Seuraava esimerkki on yhtälöparin sovellus tyypillisimmillään Lukion ekaluokat suunnittelevat luokkaretkeä Sitä varten tarvitaan tietysti rahaa ja siksi oppilaat järjestävät koko perheen hipat Hippoihin myydään kahta erihintaista lippua Lastenlippu maksaa viisi euroa ja aikuistenlippu kahdeksan euroa Hippojen jälkeen todetaan, että kävijöitä oli yhteensä 178 henkeä, ja rahaa tuli 1073 euroa Kuinka monta aikuistenlippua ja kuinka monta lastenlippua myytiin? Merkitään aikuisten määrää x:llä ja lasten määrää y:llä Koska aikuisten lipusta perittiin 8 euroa, niin aikuistenlippujen tuotto oli 8x euroa Vastaavasti, koska lastenlipun hinta oli 5 euroa, niin lastenlippujen tuotto oli 5y euroa Koska rahaa tuli 1073 euroa, niin 8x + 5y ja koska kävijöitä oli 180, niin x + y = 178 Näin saatiin yhtälöpari + y = 178 + 5y Ratkaistaan ylemmästä yhtälöstä y ja sijoitetaan alempaan yhtälöön Huomaa, että jälleen on syytä kuljettaa kahta riippumatonta yhtälöä mukana koko ajan joten = 178 x + 5 178 ( x) = 178 x + 890 5x ja siis = 61 = 117 Tarkistetaan vielä: 61 + 117 = 178 ja 61 8 + 117 5 Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta Huomaa, että koska etsittiin kahta lukua, niin tarvittiin myös kaksi riippumatonta ehtoa eli kaksi riippumatonta yhtälöä, että yksikäsitteinen ratkaisu voitiin löytää Jos yhtälöitä on vähemmän kuin tuntemattomia, ei asiasta tiedetä tarpeeksi Sellainen kysymys jää vaille vastausta Jos yhtälöitä on enemmän kuin tuntemattomia, voi käydä niin, että mikään ratkaisu ei täytä kaikkia ehtoja 1(5)
Esimerkki 1 Henkilö talletti kahdelle yhden vuoden määräaikaistilille rahaa Toisen tilin nimelliskorko oli,8% pa ja lähdevero 19% pa sekä toisen nimelliskorko oli,5% pa ja lähdevero 17% pa Talletusajan päätyttyä tileillä oli rahaa yhteensä 8 609,95 euroa, josta netto korkotuotto oli yhteensä 609,95 euroa Kuinka suuret olivat alkuperäiset talletukset? Merkitään alkuperäisiä pääomia x:llä ja y:llä Toisen tilin lähdevero on 19%, joten sen nettokoroksi jää ( 1 0,19 ),8% =,68% Vastaavasti toisen tilin nettokoroksi jää,075% Koska nettokorkotuotto oli kaikkiaan 609,95 euroa, oli alkuperäisten pääomien summa 8 609,95 609,95 = 8 000 Siis x + y = 8 000 Toinen yhtälö saadaan nettokoron yhteistuoton avulla: 0,068x + 0,0075y, missä siis kerroin 0,068 on edellä laskettu,68% ja kerroin 0,0075 vastaavasti,075% Tehtävämme on siis ratkaista yhtälöpari + y = 8000 0,068x + 0,0075y Tästä saadaan edelleen = 8000 x 0,068x + 0,0075y joten ja = 8000 x 0,068x + 0,0075 ( 8000 x) = 8000 x = 8000 x 609,95 581 0,00193x + 581 x = 0,00193 (5)
= 15000 Naputeltuasi laskinta pienen tovin lienet samaa mieltä tuloksesta = 13000 Tarkistathan, että nämä tulokset täyttävät tehtävän määrittelyssä annetut ehdot! Vastaus: Alkuperäiset pääomat olivat 15 000 euroa ja 13 000 euroa Esimerkki 13 Kuten voit lukea MAOLin taulujen ( painoksen) sivun 76 taulukosta, niin niin sanotusta invarteräksestä on rautaa 64 prosenttia ja nikkeliä loput eli 36 prosenttia Tämän lisäksi käytettävissä on metalliseosta, jossa on 70 prosenttia rautaa ja loput nikkeliä Tavoitteena on 3000 kg metalliseosta, jossa on 000 kg rautaa Kuinka paljon kutakin kahta metalliseosta on sekoitettava? Käytetään tarvittavasta invarteräksen määrästä merkintää x ja tarvittavasta toisen seoksen määrästä merkintää y Laaditaan asiaa selventävä taulukko Seos Seoksen massa, kg Fe, kg Ni, kg Invar x 0,64x 0,36x Toinen seos y 0,70y 0,30y Koska tavoitteena olevan metalliseoksen massa on 3000 kg, niin x + y = 3000 Kun toisaalta rautapitoisuudet ovat käytettävissä seoksissa 64% ja 70%, niin saadaan 0,64x + 0,70y = 500 On siis saatu yhtälöpari Kirjoitetaan se asianmukaiseen muotoon: + y = 3000 + 0,70 y = 000 Ratkaistaan 1 yhtälöstä y ja sijoitetaan toiseen yhtälöön Tuloksena saamme yhtälöparin + 0,70 ( 3000 x) = 00 Ratkaistaan tämä Poistetaan ensin sulkeet: + 100 0,70x = 000 Tästä saamme tuloksen 3(5)
0,06x = 100 eli = 1667 = 1333 Tarkistus: 0,64 1667kg + 0,70 1333 kg = 000 kg ja 1667 kg + 1333 kg = 000 kg Vastaus: Invarterästä on sekoitettava 1667 kiloa ja toista rautaseosta 1333 kiloa Otetaan vielä yksi esimerkki Tämä on hieman erityyppinen kuin tähänastiset yhtälöparien esimerkit Esimerkki 14 Kahden luvun tulo on 93 ja summa on 116 Mitkä luvut ovat? Tällä kertaa voimme aloittaa suoraan kirjoittamalla yhtälöpari näkyviin Se on y = 93 x + y = 116 Ratkaistaan alemmasta yhtälöstä y ja sijoitetaan ylempään Sitten sievennetään yhtälöt helpommin luettavaan muotoon ( 116 x) y = 93 y = 93 = 93 x + 116x 93 = 0 x + y = 116 = 116 x = 116 x = 116 x On siis ratkaistava yhtälöpari 116x + 93 = 0 = 116 x Koska yhtälöparin ylempi yhtälö on x:n toisen asteen yhtälö eikä siinä ole ollenkaan tuntematonta y, siihen voidaan soveltaa toisen asteen yhtälön ratkaisukaavaa Silloin saadaan x 1, 116 ± = ( 116) 4 1 93 1 4(5)
Kirjoittamalla x 1, haluan sanoa vain, että saamme ilmeisesti kaksi ratkaisua ja että sisällytän ne molemmat, eli ratkaisut x 1 ja x, yhteen merkintään x 1, Lyhyen laskimennäppäilysession tuloksena saamme luvut x 1 = 79 ja x = 37 Tästä edelleen kaksi arvoa y:lle, jotka ovat 37 ja 79 Tässä näkyvä symmetria johtuu siitä, että tuntemattomat x ja y ovat koko ajan samassa asemassa keskenään! Tarkistus: 79 37 = 93 ja 79 + 37 = 116 Vastaus: Luvut ovat 79 ja 37 5(5)