Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V



Samankaltaiset tiedostot
Säh k ö isesti pien i an ten n ik in v o i o lla m atalilla taaju u k silla fy y sisesti h y v in su u ri.

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Pieni silmukka-antenni duaalisuus. Ratkaistaan pienen silmukka-antennin kentät v ielä käy ttämällä d uaalisuud en periaatetta.

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku ) E a 2 ds

Ideaalinen dipoliantenni

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause

Jakso 8. Ampèren laki. B-kentän kenttäviivojen piirtäminen

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan

SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos

Kulmaheijastinantenni

Muutoksen arviointi differentiaalin avulla

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

Kvanttifysiikan perusteet 2017

Aaltojen heijastuminen ja taittuminen

ELEC C4140 Kenttäteoria (syksy 2015)

Aaltoputket analyyttinen ratkaisu. Palataan takaisin aaltoputkitehtäv än analy y ttiseen ratkaisuun.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

ELEC C4140 Kenttäteoria (syksy 2015)

1 Johdanto Mikä tämä kurssi on Hieman taustaa Elektrodynamiikan perusrakenne Kirjallisuutta... 8

ELEC C4140 Kenttäteoria (syksy 2016)

V astaano ttav aa antennia m allinnetaan k u v an m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

SMG-5450 Antennit ja ohjatut aallot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

1 Komparatiivinen statiikka ja implisiittifunktiolause

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Aaltojen heijastuminen ja taittuminen

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

2 Staattinen sähkökenttä Sähkövaraus ja Coulombin laki... 9

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

BM20A0900, Matematiikka KoTiB3

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )

Insinöörimatematiikka D

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

H5 Malliratkaisut - Tehtävä 1

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Helix-antenni Helix-antenni (kierukka-antenni) saadaan, kun johdin kierretään heliksille (kuv a 6-9 ). A ntennin koosta riip p uen helix v oi toim ia

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

RATKAISUT: 19. Magneettikenttä

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Jouko Esko n85748 Juho Jaakkola n Dynaaminen Kenttäteoria GENERAATTORI.

ELEC C4140 Kenttäteoria (syksy 2016)

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus

Magneettikentät. Haarto & Karhunen.

Häiriöt kaukokentässä

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

S OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö

ELEC C4140 Kenttäteoria (syksy 2016)

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.

SATE2180 Kenttäteorian perusteet Faradayn laki ja sähkömagneettinen induktio Sähkötekniikka/MV

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö

Gaussin lause eli divergenssilause 1

Aaltoputket ja resonanssikaviteetit

FYSA242 Statistinen fysiikka, Harjoitustentti

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

Harjoitus 7. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Onteloresonaattorit. Onteloresonaattori saadaan aikaan, kun metallisen aaltop utken molemmat suljetaan metalliseinällä ja sen

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin

7A.2 Ylihienosilppouma

Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskin (yo-kirjoituksissa hyväksytty) on sallittu apuväline tässä kokeessa!

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

ELEC C4140 Kenttäteoria (syksy 2016)

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

ELEC C4140 Kenttäteoria (syksy 2015)

ELEKTROMAGNEETTISET VOIMAT SAMANSUUNTAISISSA VIRTA- JOHDOISSA

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Dierentiaaliyhtälöistä

Aaltoputket ja mikroliuska rakenteet

VEKTORIKENTÄN ROTAATIO JA DIVERGENSSI, MAXWELLIN YHTÄLÖT

Scanned by CamScanner

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

Transkriptio:

Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n eettiset aallo t k u lk ev at. V astaan o tto tilan teessa au k k o to im ii aalto jen k erääjän ä. E sim erk k ein ä o v at to rv i- ja h eijastin an ten n it. Ne o v at y leisiä U H F - ja sitä k o rk eam m illa taaju u k silla (3 0 0 M H z-) ja n iille o n o m in aista h y v in su u ri v ah v istu s ja iso illa au k k o an ten n eilla v ah v istu k sen k asv u taaju u d en fu n k tio n a. A u k k o an ten n ien sy ö ttö im p ed an ssi o n läh es reaalin en.

