ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on 000 A. Jätä rinnakkaiskapasitanssit huomiotta ja oleta johto häviöttömäksi. Oleta, että johdon loppupäässä cos f on kaikissa tapauksissa 0,9848. Miten suuret ovat johtojen loistehohäviöt yhteensä? Mikä on siirretty teho ja mikä on kulmaero johdon päiden jännitteiden välillä? Jos yksi johto irtoaa ja sama teho siirretään neljällä johdolla, miten suuriksi loistehohäviöt muuttuvat? Mikä on tällöin jännitteiden kulmaero? Kunkin johdon loistehohäviöt ovat Q 3I 3 (000A) 3W häviöt 96 Mvar Viiden johdon loistehohäviöt ovat 480 Mvar. Lasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on + 000Ð -0 A j3w 3Ð0 + 3Ð80 v v 38,6Ð7,59 Johdon päiden jännitteiden välinen kulmaero on 7,59 astetta ja alkupään pääjännite on 43,7. Yhden johdon teho on 43,7 400 P sin(7,59) MW 68 MW 3 Johtojen teho on yhteensä: 34 MW. Yksi johto irtoaa. Nyt neljä johtoa siirtää 34 MW. Yhden johdon teho on 85,9 MW. Loppupään virta on: P 85,9MW I 50A 3 cosf 3 400 0,9848 Kunkin johdon loistehohäviöt ovat Q 3I 3 (50A) 3W häviöt 50 Mvar Kulmaero jännitteiden päiden välillä on nyt + 50Ð -0 A j3w 3Ð0 + 40Ð80 v v 4,8Ð9,4 Tarkistus: 47,74 400 P sin(9,4)mw 85,8MW 3
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan tilannetta, jossa siirtojohdon molempien toisen pään jännite on 405 ja toisen 395, reaktanssi on 80 ohmia ja siinä siirretään tehoa jännitteiden kulmaeron ollessa 30. Laske johdolla kuluva loisteho ja jännite johdon puolivälissä. Johdon resistanssia ei oteta huomioon. P sin d Q - Q - cosd cosd 395 405 Kun 405Ð30, 395Ð0, P sin 30 000 MW 80 Loistehon kulutus johdolla on Q + Q - cosd + - cosd (405 ) (405 395 ) (395 ) 405 395-0,866 + - 0,866 (405 ) (405 395 ) (395 ) 405 395-0,866 + - 0,866 537 Mvar Johdolla kulkee virta - v 405Ð30-395Ð0 I v ka 495Ð,3 A j 3 j80. j puoliväli, v v - I 4,43Ð5,0 Pääjännitteen itseisarvo johdon puolivälissä on siis 388.
ELEC-E849 syksy 06 Jännitteensäätö 3. Johda yhtälö siirtojohdon luonnolliselle teholle, kun jännitteet johdon kummassakin päässä ovat yhtä suuret: P. Resistanssia ei oteta B huomioon. Vihje: Käytä p-sijaiskytkentää, ilmoita johdon kuluttama ja tuottama loisteho jännitteen, kulman ja johtovakioiden funktioina ja merkitse ne yhtä d suuriksi. Muista, että kulman d ollessa pieni pätee: cosd» - ja sin d» d. Kuvataan johto π-sijaiskytkennällä. Tällöin johdon alkupään maakapasitanssi tuottaa loistehon B B Q C ja loppupään maakapasitanssi tuottaa loistehon Q C B Q C + B. eli yhteensä johto tuottaa ( ) Johdon reaktanssissa kuluu loisteho Q Q + Q - cosd + - cosd. Mikäli, saadaan yhtälöksi B ( - cosd ) Q Q : C Normaalisti jännitteiden kulmaero δ on pieni yhden johdon yli, jolloin (ja sin δ δ). Yhtälö saadaan siis muotoon: d B () cosd» - d Johdon siirtämälle pätöteholle on yhtälö P sin d» d () P Eli sijoittamalla d yhtälöön (), saadaan ratkaista: P B B æ P ö ç, josta voidaan è ø 3
