Kolmivaihejärjestelmän perusteet. Pekka Rantala
|
|
- Viljo Hyttinen
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kolmivaihejärjestelmän perusteet Pekka Rantala
2 Sisältö Jännite- ja virtalähde Kolme toimintatilaa Theveninin teoreema Symmetrinen 3-vaihejärjestelmä Virrat ja jännitteet Tähti- ja kolmiokytkentä Vaihtovirran tehot Usean tehon rinnankytkentä Kolmiosta ekvivalenttitähti 1-vaiheinen sijaiskytkentä Epäsymmetrinen 3-vaihejärjestelmä
3 Muuntaja Muuntajan häviöt Tyhjäkäyntikoe, oikosulkukoe Sijaiskytkentä Arvojen redusointi Muuntajan kilpiarvot Jännitteen säätäminen 3-vaihemuuntajien kytkentäryhmät Muuntajan rakenne, osat
4 Suoritusvaatimukset teoriakurssi, ei labroja Kolme välikoetta Yhteispisteet ratkaisee Välikokeesta ei ole uusintamahdollisuutta Tarkat pelisäännöt vielä auki (29.8.) Koko opintojakson suoritus yhdellä kertaa yleisinä uusintakoepäivinä.
5 Oppimateriaali Opettajan nettisivulla Kirjallisuutta: Sähkötekniikka ja piiriteoria Kimmo Silvonen Otatieto 2009 Klassikko-kirja Martti Paavola Sähkötekniikan oppikirja uusin painos luvulta
6 Jännitelähde (tasajännite) Todellinen jännitelähde sisältää kaksi osaa: Häviötön jännitelähde, jonka lähdejännite on E [V] Sisäinen resistanssi R S [Ω] R S E U Jännitelähteestä saadaan ulos napajännite U [V]
7 Häviötön jännitelähde Häviöttömyys tarkoittaa sitä, että vaikka virtaa kulkee läpi kuinka paljon hyvänsä, niin lähdejännite E pysyy vakiona. Teoriassa jännitelähde voi olla häviötön, mutta käytännössä ei! Käytännön jännitelähteessä syntyy sisäisessä vastuksessa R S AINA sisäinen jännitehäviö U S = R S I (kun virtaa kulkee) R S E I U I I
8 Jännitelähteen kuormittaminen Miten napajännitteelle U käy, kun jännitelähteeseen lisätään ulkopuolinen kuorma R L? R S E U R L
9 Kuormituksen kolme eri tilaa Jännitelähteeseen liitettävän kuorman kannalta saadaan kolme kuormitustilannetta: R L = 0 Ω (nolla) kyseessä on oikosulku R L = Ω (ääretön) kyseessä on tyhjäkäynti R L = edellisten välillä normaali käyttötilanne Oikosulku vastaa suoraa kuparijohtoa Tyhjäkäynti vastaa piuhat poikki -tilannetta
10 Jännitelähteen ominaiskäyrä Jännitelähteen käyttäytyminen voidaan esittää virta-jännite ominaiskäyrän avulla. normaali toiminta ääripäät vastaavat oikosulkua ja tyhjäkäyntiä jännite 0 0 virta
11 Jännitelähteen termejä Lähdejännite E Sisäinen resistanssi R S = sisäresistanssi Napajännite U Tyhjäkäynti-tilanne (tällöin I = 0 A) Tyhjäkäyntijännite U 0 Oikosulku-tilanne (tällöin U = 0 V) Oikosulkuvirta I k (oikosulku = kurzschluss)
12 Virtalähde (tasajännite) Todellinen jännitelähde voidaan aina ajatella sisäiseltä kytkennältään myös virtalähteeksi. Jännite- ja virtalähde ovat keskenään ekvivalenttiset, jos ne ulkoapäin tarkasteltuna käyttäytyvät täysin samalla tavalla. Eli ominaiskäyrät ovat samanlaiset. J R S U J on ideaalisen virtalähteen lähdevirta [A]
13 Jännite- ja virtalähteen vertailu Ekvivalenttisille jännite- ja virtalähteille pätee: Niillä on sama tyhjäkäyntijännite U 0 Niillä on sama oikosulkuvirta I k Niiden ominaiskäyrät ovat samanlaiset Jännitelähteen E = tyhjäkäyntijännite U 0 Virtalähteen J = oikosulkuvirta I k Jännitelähteessä R S on sarjassa lähdejännitteen E kanssa Virtalähteessä R S on rinnakkain lähdevirran J kanssa Jännitelähde = Theveninin lähde Virtalähde = Nortonin lähde
14 Theveninin teoreema Mikä hyvänsä tavallinen (lineaarinen) virtapiiri, joka koostuu jännite/virta-lähteitä sekä passiivisista komponenteista voidaan esittää yhden lähdejännitteen E ja sisävastuksen R S sarjakytkentänä. Saadaan piiriä vastaava Theveninin lähde Vastaavasti on olemassa myös Nortonin teoreema.
