Luento 5: Käyräviivainen liike
|
|
- Liisa Manninen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike
2 Ajankohtaista
3 Konseptitesti 1 Kysymys Sotalaivasta ammutaan yhtäaikaisesti kaksi ammusta vihollislaivoja kohti. Jos ammukset kulkevat paraabeliradalla, kumpaan laivaan osutaan ensiksi? 1. Laivaan A 2. Yhtäaikaa molempiin 3. Laivaan B 4. Tarvitaan lisää tietoa A B
4 Konseptitesti 1 Kysymys Sotalaivasta ammutaan yhtäaikaisesti kaksi ammusta vihollislaivoja kohti. Jos ammukset kulkevat paraabeliradalla, kumpaan laivaan osutaan ensiksi? 1. Laivaan A 2. Yhtäaikaa molempiin 3. Laivaan B 4. Tarvitaan lisää tietoa A B
5 Konseptitesti 2 z Kysymys Viereisessä kuvassa istuu kaksi leppäkerttua pyörivässä karusellissa. Karuselli pyörii vakionopeudella. Miten sisäkehällä istuvan leppäkertun kulmanopeus suhteutuu ulkokehällä istuvan leppäkertun kulmanopeuteen, jos se istuu pyörimisakselin ja ulkokehällä istuvan leppäkertun puolivälissä? y x 1. Se on puolikas ulomman leppäkertun kulmanopeudesta 2. Se on yhtä suuri kuin ulomman leppäkertun kulmanopeus 3. Se on kaksinkertainen ulomman leppäkertun kulmanopeuteen nähden 4. Annetun tiedon perusteella ei voi päätellä
6 Konseptitesti 2 z Kysymys Viereisessä kuvassa istuu kaksi leppäkerttua pyörivässä karusellissa. Karuselli pyörii vakionopeudella. Miten sisäkehällä istuvan leppäkertun kulmanopeus suhteutuu ulkokehällä istuvan leppäkertun kulmanopeuteen, jos se istuu pyörimisakselin ja ulkokehällä istuvan leppäkertun puolivälissä? y x 1. Se on puolikas ulomman leppäkertun kulmanopeudesta 2. Se on yhtä suuri kuin ulomman leppäkertun kulmanopeus 3. Se on kaksinkertainen ulomman leppäkertun kulmanopeuteen nähden 4. Annetun tiedon perusteella ei voi päätellä
7 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike
8 Paikkavektori Hiukkanen pisteessä P Sen paikkavektori ~r tarkastelukoordinaatiston origosta on z ~r = xî + yĵ + z ˆk x ~r P ~z ~y ~x y
9 Nopeus Kappaleella paikkavektorit ~r 1 ja ~r 2 ajanhetkillä t 1 ja t 2 Keskimääräinen nopeusvektori z ~v ave = ~r 2 ~r 1 t 2 t 1 = ~r t ~r 2 x ~r 1 ~r y Hetkellinen nopeusvektori raja-arvo, kun t! 0 ~v = lim t!0 ~r t = d~r dt
10 Nopeus komponenttimuodossa Hiukkasen paikkavektorin komponenteista saadaan d~r dt = d dt ~v = v x î + v y ĵ + v z ˆk = x(t)î + y(t)ĵ + z(t)ˆk = dx dt î + dy dt ĵ + dz dt ˆk z Nopeuden itseisarvo eli vauhti edelleen q v = ~v = vx 2 + vy 2 + vz 2 x ~v ~v z ~v y ~v x y
11 Kiihtyvyys Kiihtyvyys vaikuttaa vauhtiin ja nopeusvektorin suuntaan Keskimääräinen ja hetkellinen kiihtyvyysvektori: ~a ave = ~v 2 ~v 1 t 2 t 1 = v t Komponenttimuodossaan =) ~a = lim t!0 ~v t = dv dt a x = dv x dt, ja kiihtyvyyden itseisarvo a = ~a = a y = dv y dt, a z = dv z dt q a 2 x + a 2 y + a 2 z
