1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

Samankaltaiset tiedostot
π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

HN = {hn h H, n N} on G:n aliryhmä.

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

4. Ryhmien sisäinen rakenne

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

x gxg 1 Esimerkin 3-sykli saatiin siis konjugoimalla siirretyksi toimimaan lukujen 1, 2 ja 3 sijasta luvuilla 5, 8 ja 6.

4 Konjugointi. 4.1 Konjugoinnin määritelmä

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

Esko Turunen MAT Algebra1(s)

4. Ryhmien sisäinen rakenne

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät sivua Heikki Koivupalo ja Rami Luisto

Transversaalit ja hajoamisaliryhmät

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

a b 1 c b n c n

Algebra I, harjoitus 5,

Tarkastellaan aluksi permutaatioryhmiin liittyvää esimerkkiä.

Ryhmäteoriaa. 2. Ryhmän toiminta

X k+1 X k X k+1 X k 1 1

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Algebra I, harjoitus 8,

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.

a ord 13 (a)

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

Algebra I, Harjoitus 6, , Ratkaisut

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

Äärellisesti generoitujen Abelin ryhmien peruslause

Sylowin lauseet äärellisten ryhmien luokittelussa

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

H = H(12) = {id, (12)},

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Eräitä ratkeavuustarkasteluja

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä:

6. Tekijäryhmät ja aliryhmät

LUKUTEORIA A. Harjoitustehtäviä, kevät (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Esko Turunen Luku 3. Ryhmät

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Johdatus matemaattiseen päättelyyn

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Olkoon seuraavaksi G 2 sellainen tasan n solmua sisältävä suunnattu verkko,

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos

Shorin algoritmin matematiikkaa Edvard Fagerholm

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos

5. Ryhmän kompositiotekijät

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

Miten osoitetaan joukot samoiksi?

sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))).

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

[E : F ]=[E : K][K : F ].

1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

1 Lukujen jaollisuudesta

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

MAT Algebra 1(s)

Koodausteoria, Kesä 2014

Hamiltonin sykleistä Cayley-verkoissa

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

isomeerejä yhteensä yhdeksän kappaletta.

k S P[ X µ kσ] 1 k 2.

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta

MAT Algebra I (s) periodilla IV 2012 Esko Turunen

Koodausteoria, Kesä 2014

1. Esitä rekursiivinen määritelmä lukujonolle

Liite 2. Ryhmien ja kuntien perusteet

Peruskäsitteet. 0. Kertausta

Johdatus matemaattiseen päättelyyn

Lien ryhmät D 380 klo Ratkaisut 6+6=12

2017 = = = = = = 26 1

Sylowin lauseet äärellisten ryhmien teoriassa

Ratkeavista ryhmistä: teoriaa ja esimerkkejä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

7 Vapaus. 7.1 Vapauden määritelmä

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Transkriptio:

Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id, (1234), (13)(24), (1432), (12)(34), (24), (14)(23), (13) } S 4. Etsi jokaisen alkion x D 8 keskittäjä ja laske indeksi [D 8 : C G (x)]. Vertaa kutakin indeksiä alkion x konjugaattiluokan kokoon. Mitkä alkioista kuuluvat ryhmän keskukseen? Ratkaisu: Tiedämme, että kunkin alkion keskittäjä on ryhmän D 8 aliryhmä. Aliryhmät on listattu harjoitusten 3 tehtävässä 5, joten keskittäjät löytyvät tuosta listasta. Luonnollisesti alkion (1) keskittäjä on ryhmä D 8. Esimerkin 4.9 nojalla tiedämme, että alkio (13)(24) on konjugaattiluokkansa ainoa alkio. Siten se ei muutu missään konjugoinnissa ja siis kommutoi kaikkien alkioiden kanssa. Alkion (13)(24) keskittäjä on siis koko ryhmä D 8. Muut alkiot eivät kuulu ryhmän keskukseen, joten niiden keskittäjät ovat pienempiä. Koska alkio (13)(24) kommutoi kaikkien alkioiden kanssa, se on jokaisen keskittäjän alkio. Siten loppujen alkioiden keskittäjät ovat epätriviaaleja aliryhmiä, joihin kuuluu alkio (13)(24). Koska jokainen alkio kuuluu omaan keskittäjäänsä, voidaan kunkin alkion keskittäjä nyt helposti poimia aliryhmien joukosta. 1