15 3-vaihejärjestelmä, (3~-järjestelmä) 3-vaihejärjestelmä voi tulla kyseeseen vain vaihtosähköllä. Eri vaiheet tarkoittavat sinikäyrän eri vaiheita. Eri vaiheilla on keskenään vaihe-eroa toisiinsa nähden. Vaiheita voi olla muukin määrä kuin 3, on olemassa esim. 2-vaihejärjestelmä, mutta 3-vaihejärjestelmä on yleisin ja paras(!?)
16 3-vaihejärjestelmä Û U pp Vaihe1 Vaihe2 Vaihe3 GND Û = huippuarvo Huipusta huippuun arvo U pp = 2 Û (= U hattu) (= peak to peak) Tehollisarvo U RMS = Û 2 RMS = Root Mean Square
17 Symmetrinen 3-vaihejärjestelmä 3-vaihejärjestelmä on symmetrinen, kun seuraavat ehdot toteutuvat: Vaiheet ovat jakautuneet vaihesiirron kannalta tasaisesti yhden sinisignaalin jakson ajalle, eli vaiheiden keskinäinen vaihe-ero = 120. Vaiheiden jännitteet nollaan nähden ovat samat (tehollisarvot) Vaiheiden virrat ovat samat (tehollisarvot) Kaikissa vaiheissa jännitteen ja virran välillä on sama vaihe-ero. Eli vaihevirtojen välinen vaihesiirto on 120.
18 3-vaihejärjestelmä, termejä vaiheet vaihevirrat muuntaja tai generaattori L1 (R) L2 (S) L3 (T) I L1 I L2 I L3 kuorma nollajohto maadoitus eivät pakollisia, mutta usein on
19 Nollajohdon virta Symmetrisessä tilanteessa vaihevirrat ovat itseisarvoltaan samat ja niiden välillä on 120 vaihesiirtoa. Mikä on näiden virtojen summa? I L3 L1 I L1 tähtipiste = nollapiste I L1 L2 L3 I L2 I L3 I L2 N I N Symmetrisessä tilanteessa nollajohdon virta = 0!
20 3-vaihejärjestelmän vaihe- ja pääjännite Vaihe- johtimet L1 L2 L3 Nolla- johdin N Vaihejännite U V = 230 V (tehollisarvo) Vaiheen ja nollan välillä valovirta Pääjännite U P = 400 V (tehollisarvo) Kahden vaiheen välillä voimavirta
21 Vaihe- ja pääjännite L3 U P = 400 V N L1 U V = 230 V L2
22 Symmetrinen 3-vaihejärjestelmä jatkuu 3-vaihejärjestelmää syötetään generaattorista (tai muuntajasta), joka antaa kaikkiin vaiheisiin saman vaihejännitteen. Ja niiden keskinäinen vaihe-ero on 120. Jotta symmetrisyys toteutuu virtojen kannalta, se vaatii, että kaikkia vaiheita kuormitetaan samanlaisella kuormalla Z L = R + jx. Käytännön tilanteissa pyritään aina symmetriseen 3-vaihejärjestelmään.
23 3-vaihejärjestelmän kuorma Pyritään symmetriseen kuormitukseen Kaikkia vaiheita kuormitetaan yhtä paljon Kuorma voi olla puhtaasti resistiivinen R Vaiheen jännite ja virta ovat samassa vaiheessa Kuorma on yleisesti ilmaistuna impedanssi Z Vaiheen jännitteen ja virran välillä on vaihe-eroa Kuorma voidaan kytkeä kahdella tavalla: tähteen tai kolmioon
24 Tähtikytkentä (Y-kytkentä, Y, y) Voidaan ajatella, että on 3 kpl yksivaiheisiä kytkentöjä, joilla on yhteinen nollapiste L1 L2 L3 R R R L1 L2 L3 R R R tähtipiste = nollapiste N Jokaisen kuorman R yli vaikuttaa vaihejännite U V
25 Kolmiokytkentä (Δ-kytkentä, D,d) Jokaisen kuorman R yli vaikuttaa pääjännite U P, kun vastukset on kytketty kolmioon L1 R L1 R L2 R L2 R L3 R L3 R HUOM! Kolmiokytkennässä ei ole nollapistettä! Mistään kytkennän kohdasta ei löydy nollaa.
26 Vaihtosähkön pätöteho resistiivisellä kuormalla Resistiivisellä kuormalla teho on pelkkää pätötehoa P, jonka yksikkö on watti, W Yhden vaiheen teho on P 1~ = U V I V 3-vaihejärjestelmän teho on P 3~ = 3 U V I V U V on vaihejännite P 3~ = 3 U P I V U P on pääjännite I V on vaihevirta, eli vaihejohtimessa kulkeva virta
27 Vaihtosähkön tehokerroin Resistiivisen kuorman tilanteessa jännite ja virta ovat samassa vaiheessa Niiden välinen vaihesiirto ϕ (fii) on 0 Tehokertoimen cos ϕ arvo on 1 Yleisessä tilanteessa virran ja jännitteen välillä on vaihe-ero ϕ (fii) Tehokerroin cos ϕ saa tällöin arvon 0 1 Tehokerroin on aina positiivinen, vaikka kulma ϕ voi olla positiivinen (ind.) tai negatiivinen (kap.).
