollista A: Käyttöpaneli B: Palavaste C: Leikkuri (lisäv.) D: Jalkakytkin

Lisätiedot

Tuntisuunnitelma 2 JUNA EI VOI VÄISTÄÄ

Tuntisuunnitelma 2 JUNA EI VOI VÄISTÄÄ Tuntisuunnitelma 2 JUNA EI VOI VÄISTÄÄ JUNA EI VOI VÄISTÄÄ Taso: Peruskoulun vuosiluokat 1-6, tehtäviä eri ikäryhmille Ajallinen kesto: n. 45 minuuttia Oppiaineet, joiden tunneilla aineistoa voi hyödyntää:

Lisätiedot

Onnea ostamalla - vai onnea ostamatta? www.nuukuusviikko.net

Onnea ostamalla - vai onnea ostamatta? www.nuukuusviikko.net Onnea ostamalla - vai onnea ostamatta? Mikä ihmeen kulutus? Minä ja tavarat Mikä on turhin tavarasi? Mitä tavaraa toivoisit ja miksi? Mikä sinun tekemisistäsi on kuluttamista? Mikä ihmeen kaari? Tavaran

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68

Näyte. Peruslaskutoimitukset. Perustehtävät. Alkulämmittely. A Laske a) 1 + 2 3 35 b) 7 c) 2 7 + 8 7 d) 32 + 75 + 68 LUKKPIRUETTEJ Peruslaskutoimitukset Perustehtävät Laske a) 1 + 2 5 b) 7 c) 2 7 + 8 7 d) 2 + 75 + 68 Muunna sekunneiksi a) 8 min b) 4,5 min Muunna minuuteiksi. a) 120 s b) 150 s c) 1 h 1. Jalkapallo-ottelun

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

HOXTER gmbh,kirchgasse 1, 91217 Hersbruck Tel.: 09151 8659 163 SIVU 2

HOXTER gmbh,kirchgasse 1, 91217 Hersbruck Tel.: 09151 8659 163 SIVU 2 TEKNISET TIEDOT Tel.: 09151 8659 163 SIVU 2 SISÄLLYS TAKAT 4 HAKA 37/50 4 HAKA 63/51 8 HAKA 67/51h 12 HAKA 89/45h 16 ECKA 67/45/51h 18 VESIKIERTOISET TAKAT 26 HAKA 37/50 W, WI 26 HAKA 63/51W, WI 30 HAKA

Lisätiedot

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka

Kenguru Ecolier, ratkaisut (1 / 5) 4. - 5. luokka 3 pisteen tehtävät Kenguru Ecolier, ratkaisut (1 / 5) 1. Missä kenguru on? (A) Ympyrässä ja kolmiossa, mutta ei neliössä. (B) Ympyrässä ja neliössä, mutta ei kolmiossa. (C) Kolmiossa ja neliössä, mutta

Lisätiedot

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu. 1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

Työ 3: Veden höyrystymislämmön määritys

Työ 3: Veden höyrystymislämmön määritys Työ 3: Veden höyrystymislämmön määritys Työryhmä: Tehty (pvm): Hyväksytty (pvm): Hyväksyjä: 1. Tavoitteet Työssä vettä höyrystetään uppokuumentimella ja mitataan jäljellä olevan veden painoa sekä höyrystymiseen

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen

Valon havaitseminen. Näkövirheet ja silmän sairaudet. Silmä Näkö ja optiikka. Taittuminen. Valo. Heijastuminen Näkö Valon havaitseminen Silmä Näkö ja optiikka Näkövirheet ja silmän sairaudet Valo Taittuminen Heijastuminen Silmä Mitä silmän osia tunnistat? Värikalvo? Pupilli? Sarveiskalvo? Kovakalvo? Suonikalvo?

Lisätiedot

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja.

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. 113 11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja. Esim. Kun sulatetaan 63 g kuparia ja 37 g sinkkiä, saadaan 100 g messinkiä. 63 100 = 114

Lisätiedot

JOS ON VINTTURI, ON RATKAISUKIN!