12 Kiihtyvyys paikkavektorista Nopeus paikkavektorin derivaatta, joten Vastaavasti komponenttimuodossa ~a = d~v dt = d 2 ~r dt 2 a x = d 2 x dt 2, a y = d 2 y dt 2, a z = d 2 z dt 2
13 Tangentti- ja normaalikomponentit Kiihtyvyysvektori ~a voidaan jakaa nopeusvektorin ~v suuntaiseen (~a T ) ja kohtisuoraan komponenttiin (~a N ) Tangentiaalikomponentti ~a T vaikuttaa ainoastaan hiukkasen vauhtiin (nopeuden itseisarvoon) Normaalikomponentti ~a N vaikuttaa ainoastaan hiukkasen nopeusvektorin suuntaan Normaalikomponentin suunta on aina ratakäyrän koveralle ("sisä-") puolelle
14 Harjoitus Tehtävänanto Olkoon tasossa liikkuvan hiukkasen koordinaatit ajan funktiona x = A Bt 2 ja y = Ct + Dt 3. Laske hiukkasen a) nopeus, b) kiihtyvyys ja c) kiihtyvyyden tangentiaali- ja normaalikomponentit hetkellä t = 0
15 Ratkaisu
16 Ratkaisu
17 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike
18 Heittoliike Kertausta lukiosta Tärkeä erikoistapaus tasaisesti kiihtyvästä liikkeestä on heittoliike (projectile motion) lähellä maan pintaa Kun vastusvoimat jätetään huomiotta, hiukkaseen vaikuttaa ainoastaan maan vetovoiman kiihtyvyys ~g Sekä pysty- (y) että vaakasuuntaiseen (x) liikkeeseen voidaan erikseen soveltaa tasaisen kiihtyvyyden yhtälöitä a x = 0 a y = g Mikäli alkunopeusvektori ~v tunnetaan, liike on täysin määrätty
19 Heittoliikkeen yhtälöt Heitetään hiukkanen maan pinnalta Alkunopeus ~v 0 Lähtökulma 0 maan pintaan nähden Vakiokiihtyvyyden yhtälöistä saadaan nopeuden ja paikan komponentit ajan hetkellä t ( ( v x = v 0x x = x 0 + v 0x t =) 1 v y = v 0y gt y = y 0 + v 0y t 2 gt2 missä alkunopeuden komponentit ovat v 0x = v 0 cos 0 ja v 0y = v 0 sin 0
20 Ratakäyrä heittoliikkeessä Valitaan koordinaatisto siten, että x 0 = y 0 = 0. Eliminoimalla aika t saadaan ratkaistua hiukkasen ratakäyrä x = v 0x t =) t = y = v 0y h x v 0x i y = x tan 0 x v 0x 1 h x i 2 2 g =) v 0x g 2v0 2 x 2 cos2 0
21 Konseptitesti 3 Kysymys Kivi heitetään ilmaan. Ilma kohdistaa kiveen kitkavoiman ilmanvastuksen muodossa. Aika, joka kivellä menee lakipisteensä saavuttamiseen on 1. Suurempi kuin 2. Yhtäsuuri kuin 3. Pienempi kuin aika, joka siltä menee laskeutumiseen lakipisteestä lähtökorkeudelle.
22 Konseptitesti 3 Kysymys Kivi heitetään ilmaan. Ilma kohdistaa kiveen kitkavoiman ilmanvastuksen muodossa. Aika, joka kivellä menee lakipisteensä saavuttamiseen on 1. Suurempi kuin 2. Yhtäsuuri kuin 3. Pienempi kuin aika, joka siltä menee laskeutumiseen lakipisteestä lähtökorkeudelle.
