MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

Samankaltaiset tiedostot
RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

Matematiikan tukikurssi

Matematiikan tukikurssi

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

Insinöörimatematiikka IA

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtävä 1. Voidaanko seuraavat luvut esittää kahden neliön summina? Jos voidaan, niin kuinka monella eri tavalla? (i) n = 145 (ii) n = 770.

Tekijä Pitkä Matematiikka 11 ratkaisut luku 3

1 Eksponenttifunktion määritelmä

MATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

Matematiikan tukikurssi

Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Kertaa tarvittaessa induktiota ja rekursiota koskevia tietoja.

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

2 Pistejoukko koordinaatistossa

Solmu 3/ toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

3 x < < 3 x < < x < < x < 9 2.

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

3 x < < 3 x < < x < < x < 9 2.

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

Matematiikan peruskurssi 2

Tilastollinen päättely II, kevät 2017 Harjoitus 3B

2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.

Tekijä Pitkä matematiikka

B. 2 E. en tiedä C ovat luonnollisia lukuja?

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

3 10 ei ole rationaaliluku.

HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

1 sup- ja inf-esimerkkejä

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 4 Maanantai

MATEMATIIKAN JA TILASTOTIETEEN LAITOS

Vanhoja koetehtäviä. Analyyttinen geometria 2016

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

Matematiikan tukikurssi

Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

1 sup- ja inf-esimerkkejä

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

3.2 Polynomifunktion kulku. Lokaaliset ääriarvot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

****************************************************************** ****************************************************************** 7 Esim.

Kansainväliset matematiikkaolympialaiset 2013

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

l 1 2l + 1, c) 100 l=0

Miten osoitetaan joukot samoiksi?

! 7! = N! x 8. x x 4 x + 1 = 6.

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan perusteet taloustieteilij oille I

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

Analyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.

MATP153 Approbatur 1B Harjoitus 5 Maanantai

= = = 1 3.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Tenttiin valmentavia harjoituksia

Matematiikan tukikurssi, kurssikerta 3

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

1 Supremum ja infimum

EX1 EX 2 EX =

Ratkaisut vuosien tehtäviin

811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu

YKSIULOTTEINEN JÄNNITYSTILA

Tilastollinen päättömyys, kevät 2017 Harjoitus 6A

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

1 Peruslaskuvalmiudet

Harjoitustehtävien ratkaisuja

Ratkaisuehdotus 2. kurssikoe

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

LIITTEET Liite A Stirlingin kaavan tarkkuudesta...2. Liite B Lagrangen kertoimet...3

origo III neljännes D

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Selvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

Reaalilukuvälit, leikkaus ja unioni (1/2)

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

3 Yleinen toisen asteen yhtälö ja epäyhtälö

Paraabeli suuntaisia suoria.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

BM20A Integraalimuunnokset Harjoitus 8

Lasketaan esimerkkinä seuraava tehtävä. Monisteen sivulla 14 on vastaavanlainen. x 1

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Transkriptio:

MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku hä osallistuu lueoille 8 tutia, harjoituksii 4, ohjauksii 4 sekä tettii 4 tutia; (a) koko kurssi aikaa, (b) viikoittai, jos kurssi kestää 7 viikkoa? Ratkaisu. Työmäärä 4op 7h/op = 08h, josta 8h+4h+4h+4h=0h ohjattua eli 08h-0h=48h itseäistä työtä. Viikoittai 48h/7vko = h 7 h 5mi itseäistä työtä.. (Teht. s. 8.) Osoita iduktiolla, että + +3 +...+ = (+)(+) kaikilla {,,...}. Ratkaisu. : Ku =, ii väiteyhtälö vase puoli o = ja oikea puoli ( + )( + ) = 3 =, jote väite o totta, ku =. : Oletetaa, että yhtälö toteutuu jollaki {,,...}. Tällöi + + 3 +... + + ( + ) = ( + )( + ) + ( + ) = ( + )( + ) + ( + ) = ( + )( + 7 + ) ( + )( + )( + 3) = ( + )[( + ) + ][( + ) + ] = eli yhtälö toteutuu myös luvulle +. & = yhtälö toteutuu kaikille {,,...}. 3. (Teht. 3 s. 8.) Millä muuttuja x arvoilla luku x+3 o luvu x kääteisluku? Ratkaisu. Jotta luku x + 3 olisi luvu x kääteisluku, täytyy lukuje tulo olla yksi eli (x + 3)x =. Tämä o yhtäpitävää yhtälö x + 3x = 0 kassa, joka ratkaisut ovat x = 3 ± 3 + 4 = 3 ± 3. 4. (Teht. 4 s. 8.) Oletetaa, että a <. Osoita, että 3 + a 3 ja a 3 8 > 7.

