Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos

Koko: px
Aloita esitys sivulta:

Download "Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos"

Transkriptio

1 Rubikin kuutio ja ryhmät Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos

2 Kehittäjä unkarilainen Erno Rubik kuvanveistäjä ja arkkitehtuurin professori 1974 Halusi leikkiä geometrisilla muodoilla. Miten pikkukuutiot voi saada liikkumaan ilman, että iso kuutio hajoaa? Markkinoille Sai nimekseen Rubikin kuutio.

3 Parhaat ratkojat ratkaisevat kuution muutamassa sekunnissa. Kuutiota ratkotaan sokkona, jaloilla, jne. Näissä kalvoissa käydään läpi eräs algoritmi, jolla kuution voi ratkaista. Lisätietoa löytyy esimerkiksi sivuilta

4 Perussiirrot

5 Matemaatikkoja kiinnostava kysymys: Mikä on pienin määrä perussiirtoja, joka kuution ratkaisemiseen tarvitaan? On olemassa kombinaatio, jonka ratkaisemiseen tarvitaan välttämättä vähintään 26 siirtoa. Toisaalta jokainen kombinaatio ratkeaa vähintään 29 siirrolla.

6 Rubikin kuution siirrot Rubikin kuution siirto on mikä tahansa yhdistelmä perussiirroista. Erilaisia siirtoja on eli noin 4, kappaletta.

7 Rubikin ryhmä Rubikin kuution kuution siirroille voidaan määritellä laskutoimitus. Jos a ja b ovat jotkin siirrot, niiden tulo a b on siirto, joka saadaan tekemällä ensin siirto a ja sitten siirto b. Rubikin kuution siirroista muodostuu niin kutsuttu Rubikin ryhmä.

8 Ryhmän laskutoimituksen on oltava liitännäinen eli kaikilla siirroilla a, b ja c pitää päteä a (b c) = (a b) c. Ryhmässä on oltava neutraalialkio. Rubikin ryhmässä neutraalialkio on siirto, jossa ei tehdä mitään. Tätä merkitään symbolilla 1. Ryhmässä jokaisella alkiolla on oltava käänteisalkio. Rubikin ryhmässä siirron käänteisalkio on saadaan tekemällä kaikki välivaiheet päinvastaisessa järjestyksessä päinvaistaiseen suuntaan. Siirron a käänteisalkiota merkitään a 1

9 Perussiirrot

10 Valesiirrot

11 Tehtäviä: 1. Mikä on perussiirron R käänteisalkio R 1? 2. Entä perussiirron B käänteisalkio B 1? 3. Entä siirron B 1 käänteisalkio? 4. Mikä on siirron a = R B käänteisalkio a 1? Tarkista kuutiolla, että a a 1 = Mikä on siirron R 1 U L 1 B L kääteisalkio?

12 6. Keksi jokin siirto a, jolle pätee a a a a = 1. Tällöin siis neljän siirron sarja a a a a ei tee kuutiolle mitään. 7. Millainen siirto on tällöin a 1? 8. Keksi jokin siirto b, jolle pätee b b = Millainen siirto on tällöin b 1? 10. Olkoon x jokin siirto. Kuinka monta kertaa siirto x L x 1 on tehtävä, jotta päästään neutraalialkioon?

13 11. Olkoon x jokin siirto. Mikä on siirron x U x 1 käänteisalkio? 12. Onko Rubikin ryhmä vaihdannainen, eli päteekö a b = b a kaikilla siirroilla a ja b? 13. Keksi jotkin siirrot a ja b, joille pätee a b = b a.

14 Muita ryhmiä Asentoryhmä R a koostuu siirroista, jotka pitävät palat paikallaan, mutta saattavat muuttaa niiden asentoja. Voidaan myös unohtaa kuution ruudut ja ajatella vain paloja. Palojen siirrot muodostavat paikkaryhmä R p.

15 Ratkaisustrategia Laitetaan ensin palat paikalleen. (Toimitaan paikkaryhmässä R p.) Laitetaan sitten palat oikeisiin asentoihin. (Toimitaan asentoryhmässä R a.)

16 Algoritmi 1: nurkkapalojen kolmisykli Merkitään a = R 1 D R ja b = U 1. Siirto a b a 1 b 1 on kulmapalojen kolmisykli. Katso kuva!