23 Simuloitu lentorata koodi MyCoursesissa
24 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike
25 Ympyräliike Kertausta lukiosta Tärkeä erikoistapaus heittoliikkeestä on ympyräliike Tarkastellaan ensin tasaista ympyräliikettä (uniform circular motion) Hiukkasella vakiovauhti v Liikerata ympyränmuotoinen Nopeusvektori ympyrän tangentin suuntainen Kiihtyvyys kohti ympyrän keskipistettä Kiihtyvyydellä ei tangentiaalista komponenttia
26 Kiihtyvyys tasaisessa ympyräliikkeessä Yhdenmuotoisista kolmioista ~v v 1 = s R =) ~v = v 1 R s. Keskimääräinen kiihtyvyys a av = Hetkellinen kiihtyvyys v t a = lim t!0 v 1 R = v 1 R s t s t = v 2 1 R R ~v 1 P 1 s P 2 ' ' R ~v 1 ~v 2 ~v ~v 2
27 Keskihakukiihtyvyys ja jaksonaika P 1 voi olla mikä piste tahansa =) a = a N = a rad = v 2 R, jota kutsutaan keskihakukiihtyvyydeksi (centripetal acceleration) Jaksonaika (period) T (tai P) tarkoittaa yhteen kierrokseen tarvittavaa aikaa. Keskihakukiihtyvyys jaksonajan avulla esitettynä on a rad = v 2 2 R R = T 2 1 R = 4 2 R T 2
28 Yleinen ympyräliike Yleisessä ympyräliikkeessä (non-uniform circular motion) hiukkasen vauhti v = ~v ei vakio Jaetaan kiihtyvyysvektori tangentiaaliseen ja normaalikomponenttiin (radan suhteen... ) Tangentiaalikomponentti muuttaa hiukkasen vauhtia ja normaalikomponentti nopeuden suuntaan a rad = v 2 R ja a T = a tan = dv dt
29 Yleinen käyräviivainen liike Hiukkasen vauhti ~v ja radan kaarevuussäde R eivät vakioita Jaetaan kiihtyvyysvektori voidaan jakaa silti tangentiaali- ja normaalikomponentteihin Tangentiaalikomponentti muuttaa hiukkasen vauhtia ja normaalikomponentti suuntaa Normaalikiihtyvyyden yhtälössä radan kaarevuussäde R korvataan :lla, joka riippuu sijainnista ratakäyrällä, eikä siis ole vakio a rad = v 2 ja a T = a tan = dv dt Seuraus: jos hiukkasen radan paikallinen kaarevuussäde ja paikallinen vauhti tunnetaan, päästään sen kokemaan kiihtyvyyteen ja päinvastoin: kiihtyvyyden perusteella voidaan määrittää hiukkasen radan paikallinen kaarevuussäde =) ratatehtävät
30 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike
31 Kulmamuuttujat,! ja Jäykkä kappale (rigid body) = kappale, jolla tietty muuttumaton koko ja muoto Jäykkä kappale pyörii kiinteän akselin ympäri y r P s Akseli on levossa (jossakin) inertiaalikoordinaatistossa Kulma (janan OP ja x-akselin välinen kulma) mitataan radiaaneissa O x = Ympyräradan kaaren pituus jaettuna ympyrän säteellä Kulman yksikkö 1 rad = 360 /2
32 Kulmanopeus ja -kiihtyvyys Keskimääräinen ja hetkellinen kulmanopeus! ave = 2 1 t 2 t 1 = t ;! = lim t!0 t = d dt Keskimääräinen ja hetkellinen kulmakiihtyvyys ave =! 2! 1 t 2 t 1 =! t ; = lim t!0! t = d! dt
33 Harjoitus Tehtävänanto Renkaan säde olkoon r = 0.36 m ja erään pisteen kulmakoordinaatti ajan funktiona = t 3, missä = 2.0 rad s 3. Laske pisteen a) kulmanopeus, b) kulmakiihtyvyys ja c) kuljettu matka, kun t = 2 s.