28 Vaihtosähkön tehokolmio loisteho Q φ pätöteho P
29 sini, kosini ja tangentti hypotenuusa ϕ c vastainen kateetti a viereinen kateetti b sin ϕ = cos ϕ = vastainen hypotenuusa viereinen hypotenuusa tan ϕ = vastainen viereinen sinin arvo = cosinin arvo = tangentin arvo = 0 + Lisäksi Pythagoraan lause: c 2 = a 2 + b 2
30 Tehojen yksiköt Pätöteho P watti eli W Loisteho Q vari eli var tai VAr (volttiampeeri reaktiivinen) Näennäisteho S volttiampeeri eli VA
31 Vaihtosähkön tehot Kun virralla ja jännitteellä on vaihe-eroa, niin Näennäisteho S 1~ = U V I V S 3~ = 3 U P I V Pätöteho P 1~ = U V I V cos ϕ P 3~ = 3 U P I V cos ϕ Loisteho Q 1~ = U V I V sin ϕ Q 3~ = 3 U P I V sin ϕ Lisäksi S 2 = P 2 + Q 2
32 Vaihtosähkön virtakolmio loisvirta I Q φ pätövirta I P Johtimessa kulkevan kokonaisvirran voidaan ajatella jakaantuvan kahteen komponenttiin I Q ja I P
33 Rinnakkain kytkettyjen kuormien tehot Esimerkkitilanne: 3~-moottorit A ja B on liitetty samaan 3~-syöttöön Moottori A: 20 kw, cos ϕ = 0,7 ind. Moottori B: 35 kw, cos ϕ = 0,6 ind. Mikä on moottoreiden yhteensä syötöstä ottama pätöteho ja loisteho? Miten iso virta vaihejohtimissa kulkee? Mikä on koko kuormituksen tehokerroin cos ϕ?
34 Useiden tehojen yhteenlasku Vaihtosähkön tehot pitää laskea yhteen osissa: 1. Selvitä kunkin yksittäisen kuormituksen pätöteho ja loisteho 2. Laske kaikki pätötehot yhteen = P 3. Laske kaikki loistehot yhteen = Q 4. Nyt saadaan ratkaistua koko kuormituksen: tehokerroin, cos ϕ = cos (arctan( näennäisteho S = ( P) 2 +( Q) 2 Q P ))
35 Symmetrisen 3-vaihejärjestelmän tarkastelua I L1 Tunnettuja asioita ovat: Vaihevirtojen suuruus Kokonaisteho P Voidaanko päätellä, onko kuorman kytkentä tähti vai kolmio? Vastaus: Ei voida! Kyseessä ovat ekvivalenttiset tähti- ja kolmiokytkentä, jos ne ulospäin toimivat samalla tavalla. Kytkennän tarkastelu on yleensä paljon helpompaa, jos 3-vaiheinen kuorma ajatellaan tähtikytkennäksi. Kuorman kytkentä??? Tarkastelussa muutetaankin kaikki kolmiokytketyt kuormat ekvivalenttisiksi tähtikytkennöiksi! I L2 I L3
36 Ekvivalenttiset D- ja Y-kytkennät Mikä on kytkennöissä olevien vastusten R D ja R Y keskinäinen suhde, jotta kytkennät olisivat ekvivalenttiset? L1 R D L1 R Y L2 L3 R D R D L2 L3 R Y RY Voidaan osoittaa että ekvivalenttisilla kytkennöillä on: R Y = 1 3 R D ja yleisemmin Z Y = 1 3 Z D = 1 3 ( R D + jx D )
37 1-vaiheinen sijaiskytkentä Symmetrisen 3-vaihekytkennän analysointi: 1. Muunnetaan kaikki kolmiokytkennät ekvivalenttisiksi tähtikytkennöiksi. 2. Riittää kun otetaan tarkasteluun vain yksi vaihe, tyypillisesti selvitetään sen virta. 3. Kahden muun vaiheen virrat ja jännitteet ovat muuten samat kuin edellisellä, mutta tehdään vaihesiirtoa 120.
38 Loistehon kompensointi Jotkin sähkölaitteet vaativat toimiakseen loistehoa, esim.: moottorit ( cos ϕ = 0,7-0,85) purkauslamput ( cos ϕ = 0,5-0,9 ) Kuorman tarvitsema loisteho voidaan tuottaa generaattorilla pätötehon yhteydessä, jolloin se joudutaan siirtämään jakeluverkossa. Parempi tapa on tuottaa tarvittava loisteho paikallisesti lähelle kulutuskojetta asennetuilla kompensointikondensaattoreilla.
39 Epäsymmetrinen 3-vaihejärjestelmä /1 Epäsymmetriatilanteita on erilaisia. Tilanteet, joissa on nollajohto: 1. Kuormitus on erilainen eri vaiheissa. On hyvä nollajohto, jonka resistanssi 0 Ω, eli on hyvä maadoitus. Mikä on nollapisteen potentiaali? Kulkeeko nollajohdossa virtaa? 2. Kuormitus on erilainen eri vaiheissa. On huono nollajohto, sen resistanssi > 0 Ω, eli on huono maadoitus. Mikä on nollapisteen potentiaali? Kulkeeko nollajohdossa virtaa?
