Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29
Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 2 / 29
Paikkavektori Hiukkanen pisteessä P Sen paikkavektori r tarkastelukoordinaatiston origosta on r = xî + yĵ + z ˆk z x r y P z x y 3 / 29
Nopeus Kappaleella paikkavektorit r 1 ja r 2 ajanhetkillä t 1 ja t 2 Keskimääräinen nopeusvektori z v ave = r 2 r 1 t 2 t 1 = r t r 2 x r 1 r y Hetkellinen nopeusvektori raja-arvo, kun t 0 r v = lim t 0 t = d r dt
Nopeus komponenttimuodossa Hiukkasen paikkavektorin komponenteista saadaan d r dt = d dt v = v x î + v y ĵ + v z ˆk = ( x(t)î + y(t)ĵ + z(t)ˆk) = dx dt î + dy dt ĵ + dz dt ˆk z Nopeuden itseisarvo eli vauhti edelleen v = v = vx 2 + vy 2 + vz 2 x v v y v z v x y
Kiihtyvyys Kiihtyvyys vaikuttaa vauhtiin ja nopeusvektorin suuntaan Keskimääräinen ja hetkellinen kiihtyvyysvektori: a ave = v 2 v 1 t 2 t 1 Komponenttimuodossaan = v t v = a = lim t 0 t = dv dt ja kiihtyvyyden itseisarvo a x = dv x dt, a = a = a y = dv y dt, a z = dv z dt a 2 x + a 2 y + a 2 z 6 / 29
Kiihtyvyys paikkavektorista Nopeus paikkavektorin derivaatta, joten Vastaavasti komponenttimuodossa a = d v dt = d 2 r dt 2 a x = d 2 x dt 2, a y = d 2 y dt 2, a z = d 2 z dt 2 7 / 29
Tangentti- ja normaalikomponentit Kiihtyvyysvektori a voidaan jakaa nopeusvektorin v suuntaiseen ( a T ) ja kohtisuoraan komponenttiin ( a N ) Tangentiaalikomponentti a T vaikuttaa ainoastaan hiukkasen vauhtiin (nopeuden itseisarvoon) Normaalikomponentti a N vaikuttaa ainoastaan hiukkasen nopeusvektorin suuntaan Normaalikomponentin suunta on aina ratakäyrän koveralle ("sisä-") puolelle 8 / 29
Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 9 / 29
Heittoliike Kertausta lukiosta Tärkeä erikoistapaus tasaisesti kiihtyvästä liikkeestä on heittoliike (projectile motion) lähellä maan pintaa Kun vastusvoimat jätetään huomiotta, hiukkaseen vaikuttaa ainoastaan maan vetovoiman kiihtyvyys g Sekä pysty- (y) että vaakasuuntaiseen (x) liikkeeseen voidaan erikseen soveltaa tasaisen kiihtyvyyden yhtälöitä a x = 0 a y = g Mikäli alkunopeusvektori v tunnetaan, liike on täysin määrätty 10 / 29
Heittoliikkeen yhtälöt Heitetään hiukkanen maan pinnalta Alkunopeus v 0 Lähtökulma α 0 maan pintaan nähden Vakiokiihtyvyyden yhtälöistä saadaan nopeuden ja paikan komponentit ajan hetkellä t { { v x = v 0x x = x 0 + v 0x t = = v 0y gt y = y 0 + v 0y t 1 2 gt2 v y missä alkunopeuden komponentit ovat v 0x = v 0 cos α 0 ja v 0y = v 0 sin α 0 11 / 29
Ratakäyrä heittoliikkeessä Valitaan koordinaatisto siten, että x 0 = y 0 = 0. Eliminoimalla aika t saadaan ratkaistua hiukkasen ratakäyrä x = v 0x t = t = x v 0x [ x ] y = v 0y 1 [ x ] 2 v 0x 2 g = v 0x g y = x tan α 0 2v0 2 x 2 cos2 α 0 12 / 29
Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 13 / 29
Ympyräliike Kertausta lukiosta Tärkeä erikoistapaus heittoliikkeestä on ympyräliike Tarkastellaan ensin tasaista ympyräliikettä (uniform circular motion) Hiukkasella vakiovauhti v Liikerata ympyränmuotoinen Nopeusvektori ympyrän tangentin suuntainen Kiihtyvyys kohti ympyrän keskipistettä Kiihtyvyydellä ei tangentiaalista komponenttia 14 / 29
Kiihtyvyys tasaisessa ympyräliikkeessä Yhdenmuotoisista kolmioista v = s R = v = v 1 R s. v 1 Keskimääräinen kiihtyvyys a av = v t Hetkellinen kiihtyvyys v 1 s a = lim t 0 R t = v 1 s R t = v 2 1 R R v 1 P 1 s P 2 ϕ ϕ R v 1 v 2 v v 2
Keskihakukiihtyvyys ja jaksonaika P 1 voi olla mikä piste tahansa = a = a N = a rad = v 2 R, jota kutsutaan keskihakukiihtyvyydeksi (centripetal acceleration) Jaksonaika (period) T (tai P) tarkoittaa yhteen kierrokseen tarvittavaa aikaa. Keskihakukiihtyvyys jaksonajan avulla esitettynä on a rad = v 2 ( 2πR R = T ) 2 1 R = 4π2 R T 16 / 29