Näin saamme C D8 ((1)) = D 8, C D8 ((13)(24)) = D 8, C D8 ((1234)) = {(1), (1234), (1432), (13)(24)} C D8 ((1432)) = {(1), (1234), (1432), (13)(24)} C D8 ((12)(34)) = {(1), (12)(34), (14)(23), (13)(24)} C D8 ((14)(23)) = {(1), (12)(34), (14)(23), (13)(24)} C D8 ((13)) = {(1), (13), (24), (13)(24)} C D8 ((24)) = {(1), (13), (24), (13)(24)} Huomataan, että alkion konjugaattiluokan koko saadaan jakamalla ryhmän kertaluku 8 alkion keskittäjän kertaluvulla. Keskittäjän indeksi on siis sama kuin konjugaattiluokan alkioiden lukumäärä. Ainoat alkiot, jotka keskittävät kaikki alkiot, ovat (1) ja (13)(24). Siten ζd 8 = {(1), (13)(24)}. 2. a) Olkoon G ryhmä ja g G. Osoita, että konjugointikuvaus κ g : G G, κ g (x) = gxg 1 on ryhmäisomorfismi. b) Osoita, että ryhmän keskus on vaihdannainen ja normaali aliryhmä. Näytä lisäksi sopivien vastaesimerkkien avulla, että keskittäjät eivät välttämättä ole vaihdannaisia tai normaaleja. Ratkaisu: a) Olkoot x, y G. Nyt κ g (x)κ g (y) = gxg 1 gyg 1 = gxyg 1 = κ g (xy), joten κ g on homomorfismi. Sen käänteiskuvaus on κ g 1, sillä ja κ g (κ g 1(x)) = gg 1 xgg 1 = x κ g 1(κ g (x)) = g 1 gxg 1 g = x. Koska kuvauksella κ g on käänteiskuvaus, kyseessä on bijektio. b) Harjoitusten 3 tehvävässä 4 osoitettiin, että ryhmän keskus on aliryhmä. Olkoot x, y ζg. Koska x ja y kommutoivat kaikkien G:n alkioiden kanssa, ne kommutoivat myös toistensa kannsa. Siten xy = yx ja aliryhmä ζg on vaihdannainen. Osoitetaan sitten normaalisuuskriteerin avulla, että ζg on normaali. Olkoon g G ja z ζg. Koska z kommutoi kaikkien G:n alkioiden kanssa, niin gzg 1 = gg 1 z = z ζg. Kyseessä on siis normaali aliryhmä. 2

Esimerkiksi ryhmän D 8 alkion (1) keskittäjä on koko ryhmä D 8. Tämä keskittäjä ei ole vaihdannainen, sillä kaikki ryhmän alkiot eivät kommutoi keskenään. (Tämä on yhtäpitävää sen kanssa, että ζd 8 D 8.) Keskittäjä ei välttämättä ole vaihdannainen aliryhmä. Ryhmän S 3 alkion (12) keskittäjä on aliryhmä {(1), (12)}. Tämä aliryhmä ei ole normaali, joten keskittäjät eivät aina ole normaaleja aliryhmiä. 3. Olkoon G ryhmä. Merkitään C = ζg. Oletetaan, että tekijäryhmä G/C on syklinen eli että sen kaikki alkiot saadaan jonkin sivuluokan xc potensseina. Osoita, että ryhmä G on vaihdannainen. Ratkaisu: Tekijäryhmän G/C alkiot ovat muotoa gc, missä g G. Koska tekijäryhmä on syklinen, saadaan kaikki alkiot ryhmän virittäjän potensseina. Oletetaan, että alkio xc virittää tekijäryhmän. Nyt jokainen sivuluokka on muotoa (xc) n = x n C jollakin n Z. Tehtävänä on osoittaa, että G on vaihdannainen. Olkoot a, b G. Koska sivuluokat muodostavat ryhmän G osituksen, niin a ja b kuuluvat joihinkin sivuluokkiin. On siis olemassa sellaiset n, m Z, että a x n C ja b x m C. Nyt a = x n c 1 ja b = x m c 2 joillakin c 1, c 2 C = ζg. Huomataan, että ja ab = x n c 1 x m c 2 = x n x m c 1 c 2 = x n+m c 1 c 2 ba = x m c 2 x n c 1 = x m x n c 2 c 1 = x m+n c 2 c 1 = x n+m c 1 c 2. Koska ab = ba, niin G on vaihdannainen. Väitteestä seuraa, että G = ζg. Tekijäryhmä G/ζG on siis triviaali! 4. Osoita, että Rubikin ryhmän keskus sisältyy asentoryhmään R a. Ratkaisu: Olkoon α siirto, joka liikuttaa paloja ja ei siten kuulu asentoryhmään R a. Oletetaan, että α siirtää kuution palan paikasta A paikkaan B. Olkoon τ sellainen perussiirto, että se liikuttaa paikassa A olevaa palaa, mutta ei koske paikassa B olevaan palaan. Tutkitaan konjugaattia τατ 1 ja katsotaan, mitä se tekee paikassa A olevalle palalle x. Siirto τ 1 siirtää palan x pois paikasta A. Tämän jälkeen siirto α saatta liikutta palaa x, mutta ainakaan se ei vie sitä paikkaan B. Sinne menee nimittäin paikassa A oleva pala. Lopulta siirto τ saattaa vielä liikutta palaa x, 3

