1. Kokeellisen leirin tehtävä 1



Samankaltaiset tiedostot
Differentiaalilaskentaa et varsinaisesti tarvitse. Tehtävässä 2 ja 3 voi olla hyödyllistä miettiä tuttuja suureita toisten suureiden derivaattoina.

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe , malliratkaisut

Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.

SEISOVA AALTOLIIKE 1. TEORIAA

Fy06 Koe Kuopion Lyseon lukio (KK) 1/7

Kvanttifysiikan perusteet 2017

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

Mustan kappaleen säteily

Aaltoliike ajan suhteen:

FYSA230/2 SPEKTROMETRI, HILA JA PRISMA

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

Luento 15: Ääniaallot, osa 2

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

7. Resistanssi ja Ohmin laki

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

OPTIIKAN TYÖ. Fysiikka 1-2:n/Fysiikan peruskurssien harjoitustyöt (mukautettu lukion oppimäärään) Nimi: Päivämäärä: Assistentti:

25 INTERFEROMETRI 25.1 Johdanto

Ohjeita fysiikan ylioppilaskirjoituksiin

TASAVIRTAPIIRI - VASTAUSLOMAKE

SPEKTROMETRI, HILA JA PRISMA

FYS206/5 Vaihtovirtakomponentit

Nimi: Muiden ryhmäläisten nimet:


Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

d sinα Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 8: SPEKTROMETRITYÖ I Optinen hila

Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi

a) Kuinka pitkän matkan punnus putoaa, ennen kuin sen liikkeen suunta kääntyy ylöspäin?

FYSIIKKA (FY91): 9. KURSSI: Kertauskurssi KOE VASTAA KUUTEEN (6) TEHTÄVÄÄN!!

Interferenssi. Luku 35. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

SÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

FYSP101/K1 KINEMATIIKAN KUVAAJAT

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

Työ 2324B 4h. VALON KULKU AINEESSA

FYSA240/4 (FYS242/4) TERMINEN ELEKTRONIEMISSIO

Valosähköinen ilmiö. Kirkas valkoinen valo. Himmeä valkoinen valo. Kirkas uv-valo. Himmeä uv-valo

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA

1 Tieteellinen esitystapa, yksiköt ja dimensiot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe , malliratkaisut

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

VALON DIFFRAKTIO YHDESSÄ JA KAHDESSA RAOSSA

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Kuva 1. Fotodiodi (vasemmalla) ja tässä työssä käytetty mittauskytkentä (oikealla).

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

FY6 - Soveltavat tehtävät

Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät

PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina

Fysiikka 8. Aine ja säteily

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

23 VALON POLARISAATIO 23.1 Johdanto Valon polarisointi ja polarisaation havaitseminen

Algebran ja Geometrian laskukokoelma

havainnollistaa Dopplerin ilmiötä ja interferenssin aiheuttamaa huojuntailmiötä

Opetusmateriaali. Tutkimustehtävien tekeminen

Mekaniikan jatkokurssi Fys102

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

Sovelletun fysiikan pääsykoe

DEE Aurinkosähkön perusteet

MAB3 - Harjoitustehtävien ratkaisut:

Shrödingerin yhtälön johto

Työ 21 Valon käyttäytyminen rajapinnoilla. Työvuoro 40 pari 1

SÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.

2. Pystyasennossa olevaa jousta kuormitettiin erimassaisilla kappaleilla (kuva), jolloin saatiin taulukon mukaiset tulokset.

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe , malliratkaisut

3. Optiikka. 1. Geometrinen optiikka. 2. Aalto-optiikka. 3. Stokesin parametrit. 4. Perussuureita. 5. Kuvausvirheet. 6. Optiikan suunnittelu

Asiaa käsitteleviä artikkeleita on koottu kansioon, jonka saa lainaan oppilaslaboratorion kopista. s ja kontaktipotentiaalierosta K.

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

MAB3 - Harjoitustehtävien ratkaisut:

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

Jousen jousivoiman riippuvuus venymästä

Harjoitustehtävien vastaukset

LIITE 1 VIRHEEN ARVIOINNISTA

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

4 Optiikka. 4.1 Valon luonne

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Mb03 Koe Kuopion Lyseon lukio (KK) sivu 1/4

Theory Finnish (Finland)

TASASUUNTAUS JA PUOLIJOHTEET

FYSA242 Statistinen fysiikka, Harjoitustentti

1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla

MIKSI ERI AINEET NÄYTTÄVÄT TIETYN VÄRISILTÄ? ELINTARVIKEVÄRIEN NÄKYVÄN AALLONPITUUDEN SPEKTRI

4. Funktion arvioimisesta eli approksimoimisesta

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

TKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe , malliratkaisut.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Differentiaali- ja integraalilaskenta