JOS ON VINTTURI, ON RATKAISUKIN! JOS ON VINTTURI, TM ON RATKAISUKIN! TUO TEHO TM SINNE MISSÄ SITÄ TARVITSET! Portable Winch Co. on maailman johtava polttomoottorivintturi valmistaja. Toisin kuin muut vintturit, Portable Winch on todella

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1

Mb02 Koe 26.1.2015 Kuopion Lyseon lukio (KK) sivu 1/1 Mb0 Koe 6.1.015 Kuopion Lyseon lukio (KK) sivu 1/1 Kokeessa on kolme osiota: A, B1 ja B. Osiossa A et saa käyttää laskinta. Palautettuasi Osion A ratkaisut, saat laskimen pöydältä. Taulukkokirjaa voit

Lisätiedot

Tekniset tiedot Mallivuosi 2014. Amarok

Tekniset tiedot Mallivuosi 2014. Amarok Tekniset tiedot Mallivuosi 2014 Amarok Näissä teknisissä tiedoissa kerrotaan polttoaineenkulutuksesta ja CO 2 -päästöistä. Erilaiset moottori-, vaihteisto- ja korivaihtoehdot ovat mahdollisia. Lisätietoja

Lisätiedot

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN!

ÄLÄ KÄÄNNÄ SIVUA ENNEN KUIN VALVOJA ANTAA LUVAN! B 1 (6) AMMATTIKORKEAKOULUJEN TEKNIIKAN JA LIIKENTEEN VALINTAKOE 28.5.2015 OSION 2 TEHTÄVÄT Osio 2 (Matematiikka + looginen päättely + fysiikka/kemia) LUE VASTAUSOHJEET C-OSAN (VASTAUSLOMAKKEEN) KANNESTA

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Torqeedo. Palkittu, suorituskykyinen sähköperämoottori.

Torqeedo. Palkittu, suorituskykyinen sähköperämoottori. Torqeedo. Palkittu, suorituskykyinen sähköperämoottori. Torqeedo on veneilijän tulevaisuutta. Perämoottori, joka menestyy sitä paremmin, mitä tiukemmaksi ympäristömääräykset käyvät. Markkinoiden tehokkaimmat

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Opetusmateriaali. Fermat'n periaatteen esittely

Opetusmateriaali. Fermat'n periaatteen esittely Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

SCANFLYERS.COM. Maahantuoja: Scandinavian Flyers PL 10, 01651 Vantaa Puh. 09-849 27 00 Fax. 09-853 14 98 Email: info@fm-iap.fi www.scanflyers.

SCANFLYERS.COM. Maahantuoja: Scandinavian Flyers PL 10, 01651 Vantaa Puh. 09-849 27 00 Fax. 09-853 14 98 Email: info@fm-iap.fi www.scanflyers. SCANFLYERS.COM Maahantuoja: Scandinavian Flyers PL 10, 01651 Vantaa Puh. 09-849 27 00 Fax. 09-853 14 98 Email: info@fm-iap.fi www.scanflyers.com MD-3 Rider: Hyvät ominaisuudet, mukava ohjaamo, tyylikästä

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). MAA1 päässälaskut Nimi: Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et). 1. 4 (-5) + (-3) (-6) 2. 1 3 2 5 3 2 3. 5 8 6 7 4. 3 2 3 2 : 3 3 5. 1 0 1 1 1 2 1 3 2 2 2 6. 2 3 3 7. 2 1203 8 400

Lisätiedot

Harjoitus 2: Hydrologinen kierto 30.9.2015

Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 12-14 R002/R1 1) Globaalit vesikysymykset Ke 23.9 klo 12-14 R002/R1 1. harjoitus: laskutupa Ke 30.9 klo

Lisätiedot

POWER WITH HYDRAULICS

POWER WITH HYDRAULICS POWER WITH HYDRAULICS PELASTUSKALUSTO REHOBOT Hydraulics on ruotsalainen 1900-luvun alussa perustettu korkeapainehydraulisiin tuotteisiin erikoistunut yritys. Yrityksen tuotteet ovat tunnettuja korkeasta

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

13. Sulan metallin nostovoima

13. Sulan metallin nostovoima 13. Sulan metallin nostovoima Raimo Keskinen, Pekka Niemi Tampereen ammattiopisto Jos putkessa, jonka poikkipinta-ala on A, painetaan männällä nestepinnat eri korkeuksille, syrjäytetään nestettä tilavuuden

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

MAA3 HARJOITUSTEHTÄVIÄ

MAA3 HARJOITUSTEHTÄVIÄ MAA3 HARJOITUSTEHTÄVIÄ 1. Selosta, miten puolitat (jaat kahtia) annetun koveran kulman pelkästään harppia ja viivoitinta käyttäen. 2. Piirrä kolmio, kun tunnetaan sen kaksi kulmaa (α ja β) sekä näiden