Yleinen ympyräliike Yleisessä ympyräliikkeessä (non-uniform circular motion) hiukkasen vauhti v = v ei vakio Jaetaan kiihtyvyysvektori tangentiaaliseen ja normaalikomponenttiin (radan suhteen... ) Tangentiaalikomponentti muuttaa hiukkasen vauhtia ja normaalikomponentti nopeuden suuntaan a rad = v 2 R ja a T = a tan = dv dt 17 / 29
Yleinen käyräviivainen liike Hiukkasen vauhti v ja radan kaarevuussäde R eivät vakioita Jaetaan kiihtyvyysvektori voidaan jakaa silti tangentiaali- ja normaalikomponentteihin Tangentiaalikomponentti muuttaa hiukkasen vauhtia ja normaalikomponentti suuntaa Normaalikiihtyvyyden yhtälössä radan kaarevuussäde R korvataan ρ:lla, joka riippuu sijainnista ratakäyrällä, eikä siis ole vakio a rad = v 2 ρ ja a T = a tan = dv dt Seuraus: jos hiukkasen radan paikallinen kaarevuussäde ρ ja paikallinen vauhti tunnetaan, päästään sen kokemaan kiihtyvyyteen ja päinvastoin: kiihtyvyyden perusteella voidaan määrittää hiukkasen radan paikallinen kaarevuussäde = ratatehtävät
Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 19 / 29
Kulmamuuttujat θ, ω ja α Jäykkä kappale (rigid body) = kappale, jolla tietty muuttumaton koko ja muoto Jäykkä kappale pyörii kiinteän akselin ympäri y r P s Akseli on levossa (jossakin) inertiaalikoordinaatistossa Kulma θ (janan OP ja x-akselin välinen kulma) mitataan radiaaneissa O θ x = Ympyräradan kaaren pituus jaettuna ympyrän säteellä Kulman yksikkö 1 rad = 360 /2π
Kulmanopeus ja -kiihtyvyys Keskimääräinen ja hetkellinen kulmanopeus ω ave = θ 2 θ 1 t 2 t 1 = θ t ; ω = lim θ t 0 t = dθ dt Keskimääräinen ja hetkellinen kulmakiihtyvyys α ave = ω 2 ω 1 t 2 t 1 = ω t ; α = lim ω t 0 t = dω dt 21 / 29
Pyörimisliikkeen vektorisuureet Kulmanopeusvektori ω Kohtisuorassa pyörimisliikkeen tasoa vastaan Suunta määrätään oikean käden säännöllä ω α, α > 0 Kulmakiihtyvyysvektori α ω Samansuuntainen kuin ω jos α > 0 Vastakkaissuuntainen jos α < 0 22 / 29
Tasainen kulmakiihtyvyys Vakio-α Kulmakiihtyvyyden määritelmästä Toisaalta α = dω dt ω = ω 0 + αt = vakio = ω t ω 0 dω = 0 αdt = ω = dθ dt = θ t θ 0 dθ = 0 t ωdt = (ω 0 + αt)dt = 0 θ = θ 0 + ω 0 t + 1 2 αt2
Tasainen kulmakiihtyvyys - jatkoa Eliminoidaan aika: t = (ω ω 0 )/α, jolloin ω ω 0 θ = θ 0 + ω 0 + 1 [ ω α 2 α ω0 α ω = θ 0 + ω 0 α ω2 0 α + 1 ω 2 2 α ω 0 = θ 0 + 1 2 ω 2 α 1 2 ] 2 ω α + 1 2 Samanlainen ajasta eksplisiittisesti riippumaton yhtälö kuin mikä saatiin translaatioliikkeellekin ω 2 0 α ω 2 0 α 24 / 29
Translaatio- ja rotaatioliikkeen yhteys Pisteen paikka ympyrän kaarella s = rθ Pisteen nopeus v = ds = r dθ = rω dt dt Pisteen tangentiaalinen kiihtyvyys a T = dv = r dω dt dt Kiihtyvyyden normaalikomponentti ja itseisarvo a N = v 2 r = rω 2, a = a 2 T + a2 N = rα y r θ O v, a T a N P s x 25 / 29
Analogiat Pyörimisliikkeen yhtälöt tasaisella kulmakiihtyvyydellä samanmuotoiset kuin tasaisella kiihtyvyydellä translaatioliikkeessä Esimerkki fysiikassa esiintyvistä analogioista: sama matemaattinen malli pätee erilaisiin fysikaalisiin ongelmiin 26 / 29
Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 27 / 29
Yhdistetty translaatio- ja pyörimisliike = Massakeskipisteen etenemisliikkeenä + massakeskipisteen kautta kulkevan akselin ympäri tapahtuva pyörimisliike Liikeyhtälöt vastaavat kuin erikseen etenemis- ja pyörimisliikkeessä Edellyttää Pyörimisakseli on symmetria-akseli Akseli ei muuta suuntaansa liikkeen aikana 28 / 29
Vieriminen liukumatta Esimerkki yhdistetystä etenemis- ja pyörimisliikkeestä Kappaleen tukipintaa koskettava piste ei liiku suhteessa pintaan Toisaalta hetkellisesti kappale pyörii aina kosketuspisteensä ympäri Kappaleen kulmanopeuden ja etenemisnopeuden välillä yhteys v CM = Rω Palataan yhdistetyn liikkeen analyysiin hitausmomentin yhteydessä + =