Aukkoantennien säteilykenttien laskenta perustuu Huygensin periaatteelle. Huygensin periaate perinteisessä muodossaan sanoo, että aaltorintaman jokainen piste toimii alkeispalloaaltojen lähteenä. T aso- ja palloaallot voidaan selittää näillä alkeisaalloilla (kuva 7-1 ). Huygensin periaatetta matemaattisessa muodossa kutsutaan ekvivalenttisuuden periaatteeksi. Ekvivalenttisuuden periaate korvaa aukkoantennin ekvivalenttisillä virroilla, jotka muodostaa samat säteilykentät kuin itse antenni.

Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V :n ulkopuolella säilyvät, Max w ellin yhtälöiden ratkaisutkin alueen V ulkopuolella pysyvät samoina. O letetaan nyt, että alueessa V kentät ovat nollia. Jotta reunaehdot pinnalla S, ja sitä kautta myös kentät V :n ulkopuolella, pysyisivät samoina kuin alkuperäisessä tapauksessa, pitää pinnalla S esiintyä kenttien hyppäystä vastaavat virrat J S = ˆn H(S) (2 14 ) M S = E(S) ˆn. (2 15 )

Edellisiä yhtälöitä kutsutaan Loven ekvivalenttisuuden periaatteeksi. J S on todellinen virta, jos S antennin johdepinnan kohdalla. Aukkoantennin tapauksessa pinta S valitaan aukon kohdalle ja antennin tuottama kaukokenttä lasketaan ekvivalenttisista sähköisistä ja magneettisista virroista. Y leisen muotoisen pinnan S tapauksessa antennin säteilykenttien ratkaiseminen näistä virroista on hankalaa. Oletetaan yksinkertaisuuden vuoksi, että V on alue z < 0, jolloin S on pinta z = 0, kuten kuvassa 7-4a.

Pintavirroista J S saadaan integroitua sähkökenttä tutusti yhtälöillä A = µ e jβ r J S (r )e j β ˆr r ds, (216 ) 4π r S E A = jω(a θ ˆθ + Aφ ˆφ). (217) Maxwellin yhtälöiden duaalisuudesta seuraa, että magneettivirrat aihettavat kaukokentässä sähköisen vektoripotentiaalin F, josta saadaan laskettua magneettikentät, F = ε e jβ r M S (r )e j β ˆr r ds, (218 ) 4π r S H F = jω(f θ ˆθ + Fφ ˆφ). (219 )

Koska kaukokentässä E F = ηh F ˆr, virtojen aiheuttama kokonaiskaukokenttä on E = E A + E F = jω[(a θ + ηf φ )ˆθ + (A φ ηf θ ) ˆφ] (220) Jos H(S) ja E(S) tunnetaan aukkoantennin aukon muodostamalla pinnalla S, saadaan sähkökenttä kaukokentässä ratkaistua yhtälöistä (214) (220). Tehtävää saadaan vielä yksinkertaistettua lisäämällä pinnalle S ideaalista johdetta. Koska kentät ovat nollia S:n sisäpuolella, voimme vapaasti lisätä jotain materiaalia alueeseen V.

Jos alue V täytetään ideaalisella sähköisellä johteella, J S menee nollaksi pinnalla S. Tämän näkee helpoiten käyttämällä kuvalähdemenetelmää (kuva 7-4c) tapaukseen, jossa johdemateriaali poistetaan ja korvataan kuvalähteillä. Tangentiaalisen virran kuvalähde on virralle vastakkaissuuntainen, jolloin itse virta ja sen kuva kumoavat toisensa, koska ne molemmat ovat samalla pinnalla S. Magneettisen virran kuvalähde on taas samansuuntainen kuin M S, joten kokonaisuudessaan pinnalla on magneettinen virta 2M S.