ELEC-E849 syksy 06 Jännitteensäätö 4. 50 km pitkän 400 -Finch-teräsalumiinijohdon aaltoimpedanssi ZSIL on -3 304,Ð -, W ja etenemiskerroin pituutta kohti (g) on,09 0 Ð87,57 km. a) Määritä johdon yleiset siirtovakiot A, B, C ja D ja ilmoita miten lasket johdon alkupään jännitteen ( ) ja virran (I ) loppupään jännitteen ja loppupään virran I funktiona. b) Johdon alkupää on jäykässä verkossa ja sen jännite on nimellinen (400 ) ja johdon loppupää on auki. Mikä on loppupään jännitteen itseisarvo? Onko tämä hyväksyttävä tilanne? c) Johdon alkupää on jäykässä verkossa (400 ) ja loppupäässä on 3- vaiheinen oikosulku, jonka vikaimpedanssi on nolla. Mikä on oikosulkuvirta johdon loppupäässä ja alkupäässä? a) 50 km pitkän johdon etenemiskerroin on gs on -3 gs 50km,09 0 Ð87,57 / km 0,5668Ð87,57 0,0403 + j0,5663 0,0403-0,0403 e e A cosh gs D cosh(0,0403+ j0,5663) Ð0,5663rad + Ð - 0,5663rad 0,56Ð3,4466 + 0,4883Ð - 3,4466 0,43 + j0,748 + 0,493- j0,689 0,8443+ j0,09 0,844Ð0,87 a -a e e sinhgs Ðb - Ð - b 0,0403-0,0403 e e sinh(0,0403+ j0,5663) Ð0,5663rad - Ð - 0,5663rad 0,56Ð3,4466-0,4883Ð - 3,4466 0,43 + j0,748-0,493+ j0,689 0,009 + j0,53669 0,537Ð87,83 B Z c sinh( gs) 304,Ð -, W 0,537Ð87,84 63,33Ð85, 74W sinh( gs) C Z c 0,537Ð87,84 304,Ð -, W,77Ð89,94 ms é ë I ù é A û ëc Bùé D ûë I ù é 0,844Ð0,87 û ë,77ð89,94 ms 63,33Ð85,74Wùé 0,844Ð0,87 ûë I ù û b) Kun vastaanottava pää on auki, sen virta on nolla ja on jännitteiden suhde on 400Ð0 A. A Û 474Ð - 0,87 Loppupään jännitteen A 0,844Ð0,87 itseisarvo on 474. Jännite on liian korkea. (Koska tässä on vain kahden jännitteen suhde, voidaan laskea suoraan pääjännitteillä.) c) Kun vastaanottava pää on oikosuljettu, on vastaanottavan pään jännite ( ) nolla, alkupään jännite ( ) on 400 ja virtojen suhde on D. Lasketaan ensin oikosulkuvirta johdon loppupäässä. 4
ELEC-E849 syksy 06 Jännitteensäätö é400ù é 0,844Ð0,87 63,33Ð85,74W 0 3 ùé ù Û,77 89,94 ms 0,844 0,87 ë Ð Ð ûëi û ë I û 400Ð0 I 44Ð - 85,74 A 3 63,33Ð85,74W Oikosulkuvirta johdon loppupäässä (I ) on 44 A. Merkitään nollaksi ja annetaan alkupään jännitteelle ( ) arvo 400. Lasketaan I. é400ù é 0,844Ð0,87 63,33Ð85,74W 0 3 ùé ù Û,77 89,94 ms 0,844 0,87 44 85,74 ë Ð Ð ë Ð - ë I û û û I 0,844Ð0,87 44Ð - 85,74 93Ð - 84,87 A Oikosulkuvirta johdon alkupäässä on 93 A. 5. Loistehon kompensoinnin periaatteet Suomen kantaverkossa Vastaus: 400 :n verkko: tyhjäkäyvien johtojen tuottama loisteho pitää voida kuluttaa. Reaktoreita on verkossa suunnilleen yksi / 00 km johtoa. Mahdollisen suurhäiriön jälkeen verkkoa koottaessa tarvitaan kaikki reaktorit, etteivät johtojen jännitteet nousisi liikaa Nopeita loistehoreservejä pitää olla verkon häiriöiden jälkitilanteisiin, jotta verkko selviää niistä romahtamatta 400 :n verkkoon kytketyt generaattorit eivät normaalitilanteessa ota eivätkä anna loistehoa verkkoon. Tahtigeneraattoreiden loistehoa pidetään häiriöreservinä 0 ja 0 verkot Loistehon kompensointilaitteita on sen verran, että asiakkaiden liittymispisteiden jännitteet voidaan pitää sallituilla alueilla. Näihin verkkoihin kytketyt tahtigeneraattorit voivat tuottaa tai kuluttaa enintään puolet loistehon tuotantokyvystään. Loput ovat häiriöreserviä. 6. Tarkastellaan jännitteenantoa 375 km pitkälle 400 :n johdolle, jonka x 0,333 Ω/km ja b 3,57 μs/km. Johto oletetaan häviöttömäksi. Alkupään verkon jännite on 409. a) Mikä olisi jännite johdon loppupäässä ilman reaktoreita, kun johto on alkupäästään kytketty verkkoon ja johto olisi loppupäästä auki? Vastaus: 446 b) Jos lähtöpään jännite on 409, kuinka suuri reaktoriteho tarvitaan vastaanottavassa päässä, jotta jännite ei siellä ylittäisi arvoa 40? Vastaus: 8, Mvar. Kuvassa on esitetty tilanteet 5