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. AIKAA KOKEEN TEKEMISEEN 90 MINUUTTIA MUKANA KYNÄ, KUMI,

Lisätiedot

INTIAANIT JOTKA EIVÄT JÄTTÄNEET JALANJÄLKIÄÄN METSÄÄN

INTIAANIT JOTKA EIVÄT JÄTTÄNEET JALANJÄLKIÄÄN METSÄÄN ENTRACON keskittyy kehittämään, valmistamaan, myymään ja huoltamaan pieniä ja keskisuuria ekologisia metsäkoneita, jotka ovat helposti muunneltavissa nykymetsätalouden asettamiin haasteisiin. Pieni pintapaine,

Lisätiedot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9

Lisätiedot

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm.

= A h, joten poikkipinta-alaksi saadaan. Rännin tilavuus V. 80 dm. 90 dm = 0,888... dm 0,89 dm 902 V. Poikkipinta-alan pitää olla. 0,89 dm. Pyramidi Geometria tetävien ratkaisut sivu 149 901 a on lieriö b ei ole, ojat eivät ole ytenevät c on d ei ole, lieriön määritelmän eto suora liikkuu suuntansa säilyttäen ja alaa louksi lätöaikkaansa käymättä

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

Yksi kone, monta tapaa työskennellä säästää aikaa ja tarkoittaa katetta urakoitsijalle. Suomalainen konealan asiantuntija.

Yksi kone, monta tapaa työskennellä säästää aikaa ja tarkoittaa katetta urakoitsijalle. Suomalainen konealan asiantuntija. Yksi kone, monta tapaa työskennellä säästää aikaa ja tarkoittaa katetta urakoitsijalle. Suomalainen konealan asiantuntija. Monikäyttöiset tela-alustaiset kaivukoneet 6MCR 8MCR 10MCR 712MC 714MCe Kokonaispaino

Lisätiedot

766323A-02 Mekaniikan kertausharjoitukset, kl 2012

766323A-02 Mekaniikan kertausharjoitukset, kl 2012 766323A-02 Mekaniikan kertausharjoitukset, kl 2012 Gravitaatio, liikemäärämomentti, ellipsiradat T 1: Oleta, että Marsin kuu Phobos kiertää Marsia ympyrärataa pitkin. Ympyrän säde on 9380 km ja kiertoaika

Lisätiedot

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA 1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja

Lisätiedot

UW40 risuraivain koneellisessa taimikonhoidossa. Markus Strandström Asko Poikela

UW40 risuraivain koneellisessa taimikonhoidossa. Markus Strandström Asko Poikela UW40 risuraivain koneellisessa taimikonhoidossa Markus Strandström Asko Poikela UW40 risuraivain + Tehojätkä pienmetsäkone Paino 1 800 kg Leveys 1,5 metriä Keinutelit, kahdeksan vetävää pyörää Bensiinimoottori

Lisätiedot

Tekniset tiedot Mallivuosi 2014. Caravelle

Tekniset tiedot Mallivuosi 2014. Caravelle Tekniset tiedot Mallivuosi 2014 Caravelle Näissä teknisissä tiedoissa kerrotaan polttoaineenkulutuksesta ja CO 2 -päästöistä. Erilaiset moottori-, vaihteisto- ja korivaihtoehdot ovat mahdollisia. Lisätietoja

Lisätiedot

Kourakuormaimet ja metsäperävaunut tuottavia ja luotettavia metsäkoneita

Kourakuormaimet ja metsäperävaunut tuottavia ja luotettavia metsäkoneita Kourakuormaimet ja metsäperävaunut tuottavia ja luotettavia metsäkoneita FOREST LINE Master-sarja Valitse valmiiksi harkittu Nokkayhdistelmä, erillinen kuormain tai vaunu käyttötarpeidesi mukaan HK 4372HR

Lisätiedot

Muurauspukin käyttöohje

Muurauspukin käyttöohje Muurauspukin käyttöohje Muurauspukin käyttöohje SISÄLTÖ 1. Alkusanat ja ehdot. 2. Turvallisuus vaatimukset. 3. Muurauspukin pystytys. 4. Korotuskehän asennus. 5. Alumiinitason asennus. 6. Seinäkiinnikkeen

Lisätiedot

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain.