34 Ratkaisu
35 Konseptitesti 4 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa, joka pyörii hiljentyvällä vauhdilla. Mihin suuntaan leppäkertun kulmanopeutta kuvaava vektori osoittaa? z y x 1. +x-suuntaan 2. x-suuntaan 3. +y-suuntaan 4. y-suuntaan 5. +z-suuntaan 6. z-suuntaan
36 Konseptitesti 4 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa, joka pyörii hiljentyvällä vauhdilla. Mihin suuntaan leppäkertun kulmanopeutta kuvaava vektori osoittaa? z y x 1. +x-suuntaan 2. x-suuntaan 3. +y-suuntaan 4. y-suuntaan 5. +z-suuntaan 6. z-suuntaan
37 Pyörimisliikkeen vektorisuureet Kulmanopeusvektori ~! Kohtisuorassa pyörimisliikkeen tasoa vastaan Suunta määrätään oikean käden säännöllä!, > 0 Kulmakiihtyvyysvektori ~! Samansuuntainen kuin ~! jos >0 Vastakkaissuuntainen jos <0
38 Tasainen kulmakiihtyvyys Vakio- Kulmakiihtyvyyden määritelmästä Toisaalta = d! dt! =! 0 + t = vakio =) Z! Z t! 0 d! = 0 dt =)! = d dt =) Z Z t 0 d = 0 Z t!dt = (! 0 + t)dt =) 0 = 0 +! 0 t t2
39 Tasainen kulmakiihtyvyys - jatkoa Eliminoidaan aika: t =(!! 0 )/, jolloin!! 0 = 0 +! h! 2!0!! 0 2 = 0 +! 0 + 1! 2 2 = 0 + 1! 2 1! i 2! 0! Samanlainen ajasta eksplisiittisesti riippumaton yhtälö kuin mikä saatiin translaatioliikkeellekin! 2 0
40 Translaatio- ja rotaatioliikkeen yhteys Pisteen paikka ympyrän kaarella s = r Pisteen nopeus v = ds = r d = r! dt dt Pisteen tangentiaalinen kiihtyvyys a T = dv = r d! dt dt Kiihtyvyyden normaalikomponentti ja itseisarvo a N = v 2 r = r! 2, a = q a 2 T + a2 N = r y r O v, a T a N P s x
41 Analogiat Pyörimisliikkeen yhtälöt tasaisella kulmakiihtyvyydellä samanmuotoiset kuin tasaisella kiihtyvyydellä translaatioliikkeessä Esimerkki fysiikassa esiintyvistä analogioista: sama matemaattinen malli pätee erilaisiin fysikaalisiin ongelmiin
42 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike
43 Yhdistetty translaatio- ja pyörimisliike = Massakeskipisteen etenemisliikkeenä + massakeskipisteen kautta kulkevan akselin ympäri tapahtuva pyörimisliike Liikeyhtälöt vastaavat kuin erikseen etenemis- ja pyörimisliikkeessä Edellyttää Pyörimisakseli on symmetria-akseli Akseli ei muuta suuntaansa liikkeen aikana
44 Vieriminen liukumatta Esimerkki yhdistetystä etenemis- ja pyörimisliikkeestä Kappaleen tukipintaa koskettava piste ei liiku suhteessa pintaan Toisaalta hetkellisesti kappale pyörii aina kosketuspisteensä ympäri Kappaleen kulmanopeuden ja etenemisnopeuden välillä yhteys v CM = R! Palataan yhdistetyn liikkeen analyysiin hitausmomentin yhteydessä + =
Luento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
LisätiedotELEC-A3110 Mekaniikka (5 op)
Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat
LisätiedotLuento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotFysiikka ei kerro lopullisia totuuksia. Jokin uusi havainto voi vaatia muuttamaan teorioita.
766323A Mekaniikka Mansfield and O Sullivan: Understanding physics kpl 1 ja 2. Näitä löytyy myös Young and Freedman: University physics -teoksen luvuissa 2 ja 3, s. 40-118. Johdanto Fysiikka on perustiede.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotKinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 2010 PARTIKKELI. Suoraviivainen liike
Kinematiikka -1- K09A,B&C Harjoitustehtäviä Kevät 010 PARTIKKELI Suoraviivainen liike 1. Suoraviivaisessa liikkeessä olevan partikkelin asema on (järjestelmä m, s) 3 x ( = t 15t + 36t 10. Laske a) partikkelin
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotJakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti
Jakso 1: Pyörimisliikkeen kinematiikkaa, hitausmomentti Kertausta Ympyrärataa kiertävälle kappaleelle on määritelty käsitteet kulmanopeus ja kulmakiihtyvyys seuraavasti: ω = dθ dt dω ja α = dt Eli esimerkiksi
Lisätiedot:37:37 1/50 luentokalvot_05_combined.pdf (#38)
'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto
Lisätiedotkertausta Esimerkki I
tavoitteet kertausta osaat määrittää jäykän kappaleen hitausmomentin laskennallisesti ymmärrät kuinka vierimisessä eteneminen ja pyöriminen kytekytyvät osaat soveltaa energiaperiaatetta vierimisongelmiin
LisätiedotLuento 9: Pyörimisliikkeen dynamiikkaa
Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami
LisätiedotNyt kerrataan! Lukion FYS5-kurssi
Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle
LisätiedotKERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1
KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen
LisätiedotLuento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotLuento 7: Voima ja Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta
LisätiedotLuento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait
LisätiedotLiikkeet. Haarto & Karhunen. www.turkuamk.fi
Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa
LisätiedotKALTEVA TASO. 1. Työn tavoitteet. 2. Teoria
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti
LisätiedotFysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi
Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)
Lisätiedot4 Kaksi- ja kolmiulotteinen liike
Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
Lisätiedot8 Suhteellinen liike (Relative motion)
8 Suhteellinen liike (Relative motion) 8.1 Inertiaalikoordinaatistot (Inertial reference of frames) Newtonin I laki on II lain erikoistapaus. Jos kappaleeseen ei vaikuta ulkoisia voimia, ei kappaleen liikemäärä
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Motivaatio Tässä tutustutaan
LisätiedotMekaniikka, osa 2. Perttu Lantto. Luentokalvot
Mekaniikka, osa 2 Perttu Lantto Luentokalvot perustuvat kirjaan: University physics, 13 th International Edition H. D. Young & R. A. Freedman (Pearson, 2012) 16. tammikuuta 2017 Mekaniikka, osa 2 Mekaniikka
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
LisätiedotLuento 5: Voima ja Liikemäärä
Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
LisätiedotDYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän
Lisätiedoton hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis
Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa
Lisätiedotx (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
Lisätiedot766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä
LisätiedotMekaniikkan jatkokurssi
Mekaniikkan jatkokurssi Tapio Hansson 16. joulukuuta 2018 Mekaniikan jatkokurssi Tämä materiaali on suunnattu lukion koulukohtaisen syventävän mekaniikan kurssin materiaaliksi. Kurssilla kerrataan lukion
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotLiikemäärä ja voima 1
Liikemäärä ja voima 1 Tällä luennolla tavoitteena Kinematiikan ongelma ja sen ratkaisu: Miten radan ja nopeuden saa selville, jos kappaleen kiihtyvyys tunnetaan? Analyyttinen ratkaisu Liikemäärän, voiman
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
LisätiedotDYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa.
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotLiike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
Lisätiedot1.4 Suhteellinen liike
Suhteellisen liikkeen ensimmäinen esimerkkimme on joskus esitetty kompakysymyksenäkin. Esimerkki 5 Mihin suuntaan ja millä nopeudella liikkuu luoti, joka ammutaan suihkukoneesta mahdollisimman suoraan
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LisätiedotVektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
LisätiedotLuento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
LisätiedotDYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 6 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Mekaniikan peruslait (liikelait). Liikemäärän momentin tase. Kappaleen massan vaikutusmitat. Jäykän
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotTarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:
8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv
Lisätiedot761111P PERUSMEKANIIKKA
761111P PERUSMEKANIIKKA Anita Aikio Fysikaalisten tieteiden laitos Oulun yliopisto 2008 2014-2016 muokkauksia Pertti Rautiainen Luentokalvot perustuvat kirjan H. D. Young and R. A. Freedman: UNIVERSITY
LisätiedotSuhteellisuusteorian perusteet 2017
Suhteellisuusteorian perusteet 017 Harjoitus 5 esitetään laskuharjoituksissa viikolla 17 1. Tarkastellaan avaruusaikaa, jossa on vain yksi avaruusulottuvuus x. Nollasta poikkeavat metriikan komponentit
Lisätiedotnopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora.
nopeammin. Havaitaan, että kussakin tapauksessa kuvaaja (t, ϕ)-koordinaatistossa on nouseva suora. Teimme mittaukset käyttäen Pascon pyörimisliikelaitteistoa (ME-895) ja Logger Promittausohjelmaa. Kuva
LisätiedotVedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen
4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka
Lisätiedotg-kentät ja voimat Haarto & Karhunen
g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
Lisätiedot3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.
Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotHARJOITUS 4 1. (E 5.29):
HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotLuento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
LisätiedotAnna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotVaratun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan
Lisätiedot