2. Fotonit, elektronit ja atomit

Transkriptio:

Tämä on ensimmäinen valmennuskirje jonka tehtävät tulee palauttaa postitse minulle viimeistään ma 21.2.2011 mennessä. Ensimmäiset kolme tehtävää liittyvät maaliskuun kokeellisen leirin työskentelyyn joten leirille pääsyyn vaaditaan vähintään kaikkien niiden yrittämistä. Mukana on myös yksi kokeellinen tehtävä jonka suoritus onnistuu myös kotona (kenties tarvitset lainaan punnuksia koululta). Työn iloa! Anna-Leena Latvala 1. Kokeellisen leirin tehtävä 1 Hehkulangan lämpötilan määrittäminen Tehtävänäsi on määrittää lampun hehkulangan lämpötila mittaamalla sen vastusta. Metallilangan resistanssi voidaan laskea kaavalla missä on materiaalin resistiivisyys on langan pituus ja on sen poikkileikkauspinta-ala. Resistanssi riippuu lämpötilasta. Metallin resistiivisyys kasvaa lämpötilan kasvaessa. Kokeellisesti on mitattu että hehkulampuissa käytetyn volframin resistiivisyys kasvaa lämpötila-alueella 300 K 3655 K seuraavasti: Lämpölaajeneminen muuttaa hehkulangan pituutta ja poikkileikkauspinta-alaa. Tämä muutos on kuitenkin niin pieni että se voidaan jättää huomioimatta. a) Miten volframilangan vastus riippuu sen lämpötilasta? Jos hehkulangan geometriaa ei tiedetä se voidaan määrittää mittaamalla langan resistanssi jossakin tunnetussa lämpötilassa. b) Miksei tätä mittausta voida tehdä yleismittarin ohmiasteikolla? c) Miten suorittaisit tämän mittauksen? Valovastuksen kalibrointi Valovastus on valmistettu materiaalista joka on pimeässä eriste. Valo generoi materiaaliin vapaita varauksenkuljettajia ja näin materiaalin resistanssi pienenee valaistusvoimakkuuden kasvaessa seuraavasti: missä on vakio jonka numeroarvo riippuu valovastuksen materiaalista ja geometriasta ja on dimensioton parametri joka kuvaa sitä miten valaistusvoimakkuus muuttaa vastuksen resistanssia. Ideaaliselle valovastukselle on 1 mutta todelliselle laitteelle pitää määrittää. Käytössäsi on yleismittari hehkulamppu ja harmaasuodatin jonka läpi pääsee siihen osuvasta valosta. d) Suunnittele koejärjestely ja kirjoita yhtälö :n määrittämiseksi..

Planckin vakion määrittäminen Lämpötilassa hehkuvan lampun aallonpituudella säteilemää energiaa mittaavan valovastuksen resistanssin lauseke on: missä on määritettävä vakio ja on tuntematon verrannollisuuskerroin. Mittaamalla valovastuksen resistanssi hehkulangan lämpötilan funktiona saadaan määritettyä missä h on Planckin vakio on valon nopeus ja on Boltzmannin vakio. e) Muokkaa resistanssin lauseke sellaiseksi että siitä näkyy :n ja :n välinen lineaarinen riippuvuus. 2. Kokeellisen leirin tehtävä 2 Interferenssi ohuessa kalvossa Olet saattanut huomata että saippuakuplat ja asfaltin pinnalle levinneet öljyläikät näyttävät värillisiltä. Tämä ilmiö perustuu ohuessa kalvossa tapahtuvaan interferenssi-ilmiöön. Tarkastellaan tilannetta oheisen kuvion avulla jossa oletetaan että ohuen kalvon molemmilla puolilla oleva väliaine on ilmaa. Valoaalto voi käyttäytyä kahdella tapaa kuvan mukaisesti osuessaan ohueen kalvoon. Osa valosta heijastuu kalvon yläpinnasta aallon A mukaisesti ja osa kalvon alapinnasta aallon B mukaisesti. Aaltojen yhdistyessä tapahtuu interferenssi. Interferenssi on joko konstruktiivinen (vahvistava) tai destruktiivinen (vaimentava) riippuen aaltojen A ja B kulkemien optisten matkojen erosta. Interferenssiaallon intensiteetti I riippuu siis interferoivien aaltojen matkaerosta L= l 2 - l 1 joka taas riippuu alkuperäisen aallon tulokulmasta θ 1 säteilyn aallonpituudesta λ ja ohuen kalvon paksuudesta t ja taitekertoimesta n. Kuva 1: Interferenssi ohuessa kalvossa θ 1 on aallon tulokulma θ 2 on taittumiskulma ohuessa kalvossa l 1 ja l 2 ovat aaltojen A ja B kulkemat matkat joiden erotus L= l 2 - l 1 on aaltojen matkaero. Tehtävä Johda parametreista θ 1 t λ ja n riippuvat lausekkeet konstruktiiviselle ja destruktiiviselle interferenssille. Vihjeitä: ilmalle n = 1 määrää aaltojen matkaero L kuvaan merkittyjen reittien avulla käytä Snellin taittumislakia huomioi väliaineiden rajapinnassa mahdollisesti syntyvät vaihe-erot.