ELEC-E849 syksy 06 Jännitteensäätö a) Jos johto kuvataan π-sijaiskytkentänä, on alku- ja loppupään jännitteiden välillä reaktanssi 375 km 0,333 Ω/km 5 Ω. Johdon suskeptanssi B on 375 km 3,57 ms/km 339 ms. Johdon admittanssi koostuu pelkästään suskeptanssista eli Y/ jb/ j670 ms. Lasketaan tyhjäkäyvän johdon loppupään jännite jännitteenjaolla.,094 I Y + j Y j670μs j670μs,094 409 446,4 + j5w - j49,5w - j49,5w + j5w b) Nyt tiedetään, että loppupään jännite on 40, koska reaktori estää jännitettä nousemasta liian ylös. Alkupään jännite siis 409 ja loppupään 40. Pätötehoa ei tilanteessa siirry, joten kulmaeroa ei ole päiden jännitteiden välillä. Johdolla kulkee tällöin sen alkupäätä kohden virta D 3j 40Ð0-409Ð0 3 5WÐ90 j - j50,8a Johdon loppupään maakapasitanssi ottaa loistehoa B Qc - j -(40) 670μS -8,Mvar j c huomaa, että kondensaattorin ottama loisteho on negatiivinen, koska kondensaattori tuottaa loistehoa. Loppupään maakapasitanssi ottaa virran Sc * (0 MW - j8,mvar * I ( ) ( ) (-6,3jA) 3 3 40Ð0 * c 6,3jA 40 :n jännitteellä ja kuvan mukaisilla virran ja tehon suunnilla reaktorin ottama teho on * * * S 3 I 3 - I c - I j 3 40 - j6,3a + j50,8a R 3 40 R ( ) ( ) ( j6,3a - j50,8a) 8, Mvar Suomessa käytetyn reaktorin vakiokoon vuoksi tarvittaisiin käytännössä kaksi 60 Mvar suuruista reaktoria. 6
ELEC-E849 syksy 06 Jännitteensäätö Toinen tapa (aiemmin ratkaisuissa ollut). I b) Nyt tiedetään, että loppupään jännite on 40, koska reaktori estää jännitettä nousemasta liian ylös. Alkupään jännite siis 409 ja loppupään 40. Pätötehoa ei tilanteessa siirry, joten kulmaeroa ei ole päiden jännitteiden välillä. Johdolla kulkee tällöin sen alkupäätä kohden virta D 3 40-409 3 5W j 50,8A Johdon loppupään maakapasitanssi tuottaa loistehon B Qc (40) 670μS 8,Mvar ja virran Qc 8,Mvar Ic 6,3A. 3 40 3 Reaktorin loisteho Q I sinj 3 I - I sin 90 3 ( ) ( 6,3A - 50,8A) 8, Mvar R 3 R c j 6.. Tuotanto- ja kuorma-alueiden välissä on viisi 500 :n johtoa, joiden pituudet ovat 00 km. Kunkin johdon reaktanssi pituutta kohti on 0,375 W/km ja resistanssi on 3,7 W. Oletetaan, että johdolla siirtyvän tehon tehokerroin cos j,0. a) Laske miten paljon virtalämpöhäviöt lisääntyvät johtoa kohti ja yhteensä sekä prosentteina että megawatteina, kun yksi johto irtoaa ja sen kautta kulkenut teho siirtyy muille johdoille. Jokaisen johdon virta ennen irtoamista on 000 A. b) Laske paljonko loistehon kulutus johdoille lisääntyy prosentteina ja megavareina, kun yksi johto irtoaa. a) Ennen johdon irtoamista yhden johdon häviöt ovat 3 (000 A) Viiden johdon häviöt: Ph 3 5 I R 55,5 MW Johdoilla yhteensä siirtynyt teho: P 5 3I cosj 4330MW 3,7 W, MW 5 Yksi johto irtoaa, nyt teho johtoa kohti on Pjohto 3I cosj 08,5 MW 4 5 Virta johtoa kohti on 50A 4 I udet virtalämpöhäviöt jäljelle jäävillä neljällä johdolla ovat: æ 5 ö Neljän johdon häviöt 3 4 ç I R è 4 ø 69,4 MW 7
ELEC-E849 syksy 06 Jännitteensäätö 4 5 I R Häviöt lisääntyvät yhteensä 5 %., 5 6 5 I R Yhden johdon häviöt johdon irrottua ovat æ 5 ö 3 ç I R è 4 ø 7 MW æ 5 ö ç I R 4 Häviöt lisääntyvät johtoa kohti 56 %. è ø, 565 I R b) Johdon reaktanssi on 00km 0,375Ω/km 75W Loistehon kulutus ennen irtoamista on yhteensä Qh 5 3 5 I 75W 5MVar Johtoa kohtiqh 3 I 75W 5MVar Yhden johdon virta on kasvanut 5/4-kertaiseksi johdolla, joten uudet loistehohäviöt ovat yhteensä æ 5 ö 4 3 ç I 75W 406MVar è 4 ø Loistehohäviöt lisääntyvät yhteensä 5 %. Loistehohäviöt lisääntyvät johtoa kohti 56 %. 8