40 Epäsymmetrinen 3-vaihejärjestelmä /2 Tilanteet, joissa ei ole nollajohtoa lainkaan. Kytkentä on käytössä esim. moottoreilla tai lämmittimillä, joiden kuormitus on ehjässä laitteessa aina symmetrinen. Tällainen tilanne on yleensä myös 20 kv:n jakeluverkoissa. 3. Kuormitus on vikatilanteen takia eri vaiheissa erilainen. Jos esim. moottorin yksi vaihe kärähtää. Mikä on nollapisteen (tähtipisteen) potentiaali? 4. Syöttävän verkon vaihejännitteet ovat epäsymmetriset. Esim. yhden vaiheen sulake palaa, ja vain kaksi vaihetta on kuumana. Mikä on nollapisteen (tähtipisteen) potentiaali?
41 Epäsymmetrinen 3-vaihejärjestelmä /3 Yhteenvetona seurauksia, joita syntyy, jos 3-vaihejärjestelmä on epäsymmetrinen Nollapisteen eli tähtipisteen potentiaali ei olekaan nolla niin kuin pitäisi vaaran paikka Nollajohdossa voi kulkea isokin virta. Voiko nollajohdon virta olla suurempi kuin yksittäisen vaihejohdon virta? Jos yksi vaihe tippuu pois, eikä ole nollajohtoa Ehjien vaiheiden jännite ei olekaan enää välttämättä 230 V, saavat ylijännitettä Tähtipisteen potentiaali voi olla reilustikin eri kuin nolla
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Teho vaihtosähköpiireissä ja symmetriset kolmivaihejärjestelmät Luennon keskeinen termistö ja tavoitteet Kompleksinen teho S ja näennästeho S Loisteho
LisätiedotSATE1040 Piirianalyysi IB kevät /6 Laskuharjoitus 5: Symmetrinen 3-vaihejärjestelmä
1040 Piirianalyysi B kevät 2016 1 /6 ehtävä 1. lla olevassa kuvassa esitetyssä symmetrisessä kolmivaihejärjestelmässä on kaksi konetta, joiden lähdejännitteet ovat vaihejännitteinä v1 ja v2. Järjestelmä
LisätiedotSinimuotoinen vaihtosähkö ja siihen liittyviä käsitteitä ja suureita. Sinimuotoisten suureiden esittäminen osoittimilla
LIITE I Vaihtosähkön perusteet Vaihtojännitteeksi kutsutaan jännitettä, jonka suunta vaihtelee. Vaihtojännite on valittuun suuntaan nähden vuorotellen positiivinen ja negatiivinen. Samalla tavalla määritellään
LisätiedotSÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotSähkötekniikan perusteita. Pekka Rantala Syksy 2016
Sähkötekniikan perusteita Pekka Rantala Syksy 2016 Sisältö 1. Sähköasennuksia sääteleviä säännöksiä 2. Sähkötekniikan perusteita 3. 3-vaihejärjestelmä 4. Muutamia perusjuttuja 1. Sähköasennuksia sääteleviä
LisätiedotDEE-11110: SÄHKÖTEKNIIKAN PERUSTEET. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin
LisätiedotHarmonisten yliaaltojen vaikutus johtojen mitoitukseen
Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
AMTEK 1/7 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIIANALYYSI I Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Kirja: luku 3 Luentomoniste: luvut 4.2, 4.3 ja 4.4
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA. Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit
SMG-2100: SÄHKÖTEKNIIKKA Kirchhoffin lait Aktiiviset piirikomponentit Resistiiviset tasasähköpiirit jännitelähde virtalähde Kirchhoffin virtalaki Kirchhoffin jännitelaki Käydään läpi Kirchhoffin lait,
LisätiedotSÄHKÖTEKNIIKKA. NTUTAS13 Tasasähköpiirit Jussi Hurri kevät 2015
SÄHKÖTEKNIIKKA NTTAS13 Tasasähköpiirit Jussi Hurri kevät 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 7. Tehtävä 1
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 7 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus R L = 10 ς. Kyllästysalueella kollektori-emitterijännite
Lisätiedot2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?
SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee
LisätiedotOmnia AMMATTIOPISTO Pynnönen
MMTTOSTO SÄHKÖTEKNKK LSKHJOTKS; OHMN LK, KCHHOFFN LT, TEHO, iirrä tehtävistä N piirikaavio, johon merkitset kaikki virtapiirin komponenttien tunnisteet ja suuruudet, jännitteet ja virrat. 1. 22:n vastuksen
LisätiedotLuento 6. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 6 1 DEE-11000 Piirianalyysi Ensimmäinen välikoe keskiviikkona 19.11. klo 13-16 salissa S1. Aihepiiri: Tasasähköpiirin analyysi (monisteen luvut 1-6) 2 Solmupistemenetelmä
LisätiedotSähkötekniikka. NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014
Sähkötekniikka NBIELS12 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella vaihtovirtaa!