OSA 3: GEOMETRIAA. Alkupala. Kokoa neljästä alla olevasta palasesta M kirjain. OSA 3: GEOMETRIAA Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Kokoa neljästä alla olevasta palasesta M kirjain. G. GEOMETRIAA Hannu ja

Lisätiedot

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2014 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2014 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

HePon ryhmäajokoulutus Ajomuodostelmat

HePon ryhmäajokoulutus Ajomuodostelmat HePon ryhmäajokoulutus 9.4.2011 Ajomuodostelmat Peesaus Edellä ajavaan etäisyys 30 cm Kovissa nopeuksissa parikin metriä jo auttaa Älä aja renkaat limittäin Pidä veto koko ajan päällä Älä kiihdytä ja rullaa

Lisätiedot

Tuulisuuden kartoitus Suomessa

Tuulisuuden kartoitus Suomessa Tuulisuuden kartoitus Suomessa Tuuliatlas on tärkeä tietolähde Tuuliatlas-hanke Nykyinen tuuliatlas on vuodelta 1991 Kuvaa tuulioloja 30 40 metrin korkeudelta Puutteellinen ja epätarkka Vanhasen II hallituksen

Lisätiedot

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen

1) Maan muodon selvittäminen. 2) Leveys- ja pituuspiirit. 3) Mittaaminen 1) Maan muodon selvittäminen Nykyään on helppo sanoa, että maa on pallon muotoinen olet todennäköisesti itsekin nähnyt kuvia maasta avaruudesta kuvattuna. Mutta onko maapallomme täydellinen pallo? Tutki

Lisätiedot

1.4 Suhteellinen liike

1.4 Suhteellinen liike Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan

Lisätiedot

KÄYTTÖOHJE. Myynti ja valmistus: NWE Network Engineering Oy Uppstutåget 2 FI-64200 Närpiö www.nwe.fi info@nwe.fi

KÄYTTÖOHJE. Myynti ja valmistus: NWE Network Engineering Oy Uppstutåget 2 FI-64200 Närpiö www.nwe.fi info@nwe.fi KÄYTTÖOHJE Yleisesti FIX kuorman sidontapeite on sidontaväline, sillä voi korvata muita sidontamenetelmiä, esim. esim liinasidontaa. FIX valmistetaan kutomalla erikoiskuidusta ja päällystämällä kangas

Lisätiedot

JOULUMAA Joulumaahan matkamies jo moni tietä kysyy; Sinne saattaa löytää, vaikka paikallansa pysyy Katson taivaan tähtiä ja niiden helminauhaa

JOULUMAA Joulumaahan matkamies jo moni tietä kysyy; Sinne saattaa löytää, vaikka paikallansa pysyy Katson taivaan tähtiä ja niiden helminauhaa JOULUMAA Joulumaahan matkamies jo moni tietä kysyy; Sinne saattaa löytää, vaikka paikallansa pysyy Katson taivaan tähtiä ja niiden helminauhaa Itsestäni etsittävä on mun joulurauhaa Joulumaa on muutakin

Lisätiedot

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 )

3 Avaruusgeometria. Lieriö. 324. a) V = 30 20 12 = 7 200 (cm 3 ) 7 200 cm 3 = 7,2 dm 3 = 7,2 l. b) V = A p h = 30 15 = 450 (cm 3 ) Avaruusgeometria Lieriö 4. a) 0 0 1 7 00 (cm ) 7 00 cm 7, dm 7, l b) A p h 0 15 450 (cm ) 5. Kuution särmän pituus on a 1, cm. a) a 1, 1,78 1,7 (cm ) b) A 6a 6 1, 8,64 8,6 (cm ) 16 6. r d 8 (cm) A p h

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

SÄHKÖLÄMMITTIMET PEHMEÄÄ LÄMPÖÄ KOTIIN

SÄHKÖLÄMMITTIMET PEHMEÄÄ LÄMPÖÄ KOTIIN SÄHKÖLÄMMITTIMET PEHMEÄÄ LÄMPÖÄ KOTIIN RAUTAKESKO 1 Mukavaa lämpöä - miten ja miksi? Lämpö on yksi ihmisen perustarpeista. Lämpöä tarvitaan asuinhuoneissa: kotona ja vapaa-ajanasunnoissa, mökeillä, puutarhassa,

Lisätiedot

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu MTEMTIIKN KOE mmatiisen kouutuksen kaikkien aojen yhteinen matematiikan vamiuksien kipaiu Nimi: Oppiaitos:.. Kouutusaa:... Luokka:.. Sarjat: LIT MERKKI OMN SRJSI. Tekniikka ja iikenne:... Matkaiu-,ravitsemus-

Lisätiedot