17

18 Kokeile kolmisykliä. Miten sen saisi pyörimään toiseen suuntaan? Keksitkö kaksi eri tapaa toteuttaa tämän?

19 Huomaa, että kolmisykli on muodostuu siirtojen ja niiden käänteisalkioiden tuloista. Jos Rubikin ryhmä olisi vaihdannainen, tämä tulo olisi neutraalialkio: a b a 1 b 1 = a a 1 b b 1 = 1 1 = 1. Rubikin ryhmä ei kuitenkaan ole vaihdannainen!

20 Kolmisykli muilla kulmilla

21 Kokeile kolmisykliä muille kulmille. (Katso taululla olevaa kuvaa.) Tee itsellesi (tai kaverillesi) tehtävä. Merkitse kolme kulmaa ja yritä saada aikaan niiden kolmisykli.

22 Miten kulmapalat saadaan paikoilleen? Kolmisykleillä yritetään saada kaikki kulmat paikoilleen. Joskus se ei onnistu. Tällöin minkä tahansa perussiirron tekeminen muuttaa tilannetta niin, että kulmat saadaan pakoilleen kolmisykleillä. Yritä siis kolmisykleillä. Jos se ei onnistu, tee jokin perussiirto, ja jatka sen jälkeen kolmisykleillä.

23 Algoritmi 2: särmäpalojen kolmisykli Merkitään a = F U S L 1 ja b = U. Siirto a b a 1 b 1 on kulmapalojen kolmisykli. Kannattaa katsoa kuvaa ja siihen piirrettyjä nuolia. Tässä saattaa hämätä se, että kuution etutahko kääntyy sivuun ja siksi siirtojen nimet näyttävät oudoilta.

24

25 Laitetaan särmäpalat oikeille paikolle kolmisyklien avulla. Kolmisykliä voi soveltaa mihin tahansa kolmeen särmään samalla tavalla kuin nurkkienkin kolmisykliä. Tämän jälkeen kaikki palat ovat oikeilla paikoillaan.

26 Algoritmi 3: nurkkapalojen kierto Nurkkapalat kierretään pareittain oikeisiin asentoihin.

27

28 Algoritmi 4: särmäpalojen kierto Särmäpalat kierretään pareittain oikeisiin asentoihin.

29

30 Korttipakka ja ryhmät Tutkitaan eri tapoja sekoittaa kortit. Aloitetaan yksinkertaisuuden vuoksi kolmesta kortista. (Tämä tehdään liitutaululla.)

31 Sekoituksilla laskeminen Sekoituksia voi kertoa keskenään tekemällä sekoitukset peräkkäin. Kerrotaan keskenään sekoitukset ( ) ( ja ). Minkälainen sekoitus saadaan? Miltä sen taulukko näyttää? Voiko tuloksen päätellä suoraan taulukosta?

32 Sekoituksilla laskeminen Sekoituksia voi kertoa keskenään tekemällä sekoitukset peräkkäin. Kerrotaan keskenään sekoitukset ( ) ( ja ). Minkälainen sekoitus saadaan? Miltä sen taulukko näyttää? Voiko tuloksen päätellä suoraan taulukosta?

33 Sekoitusryhmä Sekoitukset muodostavat ryhmän. Neutraalialkiona on sekoitus, joka ei tee mitään. Kunkin sekoituksen käänteisalkio on sekoitus, joka palauttaa järjestyksen ennalleen.

34 Tutkitaan sekoituksia ( a = ) ja b = Määritä seuraavat sekoitukset: ( ) a b b a a a a

35 Miltä näyttää neutraalialkion taulukko? Määritä sekoituksen b = ( ) käänteisalkio Miten käänteisalkion voi päätellä suoraan taulukosta?

36 Onko sekoitusryhmä vaihdannainen? Määritä kaikki mahdolliset kolmen kortin sekoitukset. Montako erilaista sekoitusta saadaan, jos kortteja onkin neljä?

37 Millaisista sykleistä koostuu sekoitus ( ) ? Entä sekoitus ( ) ?

38 Montako kertaa seuraava sekoitus on tehtävä, jotta palataan takaisin lähtötilanteeseen: ( ) ? Entä sekoitus ( ) ?

39 Tutkitaan korttipakkaa, jossa on kymmenen korttia. Alla on kuvailtu kaksi korttipakan sekoitustapaa. Kirjoita kummassakin tapauksessa sekoitusta vastaava taulukko. Selvitä, kuinka monen sekoituskerran jälkeen ollaan takaisin lähtötilanteessa. Otetaan pakan päältä neljän kortin pino ja laitetaan se pakan alle. Jaetaan pakka kahteen yhtä suureen osaan ja asetetaan näiden kahden osan kortit vuorotellen toistensa lomaan niin, että päällimmäisen osan ensimmäinen kortti on uudessa pakassa ensimmäisenä.