Ratkaise johdetusta yhtälöparista (konstruktiivinen & destruktiivinen interferenssi) lauseke interferenssin järjestysluvulle. 3. Kokeellisen leirin tehtävä 3 Metalleissa on runsaasti vapaita eli niin kutsuttuja valenssielektroneja. Nämä elektronit eivät ole sidottuja mihinkään tiettyyn kiteeseen vaan pääsevät liikkumaan hilojen välissä. Niiden takia metallit ovat hyviä sähkön- ja lämmönjohteita. Terminen elektroniemissio on ilmiö jossa energiaa tuodaan metallin pinnalle esimerkiksi fotonin muodossa ja se saa hilan värähtelemään. Mikäli energia on suurempi kuin elektronien irrotustyö se saattaa riittää irrottamaan jonkun valenssielektroneista. Irrotustyön määrittämistä varten voidaan johtaa yhtälö missä φ on irrotustyö k Bolzmannin vakio e alkeisvaraus A 0 vakio T tutkittavan aineen lämpötila ja I s saturaatiovirta joka aiheutuu elektronien irrotessa. Lämpötilalle ja kyllästysvirralle on mitattu taulukon 1 mukaiset arvot. Irrotustyö φ voidaan ratkaista tulkitsemalla yhtälö suoran yhtälönä. Mitä arvoja tällöin tulee sijoittaa kuvaajaan x- ja y-akseleille? Mikä on suoran kulmakerroin? Esitä taulukon 1 data yhtälön avulla suorana ja ratkaise kuvaajaa käyttäen irrotustyö φ. Taulukko 1: Mitatut lämpötilan ja saturaatiovirran arvot Lämpötila T (K) Saturaatiovirta I s (ma) 2140 545 2240 1821 2325 6183 4. Autokoulun oppi Autokoulussa opetellaan ulkoa että auton jarrutusmatkan pituus on verrannollinen nopeuden neliöön. Näytä että näin on aina kun reaktioaikaa ei oteta huomioon. Miten tilanne muuttuu jos reaktioaika otetaan huomioon? Millä nopeudella muut termit kuin nopeuden neliöön verrannollisuus ovat korkeintaan 10 % koko jarrutusmatkasta? Auto jarruttaa hyvällä kesäkelillä n. 5 m/s². Arvioi reaktioaika itse. 5. Nopeusmittari Vanhempien autojen nopeusmittarit näyttävät tunnetusti liian pientä lukemaa. Isä antaa ykkösvaiheen suoritettuasi käyttöösi Nissan Sunny -89:n ja ohjastaa sinua että kahdeksaakymppiä ajettaessa mittari näyttää kymmenen kilometriä tunnissa liikaa (siis 90 km/h). Ajat mittarin mukaan 90 km/h mutta poliisin tutka mittaa nopeudeksesi 83 km/h ja poliisi sakottaa. (Enää saa tulla yksi sakko vuoden aikana tai tulee ajokieltoa!) Paljonko mittari olisi saanut näyttää? Entä paljoako auto kulkee jos mittari näyttää 80 km/h?