Ratkaisu. : Koska a <, o 0 a < ja site 3 3 + a <. Koska 3, o siis voimassa myös 3 3 + a 3 eli 3 + a 3. : Koska a <, o a 3 < ja site 9 a 3 8 < 7. Siis a 3 8 < 7, jote a 3 8 > 7. Vikki: piirrä myös kuvat. 5. Muuta (a) desimaaliluvut 0, 999... ja 0, 333... ratioaaliluvuiksi, (b) ratioaaliluvut 3 5 ja 7 desimaaliluvuiksi. Ratkaisu. (a) Olkoo a = 0, 999.... Nyt 0a = 9, 999... = 9 + a eli 9a = 9. Siis a =. Vertaa kysymyksee Mikä o suuri aidosti ykköstä pieempi luku? (piei aidosti ollaa suurempi), ks. Arkimedee omiaisuus. Olkoo sitte b = 0, 333..., jolloi 00b = 3, 33... = 3 + b. Siis 99b = 3 eli b = 3. 99 Lisätehtävä: etä luku 0, a a... a k? (b) Jakokulmassa laskemalla 30 = 5+5, 50 = 5+0 saadaa 3 = 0, 5 ja vastaavasti 0 = 0 7 + 0, 00 = 5 7 + 5, 50 = 8 7 + 4, 40 = 8 7 + 4, 40 = 7 +, 0 = 3 7 + 9, 90 = 5 7 + 5, 50 = 7 +, 0 = 9 7 + 7, 70 = 4 7 +, 0 = 7 + 3, 30 = 7 + 3, 30 = 7 7 +, 0 = 7 + 8, 80 = 4 7 +, 0 = 7 7 +, 0 = 0 7 + 0, 00 = 5 7 + 5 (ks. alku), ja siis = 0, 05883594747. 7 Riittikö laskuvälieesi tarkkuus jaksoo?. Osoita, että 3 o irratioaaliluku. Vikki: Jos luoollie luku ei ole kolmella jaollie, ii = 3k + tai = 3k + jollaki k N. Ratkaisu. Huomaa, että tässä tehtävässä jo oletetaa, että o olemassa reaaliluku x, jolle x = 3, ja tästä luvusta käytetää merkitää 3 (tämä luvu olemassaoloo tarvittaisii vastaava päättely kui esimerkissä 3.3). Atiteesi: 3 Q eli löytyy kokoaisluvut m ja, 0, joille 3 = m. Voidaa olettaa, että m o supistetussa muodossa (jos ei ole, supistetaa ja imetää uudellee). Koska 3 = m, o 3 = ( m ) eli 3 = m. Tällöi siis m o kolmella jaollie, ja se vuoksi myös m o kolmella jaollie (perustelu: jos m ei ole kolmella jaollie, ii joko m = 3k+ tai m = 3k+ jollai kokoaisluvulla k; jos m = 3k+, ii m = 9k +k+ = 3(3k +k)+ ei ole kolmella jaollie, ja jos taas m = 3k +, ii m = 9k + k + 4 = 3(3k + 4k + ) + ei ole kolmella jaollie). Siis m = 3k jollai kokoaisluvulla k. Mutta yt 3 = m = 9k, jote = 3k eli o kolmella jaollie ja siis myös o kolmella jaollie (perustelu edellä). Koska sekä m että ovat kolmella jaollisia, luku m ei ole supistetussa muodossa (vaa voidaa supistaa kolmella). Atiteesi johti ristiriitaa, jote väite o tosi eli 3 Q. Oikeammi pitäisi puhua luvu desimaaliesityksestä ja ratioaaliesityksestä luku itsehä ei miksikää muutu.

[Toie tapa (idea): Atiteesi kute yllä. Totea esi, ettei kumpikaa luvuista m, voi olla parillie (mieti, miksei). Siis m = k + ja = l + joillaki k, l N. Nyt yhtälö 3 = m johtaa ristiriitaa (vase puoli 4r + 3, oikea 4s + ; mieti, miksi ei voi olla oikei).] 7. (Teht. 0 s. 9, ks. myös teht. 5 s. 9.) Olkoot a Q ja b R \ Q. Osoita, että (a) a + b R \ Q, (b) a b R \ Q, jos a 0. Ratkaisu. Koska a Q, o a = m joillaki m, Z, 0. (a) Atiteesi: jos olisi a + b Q, löytyisi kokoaisluvut k ja l, l 0, joille a + b = k. Mutta tällöi l b = a+b a = k l m = k ml l Q, koska k ml Z, l Z ja l 0. (Tulokse ratioaalisuus o selvää: koska kokoaislukuje tulo ja erotus ovat kokoaislukuja, k ml Z ja l Z; lisäksi l 0, koska 0 ja l 0.) Oletukse mukaa kuiteki b R \ Q; ristiriita. (b) Huomataa esi, että koska a 0, o m 0. (Miksi b ei voi olla olla?) Atiteesi: oletetaa, että a b Q, ja merkitää a b = k, k, l Z, l 0. l Nyt, koska a 0, o Ristiriita. b = ab k a = l m = k lm Q, koska k, lm Z ja lm 0. 8. (Teht. 9 s. 8, muu.) Tarkastellaa fuktiota, joka lauseke o f(x) = + x. (a) Mikä o fuktio (suuri mahdollie) määrittelyjoukko M f? (b) Oko arvojoukko A f rajoitettu? Jos o, aa joki ala- ja yläraja. Jos ei, perustele. (c) Määrää sup A f ja if A f. (d) Mitä luulet, mikä joukko A f o? (Eli mitkä luvut siihe kuuluvat?) (e) Hahmottele kuvaa. Ratkaisu. (a) Itseisarvo o määritelty kaikille reaaliluvuille ja x 0 kaikilla x R. Ratioaalifuktio o määritelty kaikkialla paitsi imittäjä ollakohdissa. Nimittäjässä o lauseke + x, joka ei ole missää olla (vaa aia ). Site M f = R. (b) Arvojoukko A f o alhaalta rajoitettu, koska kaikilla x R o > 0, + x ja ylhäältä rajoitettu, koska kaikilla x R o (koska x 0 + x kaikilla x R).