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2010

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2010 Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2010 Sisältö 1 Johdanto 4 1.1 Yleistä.................................. 4 1.2

Lisätiedot

1 Johdanto 1.1 Yleistä

1 Johdanto 1.1 Yleistä 1 Johdanto 11 Yleistä Unkarilainen kuvanveistäjä ja arkkitehtuurin professori Ernő Rubik kehitti maineikkaan kuutionsa vuonna 1974 Kuutio oli alun perin tarkoitettu arkkitehtiopiskelijoiden visuaalisen

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä

Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2012 Sain idean tämän kurssin pitämiseen luettuani Jyrki Lahtosen artikkelin

Lisätiedot

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.

Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. 3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää

Lisätiedot

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.

Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}. Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa suuriin, helpommin käsiteltäviin osiin. Tämän jälkeen voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin

Lisätiedot

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,

Lisätiedot

7 Rubikin kuution laajennoksia

7 Rubikin kuution laajennoksia 7 Rubikin kuution laajennoksia Tavallista Rubikin kuutiota voidaan laajentaa monilla tavoilla. Ensi näkemältä nämä uudet versiot vaikuttavat paljon hankalammilta ratkaista, mutta tarkempi tarkastelu osoittaa,

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan

Lisätiedot

Megaminx ja sen ratkaisun ryhmäteoriaa

Megaminx ja sen ratkaisun ryhmäteoriaa Megaminx ja sen ratkaisun ryhmäteoriaa Hanna Koivisto Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Pro gradu -tutkielma Ohjaaja: Jokke Häsä HELSINGIN

Lisätiedot

2 Permutaatioryhmät. 2.1 Permutaation olemus. 2.2 Permutaatioilla laskeminen

2 Permutaatioryhmät. 2.1 Permutaation olemus. 2.2 Permutaatioilla laskeminen 2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutio-ongelman selvittämiseen Tässä

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä:

Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä: 6 Kommutaattorit Ryhmässä kahden alkion kommutaattori on kolmas alkio, joka mittaa alkuperäisten alkioiden vaihdannaisuutta. Jos alkiot kommutoivat keskenään, niiden kommutaattori on neutraalialkio. Kommutaattorit

Lisätiedot

Toiminnallinen taso: Luodaan sääntöjä ominaisuuksien perusteella

Toiminnallinen taso: Luodaan sääntöjä ominaisuuksien perusteella Harjoite 10: LUOKITELLAAN KUVIOITA Tavoiteltava toiminta: Materiaalit: Eteneminen: Kognitiivinen taso: P: Aikajärjestys, IR: Suhteet, sarjan järjestäminen Toiminnallinen taso: Luodaan sääntöjä ominaisuuksien

Lisätiedot

2 Permutaatioryhmät. 2.1 Permutaation olemus

2 Permutaatioryhmät. 2.1 Permutaation olemus 2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutioongelman selvittämisessä Tässä

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016

LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille. Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 LUKUKORTIT Lukukorteista on moneksi Toiminnallista matematiikkaa 1.-6. luokille Riikka Lyytikäinen Liikkuva koulu Helsinki 2016 Lukujonot Tarvikkeet: siniset ja vihreät lukukortit Toteutus: yksin, pareittain,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

SCIFEST-loppuraportointi korttia. Sara Kagan, Suvi Rönnqvist

SCIFEST-loppuraportointi korttia. Sara Kagan, Suvi Rönnqvist SCIFEST-loppuraportointi 2014 16 korttia Sara Kagan, Suvi Rönnqvist Ohjeet temppuun: Katsoja ottaa korttipakasta 16 korttia ja painaa yhden kortin mieleensä. Tämän jälkeen hän voi sekoittaa korttipakan

Lisätiedot

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu

Siltaaminen: Piaget Matematiikka Inductive Reasoning OPS Liikennemerkit, Eläinten luokittelu Harjoite 2 Tavoiteltava toiminta: Materiaalit: Eteneminen: TUTUSTUTAAN OMINAISUUS- JA Toiminnan tavoite ja kuvaus: SUHDETEHTÄVIEN TUNNISTAMISEEN Kognitiivinen taso: IR: Toiminnallinen taso: Sosiaalinen

Lisätiedot

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.