LisätiedotSähkönjakelutekniikka osa 1. Pekka Rantala
Sähkönjakelutekniikka osa 1 Pekka Rantala 27.8.2015 Opintojakson sisältö 1. Johdanto Suomen sähkönjakelun rakenne Kantaverkko, suurjännite Jakeluverkot, keskijännite Pienjänniteverkot Suurjänniteverkon
LisätiedotDEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Theveninin ja Nortonin ekvivalentit, kuorman maksimiteho Luennon keskeinen termistö ja tavoitteet Theveninin ekvivalentti Nortonin ekvivalentti kuorman
LisätiedotThéveninin teoreema. Vesa Linja-aho. 3.10.2014 (versio 1.0) R 1 + R 2
Théveninin teoreema Vesa Linja-aho 3.0.204 (versio.0) Johdanto Portti eli napapari tarkoittaa kahta piirissä olevaa napaa eli sellaista solmua, johon voidaan kytkeä joku toinen piiri. simerkiksi auton
LisätiedotELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus
Lisätiedot1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
LisätiedotElektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist
Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
LisätiedotPynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/6 Opintokokonaisuus : Jakso: Harjoitustyö: 3 SÄHKÖ Pvm : Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään kolmivaihejärjestelmän vaihe- ja pääjännitteiden suuruudet
LisätiedotMitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia.
Mitä on sähköinen teho? Tehojen mittaus Mitä on pätö-, näennäis-, lois-, keskimääräinen ja suora teho sekä tehokerroin? Alla hieman perustietoa koskien 3-vaihe tehomittauksia. Tiettynä ajankohtana, jolloin
LisätiedotELEC-E8419 syksy 2016 Jännitteensäätö
ELEC-E849 syksy 06 Jännitteensäätö. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0,3 ohm/km (3 ohmia/johto). Kunkin johdon virta on
LisätiedotS Piirianalyysi 1 2. välikoe
S-55.20 Piirianalyysi 2. välikoe 4.2.200 aske tehtävät 2 eri paperille kuin tehtävät 3 5. Muista kirjoittaa jokaiseen paperiin selvästi nimi, opiskelijanumero, kurssin nimi ja koodi. Tehtävät lasketaan
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
Vaihtosähkö SMG-2100: SÄHKÖTEKNIIKKA Sinimuotoiset suureet Tehollisarvo Sinimuotoinen vaihtosähkö & passiiviset piirikomponentit Käydään läpi, mistä sinimuotoiset jännite ja virta ovat peräisin. Näytetään,
LisätiedotSähkövirran määrittelylausekkeesta
VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien
LisätiedotJännite, virran voimakkuus ja teho
Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.0 SÄHKÖTEKNKKA 9.5.000 Kimmo Silvonen Tentti: tehtävät,,5,8,9. välikoe: tehtävät,,,4,5. välikoe: tehtävät 6,7,8,9,0 Oletko muistanut vastata palautekyselyyn Voit täyttää lomakkeen nyt.. aske virta.
LisätiedotAktiiviset piirikomponentit. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Aktiiviset piirikomponentit 1 Aktiiviset piirikomponentit Sähköenergian lähteitä Jännitelähteet; jännite ei merkittävästi riipu lähteen antamasta virrasta (akut, paristot, valokennot)
LisätiedotKatso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/
4.1 Kirchhoffin lait Katso Opetus.tv:n video: Kirchhoffin 1. laki http://opetus.tv/fysiikka/fy6/kirchhoffin-lait/ Katso Kimmo Koivunoron video: Kirchhoffin 2. laki http://www.youtube.com/watch?v=2ik5os2enos
Lisätiedot14.1 Tasavirtapiirit ja Kirchhoffin lait R 1. I 1 I 3 liitos + - R 2. silmukka. Kuva 14.1: Liitoksen, haaran ja silmukan määrittely virtapiirissä.