mutta se ei voi viedä sitä paikkaan B, sillä siirron τ oletettiin olevan sellainen, että se ei vaikuta paikkaan B. Nyt tiedämme, että pala x ei liiku konjugaatissa τατ 1 paikkaan B. Siirto α puolestaan siirtää palan x paikkaan B, mistä seuraa, että τατ 1 α. Voimme siis päätellä, että α / ζg. Siten kaikki siirrot, jotka ovat Rubikin ryhmän keskuksessa kuuluvat asentoryhmään R a. 5. Osoita, että neliön symmetriaryhmä D 8 (ks. tehtävä 1) ei ole minkään aliryhmiensä suora tulo. Aliryhmät on etsitty harjoitusten 3 tehtävässä 5. Ratkaisu: Mikä tahansa ryhmä G on tietenkin aliryhmien G ja {e} suora tulo, missä e on ryhmän neutraalialkio. Tässä tehtävässä oli tarkoitus osoittaa, että D 8 ei ole minkään epätriviaalien aliryhmiensä suora tulo. Oletetaan, että D 8 on suora tulo joistakin epätriviaaleista aliryhmistään. Lemman 5.5 nojalla näiden aliryhmien on oltava normaaleja ja niiden leikkauksen on oltava {(1)}. Ryhmän D 8 epätriviaalit normaalit aliryhmät ovat {(1), (13)(24)}, {(1), (1234), (1432), (13)(24)}, {(1), (13)(24), (13), (24)}, {(1), (13)(24), (12)(34), (14)(23)}. Koska alkio (13)(24) on jokaisessa normaalissa aliryhmässä, ei niistä voi muodostaa suoraa tuloa. 6. Luentojen määritelmän mukaan ryhmän G aliryhmät H ja K muodostavat sisäisen suoran tulon, jos seuraavat ehdot toteutuvat: 1) hk = kh kaikilla h H ja k K 2) H K = {e}, missä e on G:n neutraalialkio. Luennolla todistettiin myös, että sisäinen suora tulo toteuttaa seuraavat ehdot: 1 ) H ja K ovat G:n normaaleja aliryhmiä 2 ) jokaisella g G on yksikäsitteinen esitys g = hk, missä h H ja k K. Osoita, että sisäisen suoran tulon määritelmässä voidaan korvata ehto 1) ehdolla 1 ) ja ehto 2) ehdolla 2 ) (jompikumpi tai molemmat). 4

Ratkaisu: Lemman 5.5 tapaan tehtävässä on luonnollisesti oletettava, että G = HK. Osoitetaan aluksi, että ehdot 2) ja 2 ) ovat yhtäpitävät. Lemman 5.5 todistuksessa on osoitettu, että ehdosta 2) seuraa ehto 2 ). Oletetaan siis ehto 2 ) ja osoitetaan, että ehto 2) pätee. Olkoon x H K. Nyt x = xe, missä x H ja e K ja toisaalta x = ex, missä e H ja x K. Koska näiden kahden esityksen on oltava samat, niin x = e. Siten H K = {e}. Lemman 5.5 todistuksessa on osoitettu, että ehdosta 1) seuraa ehto 1 ). Osoitetaan vielä lopuksi, että ehdoista 1 ) ja 2 ) seuraa ehto 1). Oletetaan, että h H ja k K. Aliryhmä K on normaali, joten sivuluokat hk ja Kh ovat samat. Koska k K, niin on olemassa sellainen k K, että hk = k h. Itse asisassa voidaan valita k = hkh 1. Toisaalta myös H on normaali aliryhmä ja siksi hk = kh, missä h = khk 1 H. Koska ryhmän G = HK alkioiden esitys aliryhmien H ja K tulona on yksikäsitteinen, niin täytyy olla k = k = hkh 1 ja h = h = khk 1. Siten ehto 2) on voimassa. 5