π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ. Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) 26.11.2012 Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

NEW 7 VAIHEEN OPAS. Uutta. 1 pelaajalle 8-vuotiaista alkaen

NEW 7 VAIHEEN OPAS. Uutta. 1 pelaajalle 8-vuotiaista alkaen NEW Uutta 7 VAIHEEN OPAS 1 pelaajalle 8-vuotiaista alkaen Tervetuloa tutustumaan Rubikin kuutioon Rubikin kuutio on yksi kokonaisesta sarjasta jännittäviä pulmapelejä, jotka on suunniteltu haastamaan mielesi

Lisätiedot

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}.

Toisin sanoen kyseessä on reaalitason vektoreiden relaatio. v w v =k w jollakink R\{0}. Algebra I Matematiikan ja tilastotieteen laitos Harjoitus 7 Ratkaisuehdotus (5 sivua) JR 1. Määritellään reaalilukuparien relaatio seuraavasti: (x,y) (x,y ) x =kx jay=ky jollakink R\{0}. Toisin sanoen

Lisätiedot

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26 Symmetriaryhmät ja niiden esitykset Symmetriaryhmät, 10.1.2013 1/26 Osa I: Symmetriaryhmät Symmetriaryhmät, 10.1.2013 2/26 Peilisymmetria Symmetriaryhmät, 10.1.2013 3/26 Kiertosymmetria Symmetriaryhmät,

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku

Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Pasi Leppäniemi OuLUMA, sivu 1 POLYNOMIPELI Avainsanat: peli, matematiikka, polynomi, yhteen- ja vähennyslasku, kertolasku Luokkataso: 8-9 lk Välineet: pelilauta, polynomikortit, monomikortit, tuloskortit,

Lisätiedot

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5

Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 Kenguru Benjamin (6. ja 7. luokka) sivu 1 / 5 3 pisteen tehtävät 1) Mikä on pienin? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Millä voidaan korvata, jotta seuraava yhtälö olisi

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Yksikönmuunnospelit Oppilaalle kopioitavat ohjeet:

Yksikönmuunnospelit Oppilaalle kopioitavat ohjeet: Tekijät: Terho Hautala, Niina Suutari OuLUMA, sivu 1 Yksikönmuunnospelit Oppilaalle kopioitavat ohjeet: Etsi parit Pelataan pareittain. Otetaan käyttöön vain harjoiteltavan mittayksikön pelikortit, Oppilas

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 s16 Talousmatematiikan perusteet ORMS.1030 Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/ mla/ puh. 044 344 2757

Lisätiedot

KASVOTON VIHOLLINEN - SÄÄNNÖT

KASVOTON VIHOLLINEN - SÄÄNNÖT KASTN IHLLINEN - SÄÄNNÖT A. LÄHTÖKHTA Kaksi armeijaa valmistautuu taisteluun. Torvet soivat, hevoset korskuvat malttamattomina. Sadat jalat marssivat tasatahtia ottaakseen paikkansa kentällä - paikan,

Lisätiedot

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset

3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset 32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta

Lisätiedot

TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio

TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio 1..018 TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio Esimerkki 1: Sinulla on 5 erilaista palloa. Kuinka monta erilaista kahden pallon paria voit muodostaa, kun valintajärjestykseen a) kiinnitetään

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Z O K E R OHJEET REGLER PÅ SVENSKA XL 3 XL 3 M4 1 L4 1 XL 3 M 23 XL 1 XL 4 ML 4 M 41 L4 3 L 1 S4 1 XL 2 XL 1 2 1 M 14 M 4 XL 3 LS 4 XL 3 L 3 S L3

Z O K E R OHJEET REGLER PÅ SVENSKA XL 3 XL 3 M4 1 L4 1 XL 3 M 23 XL 1 XL 4 ML 4 M 41 L4 3 L 1 S4 1 XL 2 XL 1 2 1 M 14 M 4 XL 3 LS 4 XL 3 L 3 S L3 X3 X X X X X X X X 3 3 3 X X 3 X X 3X 3 3 3 X 3 3 X 3 X 3 X X X X X 3 3 3 3 3 3 X 3 3 X X X 3 X X X 3 3 REGER PÅ VENK 3 www.zoker.org/se/regler X X X X X X X 3 X X 3 3 X X X 3 3 3 X 3 X X 3 3 3 3 3 3 3