Luku 14 Lineaaripiirit Lineaaripiireillä ymmärretään verkkoja, joiden jokaisessa haarassa jännite on verrannollinen virtaan, ts. Ohmin laki on voimassa. Lineaariset piirit voivat siis sisältää jännitelähteitä,
LisätiedotDEE Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Tasasähköpiirien systemaattinen ratkaisu: kerrostamismenetelmä, silmukkavirtamenetelmä, solmupistemenetelmä Luennon keskeinen termistö ja tavoitteet silmukkavirtamenetelmä
LisätiedotLoistehon kompensointi
OHJE 1 (5) Loistehon kompensointi Yleistä Monet kulutuslaitteet tarvitsevat pätötehon lisäksi loistehoa. Moottoreissa ja muuntajissa työn tekee pätöteho. Loistehoa tarvitaan näissä toiminnalle välttämättömän
LisätiedotSATE.1040 Piirianalyysi IB syksy /8 Laskuharjoitus 1: Ohjatut lähteet
STE. iirianalyysi syksy 6 /8 Tehtävä. Laske jännite alla olevassa kuvassa esitetyssä piirissä. Ω, Ω, Ω,, E V, E V E E Kuva. iirikaavio tehtävään. atkaisu silmukkamenetelmällä: E E Kuva. Tehtävän piirikaavio
LisätiedotKondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
LisätiedotS Suuntaajatekniikka Tentti
S - 81.3110 Suuntaajatekniikka Tentti 28.5.2008 1. Siniohjatun syklokonvertterin ohjaussuhde r = 0,6. Millä ohjauskulma-alueella suuntaajia ohjataan, kun kuormituksen tehokerroin on 1, 0,7 tai -1? Miten
LisätiedotSähkötekniikka ja elektroniikka
Sähkötekniikka ja elektroniikka Kimmo Silvonen (X) Laboratoriotyöt Ti 8 10, Ti 10 12, To 10 12, Pe 8 10 (vain A) 4 labraa joka toinen viikko, 2 h 15 min, ei koeviikolla. Labrat alkavat ryhmästä riippuen
LisätiedotLasketaan siirretty teho. Asetetaan loppupään vaihejännitteelle kulmaksi nolla astetta. Virran aiheuttama jännitehäviö johdolla on
ELEC-E849. Tarkastellaan viittä rinnakkaista siirtojohtoa. Jännite johdon loppupäässä on 400, pituus on 00 km, reaktanssi on 0, ohm/km ( ohmia/johto). Kunkin johdon virta on 000. Jätä rinnakkaiskapasitanssit
LisätiedotLisätään kuvaan muuntajan, mahdollisen kiskosillan ja keskuksen johtavat osat sekä niiden maadoitukset.
MUUNTAMON PE-JOHDOT Kun kuvia piirretään kaaviomaisina saattavat ne helposti johtaa harhaan. Tarkastellaan ensin TN-C, TN-C-S ja TN-S järjestelmien eroja. Suomessa käytettiin 4-johdin järjestelmää (TN-C)
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
Lisätiedot7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
Lisätiedot215.3 MW 0.0 MVR pu MW 0.0 MVR
Sami Repo, TTKK/Sähkövoimatekniikka 1 ESIMERKKI KÄYTTÖVARMUUDEN MÄÄRITTÄMISESTÄ Testijärjestelmässä on kaksi solmupistettä, joiden välillä on kaksi rinnakkaista identtistä johtoa, joidenka yhdistetty impedanssi
LisätiedotKondensaattori ja vastus piirissä (RC-piiri)
Kondensaattori ja vastus piirissä (RC-piiri) Virta alkaa kulkea, kondensaattori varautua, vastustaa yhä enemmän virran kulkua I Kirchhoffin lait ovat hyvä idea 1. Homogeeniyhtälön yleinen ratkaisu: 2.
LisätiedotLuento 4 / 12. SMG-1100 Piirianalyysi I Risto Mikkonen
SMG-00 Piirianalyysi I Luento 4 / Kerrostamismenetelmä Lineaarisuus = Additiivisuus u u y y u + Homogeenisuus u y y Jos verkossa on useita energialähteitä, voidaan jokaisen lähteen vaikutus laskea erikseen
LisätiedotSMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset
LisätiedotDEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Kirchhoffin lait, rinnan- ja sarjakytkentä, lähdemuunnokset Luennon keskeinen termistö ja tavoitteet Kirchhoffin virtalaki rinnankytkentä sarjakytkentä
LisätiedotLoisteho, yliaallot ja kompensointi
Loisteho, yliaallot ja kompensointi H. Honkanen Loistehohan johtuu kuormituksen reaktiivisuudesta. Reaktiivinen kuorma palauttaa osan energiastaan takaisin. Tämä palaava energia ( = virtaa ) kuormittaa
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
LisätiedotSÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
1 SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA txt-4 2017, Kimmo Silvonen Osa IV, 9.10.2017 1 Vaihtovirran teho ja kompleksinen teho Tasavirran tehon kaava pätee myös vaihtovirran ja vaihtojännitteen hetkellisarvoille,
LisätiedotSÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:
FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotSilmukkavirta- ja solmupistemenetelmä. 1 DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Silmukkavirta- ja solmupistemenetelmä 1 Verkon systemaattinen ratkaisu Solmupisteiden lukumäärä n (node) Haarojen lukumäärä b (branch) 2 Verkon systemaattinen ratkaisu Muodostetaan
Lisätiedot15. Suorakulmaisen kolmion geometria
15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen
LisätiedotKiinteistön sähköverkko. Pekka Rantala Syksy 2016
Kiinteistön sähköverkko Pekka Rantala Syksy 2016 Suomen sähköverkon rakenne Suomen Kantaverkko Jakeluverkko Jakeluverkko Fingrid Jakeluverkko Voimalaitos Voimalaitos kiinteistöjen sähköverkot Sähkön tuotanto
LisätiedotSATE1140 Piirianalyysi, osa 1 kevät /9 Laskuharjoitus 4: Kerrostamis- ja silmukkamenetelmä
ST1140 Piirianalyysi, osa 1 kevät 018 1 /9 Tehtävä 1. Määritä alla esitetyssä piirissä kuormassa (vastuksessa) R L lämmöksi kuluva teho käyttäen hyväksi kerrostamismenetelmää. 0 kω, R 5 kω, R 0 kω, 0 kω,
LisätiedotSMG-1100: PIIRIANALYYSI I
SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotCoulombin laki. Sähkökentän E voimakkuus E = F q
Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =
LisätiedotTeho ja tehon mittaus
Teho ja tehon mittaus Energiavarojen rajallisuus on viime aikoina johtanut siihen, että energiaa koskevat kysymykset ovat alkaneet kiinnostamaan yhä useampia. Taloudellisuus ja tehokkuus ovat tänä päivänä
Lisätiedot9. LOISTEHON KOMPENSOINTI JA YLIAALTOSUOJAUS
9. LOISTEHON KOMPENSOINTI J YLILTOSUOJUS 9.1. Loistehon kompensointitarpeen määrittäminen Tietyt sähköverkkoon liitettävät kuormitukset tarvitsevat toimiakseen pätötehon P ohella myös loistehoa Q. Näitä
LisätiedotSMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 2(3) Tehtävien ratkaisuehdotukset
SMG- Piirianalyysi, kesäkurssi, harjitus (3) Tehtävien ratkaisuehdtukset 6 Tarkitus n laskea V ja eveninin ekvivalentin avulla Tämä tarkittaa sitä, että mudstetaan kytkennälle eveninin ekvivalentti vastuksen
LisätiedotElektroniikan kaavoja 1 Elektroniikan Perusteet 25.03.1998 I1 I2 VAIHTOVIRROILLA. Z = R + j * X Z = R*R + X*X
TASAVOLLA Sähkökenttä, potentiaali, potentiaaliero, jännite, varaus, virta, vastus, teho Positiivinen Negatiivinen e e e e e Sähkövaraus e =,602 * 0 9 [As] w e Siirrettäessä varausta sähkökentässä täytyy
LisätiedotLuento 2. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Luento 2 1 Luento 1 - Recap Opintojakson rakenne ja tavoitteet Sähkötekniikan historiaa Sähköiset perussuureet Passiiviset piirikomponentit 2 Luento 2 - sisältö Passiiviset piirikomponentit
LisätiedotS SÄHKÖTEKNIIKKA Kimmo Silvonen
S55.103 SÄHKÖTKNKK 21.12.2000 Kimmo Silvonen Tentti: tehtävät 1,3,4,8,9 1. välikoe: tehtävät 1,2,3,4,5 2. välikoe: tehtävät,7,8,9,10 Oletko jo ehtinyt vastata palautekyselyyn Voit täyttää lomakkeen nyt.
LisätiedotTEHTÄVÄT KYTKENTÄKAAVIO
TEHTÄÄT KYTKENTÄKIO 1. a) Mitkä kytkentäkaavion hehkulampuista hehkuvat? b) Kuinka monta eri kulkureittiä sähkövirralla on pariston plusnavalta miinusnavalle? 2. Piirrä sähkölaitteen tai komponentin piirrosmerkki.
LisätiedotSÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
LisätiedotKuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
LisätiedotJännitteensäädön ja loistehon hallinnan kokonaiskuva. Sami Repo Sähköenergiatekniikka TTY
Jännitteensäädön ja loistehon hallinnan kokonaiskuva Sami Repo Sähköenergiatekniikka TTY Agenda Taustaa Tutkimuskysymykset ja tavoitteet Simuloitava malli Skenaarioiden tarkastelu Tekniset tulokset Taloudelliset
Lisätiedotkipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
LisätiedotRaportti 31.3.2009. Yksivaiheinen triac. xxxxxxx nimi nimi 0278116 Hans Baumgartner xxxxxxx nimi nimi
Raportti 31.3.29 Yksivaiheinen triac xxxxxxx nimi nimi 278116 Hans Baumgartner xxxxxxx nimi nimi 1 Sisältö KÄYTETYT MERKINNÄT JA LYHENTEET... 2 1. JOHDANTO... 3 2. KIRJALLISUUSTYÖ... 4 2.1 Triacin toimintaperiaate...
LisätiedotSähkötekiikka muistiinpanot
Sähkötekiikka muistiinpanot Tuomas Nylund 6.9.2007 1 6.9.2007 1.1 Sähkövirta Symboleja ja vastaavaa: I = sähkövirta (tasavirta) Tasavirta = Virran arvo on vakio koko tarkasteltavan ajan [ I ] = A = Ampeeri
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
LisätiedotS Suuntaajatekniikka Tentti
S - 8.0 Suuntaajatekniikka Tentti 8..007. Oletetaan, että 6-pulssisen tasasuuntaajan tasavirtapiirissä on äärettömän suuri inuktanssi. Sillan kuormituksena on resistanssi R = 50 Ω, verkon pääjännite on
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
LisätiedotLääkintätilojen IT-verkon vikakysymykset
Lääkintätilojen IT-verkon vikakysymykset Suomen Sairaalatekniikan yhdistys ry Ajankohtaispäivä Jouko Savolainen Käsiteltäviä asioita IT-verkko yleensä 1.vika 2.vika Vaadittava oikosulkuvirta Kosketusjännite
Lisätiedot3D-kuva A B C D E Kuvanto edestä Kuvanto sivulta Kuvanto päältä. Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p.