(c) sup A f = max A f = = f(0) ja if A f = 0, koska olla o jouko A f alaraja ja jos m > 0, löytyy valialla x = jouko A m f alkio f(x ) = = + x +x = + < = m. Siis m ei ole jouko A f alaraja, m m vaa olla o alarajoista suuri. (d) A f =]0, ]: Jos z ]0, ], ii z ja valitsemalla x = z saadaa f(x) = + x = + = z z eli löytyi x R, jolle f(x) = z ja siis z A f ; äi o saatu ]0, ] A f. Toie suuta (eli A f ]0, ]) seuraa kohdasta (b). (e) Kuva (käytä apua fuktio g(x) = /x kuvaajaa, siirrä ja peilaa):.5 0.5 - = z 0-4 -3 - - -0.5 0 3 4 9. (Teht. s. 9.) Osoita, että kahde reaaliluvu välissä o aia irratioaaliluku. Ratkaisu. Käytetää tietoa Q (s. 9, esimerkki 3. ja s. 5, esimerkki 3.3). Olkoo a, b R, a < b. Tällöi b a > 0 ja Arkimedee lai ojalla löytyy kokoaisluku, jolle < (b a) eli 0 < < b a. Valitaa luku m, jolle m a < (m + ). Nyt kysytty luku o (m + ) m+ : se o irratioaalie, koska Q ja Q, äide tulo irratioaalisuus o perusteltu tehtävässä 7(b); ja lisäksi välillä ]a, b[, koska a < (m + ) < m + (b a) a + (b a) = b. 0. (Teht. 3 s. 0.) Osoita, että toisiaa vastaa kohtisuorie suorie kulmakertoimie tulo o - tai toise suora kulmakerroi o olla. Ratkaisu. Merkitää suorie leikkauspistettä P = (x 0, y 0 ), ja suorie ja x- akseli leikkauspisteitä A = (a, 0) ja B = (b, 0). Voidaa olettaa, että a < b. Koska suorat leikkaavat toisiaa kohtisuoraa, o kolmio ABP (tai AP B) suorakulmaie, terävät kulmat pisteissä A ja B, hypoteuusa x-akselilla. (Piirrä kuva!) Pythagoraa lausee ojalla siis eli y 0 + (x 0 a) + y 0 + (b x 0 ) = (b a) y 0 = (b a) (x 0 a) (b x 0 ) = ab + ax 0 + bx 0 x 0.

Kulmakertoimet ovat k = y 0 x 0 a ja k = y 0 b x 0 ja äide tulo k k = y0 (x 0 a)(b x 0 ) = ab + ax 0 + bx 0 x 0 (x 0 a)(b x 0 ) =. Edellä oletettii, että molemmat suorat leikkaavat x-akselia. Kohtisuorista suorista välttämättä aiaki toie leikkaa x-akselia tai yhtyy siihe. Jos toie suorista ei leikkaa x-akselia laikaa, o se kulmakerroi olla. [Toie tapa:] Voidaa olettaa, että suorat leikkaavat origossa ja kumpikaa ei ole akseleide suutaie (jos olisi, toise kulmakerroi olisi olla). Valitaa suorilta (x-akseli yläpuolelta) pisteet P = (x, y ) (ousevalta suoralta, siis y-akseli oikealta puolelta) ja Q = (x, y ) (laskevalta suoralta). Piirrä kuva! Tarkastellaa suorakulmaisia kolmioita, jotka sytyvät suorie ja x-akseli välii, ku yhdistetää pisteet P ja Q pystysuorilla jaoilla x-akselii; siis kolmioita OAP ja QBO, missä A = (x, 0) ja B = (x, 0). Nämä kolmiot ovat yhdemuotoiset, koska iide origossa sijaitsevie terävie kulmie summa o 80 90 = 90. (Mieti, mistä kolmioide yhdemuotoisuus seuraa.) Siis sivuje suhteet ovat samat eli x y = y. Kulmakertoimet puolestaa ovat y x ja y. Tuloa saadaa y x y = x y y =.