Vastaavasti, jos alue V täytetään ideaalisella magneettisella johteella, saadaan virtojen ja niiden kuvavirtojen yhteisvaikutuksesta kuvan 7-4b mukainen tilanne, jossa sähköinen virta on 2J S ja magneettinen virta on nolla. Kaukokenttien ratkaisemiseen on siten kolme eri mahdollista tapausta 1. S ekä J S että M S pinnalla S käyttäen yhtälöitä (216) (220). E = E A + E F (221)

2. Ekvivalenttisen sähkövirran formulaatio: 2J S pinnalla S E = 2E A (222) 3. Ekvivalenttisen magneettivirran formulaatio: 2M S pinnalla S E = 2E F (223) Kaikki kolme formulaatiota antavat samat kentät alueen V ulkopuolelle, jos virrat on laskettu tarkoista kentistä. Tähän mennessä ainoa tekemämme approksimaatio on kaukokenttäapproksimaatio. Joten, jos E(S) ja/ tai H(S) tunnettaisiin äärettömän kokoisella pinnalla S, saisimme tarkat kaukokentät.

Tavallisesti kuitenkin oletetaan, että osa pinnasta (S a ) osuu yksiin aukkoantennin aukon kanssa. S a :ssa kentistä tunnetaan jokin approksimaatio, ja muulla osalla pintaa kentät oletetaan nollaksi. Usein oletetaan, että S a :lla kentät ovat samat kuin aukkoon tulevan aallolla (fysikaalisen optiikan approksimaatio). Tämän approksimaation jälkeen edellä käsitellyillä kolmella eri formulaatiolla saadut ratkaisut saattavat erota toisistaan. Niistä valitaan kussakin tilanteessa käsiteltävää tilannetta parhaiten approksimoiva versio.

Jos aukko on tehty johtavaan tasoon, tilannetta voidaan mallintaa äärettömällä tasomaisella ideaalisella sähköisellä johteella. Tällöin kannattaa käyttää magneettivirtaformulaatiota, sillä aukon ulkopuolella sähkökentän tangentiaalikomponentti ja sitä kautta M S on nolla johdepinnan vuoksi. Jos aukko on vapaassa tilassa, käytetään kumpaakin virtaa sisältävää formulaatiota.

Käyttäen yhtälöitä (214) ja (215), vektoripotentiaalit saadaan kirjoitettua suoraan kenttien avulla, A = µ e jβr 4πr ˆn H a e jβˆr r ds, (224) S } a {{ } F = ε e jβr 4πr ˆn =Q E a e jβˆr r ds S } a {{ } =P Kaukokentän laskemiseksi käytännössä pitää laskea P ja/tai Q ylläolevista kaksidimensioisen Fouriermuunnoksen muotoisista integraaleista. (225)

Useiden aukkoantennien kohdalla S a on xy-tasolla ja E a :lla on ainoastaan y-komponentti, jolloin P:lläkin on vain y-komponentti. Tällöin yhtälöistä (225) ja (220) saadaan ekvivalenttisen magneettivirran formulaatiolla jossa P y = E θ = jβ e jβr 2πr P y sin φ (226) E φ = jβ e jβr 2πr P y cos θ cos φ, (227) E ay (x, y )e jβ(x sin θ co s φ+y sin θ sin φ) dx dy (228) S a

Yhtälöissä (226) ja (227) esiintyviä trigonometrisiä funktioita sin φ ja cos θ cos φ kutsutaan vinoustekijöiksi (obliquity factor). Ne vastaavat z-suuntaisen viivalähteen elementtitekijää sin θ, eli ne ovat lähdevirtojen suuntien projektioita kaukokentän pallopinnalle. Vastaavasti kuin viivalähteille, isoilla aukoilla vinoustekijät eivät vaikuta paljoa pääkeilaan ja ne voidaan unohtaa ja pääkeila laskea pelkistä kaksiulotteisista Fourier-muunnoksista.

Jos aukko on vapaassa tilassa ja aukon kentät toteuttavat TEM-yhtälön H a = 1 η ẑ E a, pätee myös Q = 1 η ẑ P. Tällöin kumpaakin virtaa käyttävä formulaatio yksinkertaistuu siten, että kaukokentässä E θ = jβ e jβr 2πr P y E φ = jβ e jβr 2πr P y 1 + cos θ 2 1 + cos θ 2 sin φ (229) cos φ. (230) Vinouskerroin 1+cos θ 2 eroaa vain hiukan 1:sta cos θ:sta pienillä φ:n arvoilla, joten kummankin formulaation tapauksessa säteilykeila on saman tyyppinen pääkeilan suuntaan aukkoanteinneilla, joilla on iso vahvistus.