Nimi Sotun loppuosa - Monimuotokoulutuksen soveltavat tehtävät 20 p. Tehtävä 1 3p. Viiden oheisen 3D-kappaleen kuvannot kolmesta suunnasta katsottuna on esitetty seuraavalla sivulla. Merkitse oheiseen
Lisätiedot1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Lisätiedot4 SÄHKÖVERKKOJEN LASKENTAA
4 SÄHKÖVERKKOJEN LASKENTAA Sähköverkkoja suunniteltaessa joudutaan tekemään erilaisia verkon tilaa kuvaavia laskelmia. Vaikka laskelmat tehdäänkin nykyaikana pääsääntöisesti tietokoneilla, suunnittelijoiden
LisätiedotYlivirtasuojaus. Monta asiaa yhdessä
Ylivirtasuojaus Pekka Rantala Kevät 2015 Monta asiaa yhdessä Suojalaitteiden valinta ja johtojen mitoitus on käsiteltävä yhtenä kokonaisuutena. Mitoituksessa käsiteltäviä asioita: Kuormituksen teho Johdon
LisätiedotS SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu
S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään
LisätiedotFYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
Lisätiedot( ) ( ) ( ) ( ) SMG-1100 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset
SMG-11 Piirianalyysi I, kesäkurssi, harjoitus 1(3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t1 t1,
LisätiedotKirchhoffin jännitelain perusteella. U ac = U ab +U bc U ac = U ad +U dc. U ac = R 1 I 12 +R 2 I 12 U ac = R 3 I 34 +R 4 I 34, ja I 34 = U ac
1.1 a U ac b U bd c voimessa siltakytkennässä tunnetaan resistanssit,, ja sekä jännite U ac. Laske jännite U bd kun 30 Ω 40 Ω 40 Ω 30 Ω U ac 5V. d U ab U ac U bc Kirchhoffin jännitelain perusteella I 12
LisätiedotLAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015
PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske
LisätiedotTasasähköyhteyden suuntaaj-asema. Ue j0ƒ. p,q
EEC-E89 syksy 06 Ttkitaan alla olevan kvan mkaista heikkoon verkkoon kytkettyä srjännitteistä tasasähköyhteyttä. Tässä tapaksessa syöttävän verkon impedanssi (Theveninin impedanssi, kvassa j on j0,65,
LisätiedotLABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä
Lisätiedot1-vaiheinen 100 kva 1000 V / 100 V muuntajan standardimittaustulokset ovat. Short-circuit test L-voltage side shorted
SÄHKÖENERGATEKNKKA Harjoitus - luento 8 Tehtävä ka muuntaja, jonka muuntosuhde on / 4 halutaan käyttää säätömuuntajana muuntosuhteella 36 / 4 kytkemällä ensiö- ja toisiopuolet sarjaan kuvan mukaisesti.
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Lisätiedot20 kv Keskijänniteavojohdon kapasiteetti määräytyy pitkien etäisyyksien takia tavallisimmin jännitteenaleneman mukaan:
SÄHKÖENERGIATEKNIIKKA Harjoitus - Luento 2 H1 Kolmivaiheteho Kuinka suuri teho voidaan siirtää kolmivaihejärjestelmässä eri jännitetasoilla, kun tehokerroin on 0,9 ja virta 100 A. Tarkasteltavat jännitetasot
Lisätiedot2.2 Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W tot saadaan lausekkeesta ( )
DEE- Piirianalyysi, kesäkurssi, harjoitus (3) Tehtävien ratkaisuehdotukset. Energia W saadaan, kun tehoa p(t) integroidaan ajan t suhteen. Täten akun kokonaisenergia W saadaan lausekkeesta t t () ()()
Lisätiedot( ) ( ) 14 HARJOITUSTEHTÄVIÄ SÄHKÖISET PERUSSUUREET SÄHKÖVERKON PIIRIKOMPONENTIT
4 HAJOTUSTHTÄVÄ SÄHKÖST PUSSUUT -auton akku (84 V, 700 mah on ladattu täyteen Kuinka uuri oa akun energiata kuluu enimmäien viiden minuutin aikana, kun oletetaan moottorin ottavan vakiovirran 5 A? Oletetaan
LisätiedotSPTM 8A1, SPTM 6A2, SPTM 6A3 Muunninmoduulit. Käyttöohje ja tekninen selostus
SPTM 8A1, SPTM 6A2, SPTM 6A3 Muunninmoduulit Käyttöohje ja tekninen selostus 1MRS 751733-MUM FI Julkaistu 99-12-07 Versio A Tarkastanut EP Hyväksynyt TK Pidätämme itsellämme oikeuden muutoksiin ilman ennakkoilmoitusta
Lisätiedot