6. Vokaalit Miten erotamme vokaalit toisistaan? Tämä on ongelma jota puheentunnistusohjelmien kehittäjät käsittelevät. Kutakin vokaalia edustaa sarja yhtä aikaa kuultavia taajuuksia joiden yhteissointi määrää minkä äänteen kuulemme. Vahvana kuultavat taajuudet määräytyvät ääntöväylän muodosta jota muutetaan kieltä ja leukaa liikuttamalla. Ääntöväylä on äänihuulten ja huulten välinen ontelo. Alla on kuvattu ääntöväylän muoto kahta eri vokaalia äännettäessä. [ a ] [ i ] Näistä voidaan tehdä vastaavasti karkeat mallit taajuuksien arvioimiseksi: a) Piirrä vokaalin [ a ] tapauksessa ääntöväylän kummallekin ontelolle malli värähtelystä. Oleta onteloiden resonanssitaajuuksien olevan toisistaan erillisiä. b) Määritä 3 alinta värähdystaajuutta vokaalille [ a ]. Aikuisen miehen äänielimistölle pätee melko tarkasti että l 1 = 9 cm l 2 = 8 cm A 1 = 1 cm 2 ja A 2 = 7 cm 2. BONUSTEHTÄVÄ: Vokaalin [ i ] muodostamisessa kaikki taajuudet eivät ole erillisiä. Riippumattomien taajuuksien lisäksi on moodi jossa ohuen kaulan ilmamassa värähtelee ylös-alas ja muuttaa siten jaksollisesti kammiossa olevan ilman painetta. Kammiossa oleva ilma toimii ikään kuin jousena. Tällaista värähtelyä kutsutaan Helmholtzin resonanssiksi. Tutustu itsenäisesti Helmholzin resonanssivärähtelyyn ja laske Helmholtzin resonanssitaajuus. Vokaalia [ i ] ääntäessä mitat ovat l 1 = 9 cm l 2 = 6 cm A 1 = 8 cm 2 ja A 2 = 1 cm 2. 7. Katulamput Katuvalot aiotaan vaihtaa lähivuosina vanhoista natriumvaloista uuteen lediteknologiaan. Syynä on natriumlampun huono värintoisto: sen spektri osuu voimakkaasti viivoihin 5893 nm läheisyydessä. Natrium on järjestysluvultaan 11. Piirrä natriumin kuorimalli ja perustele miksi varausrakenteen kannalta voitaisiin leikkiä että natrium on "aivan kuin" vety. Laske vedynkaltaiselle natriumille Balmerin tai Rydbergin kaavalla todellista viivaa lähin spektriviiva. Onko approksimaatio hyvä? Todellisuudessa keltaiset 5893 nm viivat syntyvät kun natriumin uloin elektroni viritetään 3s-tilalta 3p-tilalle ja viritys purkautuu. Lampussa viritystila aiheutetaan törmäyttämällä natriumatomeja elektroneilla jotka kiihdytetään kiihdytysjännitteen V avulla pienen raon yli. Kuinka suuri jännite tarvitaan että viritys tapahtuu? 8. Heijastinstandardi Jalankulkijoiden käyttämiä heijastimia testataan EU-standardin SFS-EN 13356 mukaisesti. Standardin mukaan heijastavan pinta-alan tulee olla vähintään 15 cm² ja sen

kokonaisheijastuvuuden R tulee olla vähintään 400 mcd/lx kaikista havaintokulmista. Heijastuvuus määritellään siis lähtevän valon valovoiman I (cd) ja tulevan valon valaistusvoimakkuuden E (lx) suhteena. I missä on valovirta lumeneina ja avaruuskulma steradiaaneina ja E missä A on pinta-ala jolle valo jakautuu (HUOM! ei siis heijastimen ala). A Refen-heijastinteipin sivuilla (http://www.refen.info/) on Työterveyslaitoksen testausraportti Heijastinteippi Aketrasta. Jos kuljeskelet vaaditun kokoinen pala Aketraa kyljessäsi arvioi kuinka kaukaa autoilija huomaa sinut kun autossa on a) halogeenivalot (900 lumenia)? b) xenonvalot (3200 lumenia)? Huomaamisen rajana voi käyttää esimerkiksi tähtien maassa havaittavaa n. 5 valaistusvoimakkuutta. 5 10 luksin 9. Levyjarru Alla on yksinkertainen kuva levyjarrujen toiminnasta (howstuffworks.com). Tehtävässä 1 auto jarrutti n. 5 m/s². Levyn jota mäntä puristaa halkaisija on n. 30 cm renkaan taas n. 60 cm. Autoilija painaa jarrua n. 40 Newtonin voimalla. Suunnittele sopivat mitat x ja x vipuvarrelle ja y ja y hydrauliselle systeemille. 10. Kuminauhan venytys Hystereesi-ilmiöstä puhutaan yleensä vain sähkön ja magnetismin yhteydessä. Kuitenkin myös elastisissa materiaaleissa on hystereesiä. Tutustu kuvailtuun kokeeseen osoitteessa http://www.madphysics.com/exp/hysteresis_and_rubber_bands.htm. Laadi samankaltainen koejärjestely suorita mittaukset ja esitä tuloksesi graafisesti. Tietokoneella sovitettuja käyriä ei vaadita vaan voit sovittaa käyrät käsin piirtämällä. Arvioi kuvaajan avulla kuinka paljon kuminauhasi lämpötila muuttuu venytysten aikana ja mihin suuntaan. Mitä oletat voidaksesi tehdä tämän arvion? Onko saamasi tulos järkevä?