Suorakulmaiset aukot Useissa antenneissa esiintyy suorakulmaisia aukkoja, esimerkiksi torvi- ja rakoantenneissa. Tarkastellaan aluksi kuvan 7-6 mukaista aukkoa, jossa kentän amplitudi ja vaihe ovat vakioita. Aukon sähkökenttä on E a = E 0 ŷ, x < L x 2, y < L y (231) 2 Tällöin yhtälöstä (228) saadaan Lx /2 Ly /2 P y = E 0 e jβx sin θ cos φ dx e jβy sin θ sin φ dy L x /2 = E 0 L x L y sin[(βl x /2)u] (βl x /2)u jossa u = sin θ cos φ ja v = sin θ sin φ. L y /2 sin[(βl y /2)v] (βl y /2)v, (232)

Suorakulmaiset aukot Sähkökenttä saadaan sijoittamalla edellinen P y yhtälöihin (226) ja (227), jolloin saadaan E θ = jβ e jβr 2πr E 0L x L y sin φ sin[(βl x/2)u] (βl x /2)u E φ = jβ e jβr 2πr E 0L x L y cos θ cos φ sin[(βl x/2)u] (βl x /2)u sin[(βl y /2)v] (βl y /2)v sin[(βl y /2)v] (βl y /2)v (233).(234) Normalisoimalla yhtälö (232), saadaan muotokertoimeksi f(u, v) = sin[(βl x/2)u] (βl x /2)u sin[(βl y /2)v] (βl y /2)v, (235) joka on x- ja y-suuntaisten vakioamplitudisten viivalähteiden muotokerrointen tulo.

Suorakulmaiset aukot Muotokertoimessa on siis unohdettu säteilykuviosta vinoustekijät sin φ ja cos θ cos φ, joilla ei ole suurta vaikutusta, jos pääkeila on kapea. Kuvassa 7-7 on muotokerroin tapauksessa L x = 20λ ja L y = 10λ, kuvassa 7-8 on sama muotokerroin päätasoissa. Samaan tapaan kuin viivalähteillä ja lineaarisilla ryhmillä, aukkoantenneilla saadaan vähennettyä sivukeiloja ja levettyä pääkeilaa, jos kenttien suuruudet pienenevät aukon reunaa kohti. Useimmiten kenttäjakauma on separoituva, eli E a (sähkökentän x- tai y-komponentti) voidaan kirjoittaa muodossa E a (x, y ) = E a1 (x )E a1 (y ), jolloin

P = = Suorakulmaiset aukot E a (x, y )e jβu x e jβv y dx dy S a Lx /2 L x /2 E a1 (x )e jβu x dx Ly /2 L y /2 E a2 (y )e jβv y dy.(236) Integraalit vastaavat x- ja y-suuntaisten viivalähteiden muotokertoimia, jolloin myös aukkoantennin muotokerroin (unohtaen taas siis vinouskertoimet) jakautuu kahden kohtisuoran viivalähteen muotokertoimien tuloksi, f(u, v ) = f 1 (u )f 2 (v ), (237) jossa u = (βl x /2)u = (βl x /2) sin θ cos φ ja v = (βl y /2)v = (βl y /2) sin θ sin φ.

Suorakulmaiset aukot Esimerkki: TE 10 -moodissa toimivan aaltoputken päässä kenttä muotoa (kuva 7-9) E a (x, y ) = ŷe 0 cos( π a x ), (238) jolloin sen muotokerroin saadaan y-suuntaisen vakioamplitudisen ja x-suuntaisen cosini-amplitudisen viivalähteen muotokertoimien tulona, f(u, v cos u sin v ) = 1 [(2/π)u ] 2 v cos[(βl x /2)u] sin[(βl y /2)v] = 1 [(2/π)(βL x /2)u] 2. (239) (βl y /2)v Kaukokentät saadaan sijoittamalla (239) yhtälöihin (226) ja (227) tai (229) ja (230) riippuen siitä, onko putken pää johdetasossa vai vapaassa tilassa (kuva 7-10).