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan yliopisto / kevät 2015 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet, Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

Tasapainotehta via vaakamallin avulla

Tasapainotehta via vaakamallin avulla Tasapainotehta via vaakamallin avulla Aihepiiri Luokka-aste Kesto Tarvittavat materiaalit / välineet Asiasanat Lausekkeet ja yhtälöt 7.-8. luokka 20 30 minuuttia Piirtoheitin, 2 kalvoa, erimuotoisia paloja

Lisätiedot

KOKO PERHEEN HAUSKA STRATEGIAPELI OHJEET

KOKO PERHEEN HAUSKA STRATEGIAPELI OHJEET KOKO PERHEEN HAUSKA STRATEGIAPELI OHJEET ROBOGEM_Ohjevihko_148x210mm.indd 1 PELIN TAVOITE Robotit laskeutuvat kaukaiselle planeetalle etsimään timantteja, joista saavat lisää virtaa aluksiinsa. Ohjelmoi

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Kenguru 2014 Ecolier (4. ja 5. luokka)

Kenguru 2014 Ecolier (4. ja 5. luokka) sivu 1 / 11 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Uskontojen maailmassa

Uskontojen maailmassa Uskontojen maailmassa Pelikortit varhaiskasvatukseen JOHDANTO 2 Monikulttuuristuminen on nostanut esille tarpeen uudenlaiseen, käytännönläheiseen uskontodialogiseen keskusteluun ja oman taustansa tuntemiseen.

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. Kaksi järjestettyä paria ovat samat, jos niillä on samat ensimmäiset alkiot ja samat toiset alkiot:

Lisätiedot

Tarkastellaan aluksi permutaatioryhmiin liittyvää esimerkkiä.

Tarkastellaan aluksi permutaatioryhmiin liittyvää esimerkkiä. 5 Tuloryhmät Jotkin ryhmät voidaan jakaa toisistaan riippumattomiin osiin niin, että jokainen ryhmän alkio saadaan tulona eri osista valituista alkioista. Tällöin ryhmää voidaan käsitellä osiensa tulona

Lisätiedot

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2

PERUSLASKUJA. Kirjoita muuten sama, mutta ota välilyönti 4:n jälkeen 3/4 +5^2 PERUSLASKUJA Matemaattisten lausekkeiden syöttäminen: Kirjoita ilman välilyöntejä /+^2 Kirjoita muuten sama, mutta ota välilyönti :n jälkeen / +^2 Kopioi molemmat matematiikka-alueet ja liiku alueen sisällä

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Scifest-loppuraportti Jani Hovi 234270 4.5.2014. 21 kortin temppu

Scifest-loppuraportti Jani Hovi 234270 4.5.2014. 21 kortin temppu Scifest-loppuraportti Jani Hovi 234270 4.5.2014 Toteutus 21 kortin temppu Temppuun tarvitaan nimensä mukaisesti 21 korttia. Kortit jaetaan kuvapuoli näkyvillä kolmeen pinoon, ensiksi kolme korttia rinnan

Lisätiedot

Tarvikkeet: A5-kokoisia papereita, valmiiksi piirrettyjä yksinkertaisia kuvioita, kyniä

Tarvikkeet: A5-kokoisia papereita, valmiiksi piirrettyjä yksinkertaisia kuvioita, kyniä LUMATE-tiedekerhokerta, suunnitelma AIHE: OHJELMOINTI 1. Alkupohdinta: Mitä ohjelmointi on? Keskustellaan siitä, mitä ohjelmointi on (käskyjen antamista tietokoneelle). Miten käskyjen antaminen tietokoneelle

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 13. syyskuuta 2007 Antti Rasila () TodB 13. syyskuuta 2007 1 / 21 1 Klassinen todennäköisyys 2 Kombinatoriikkaa Kombinatoriikan perusongelmat Permutaatiot

Lisätiedot

Harjoitussuunnitelma viikko 14 Potkaiseminen II

Harjoitussuunnitelma viikko 14 Potkaiseminen II Harjoitussuunnitelma viikko 14 Potkaiseminen II = Pelikenttä = Keiloilla rajattu alue = Pelaaja = Maalivahti = Valmentaja = Pallo = Liike pallon kanssa = Liike ilman palloa = Syöttö tai potku Harjoituskerralla

Lisätiedot

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)

Lisätiedot

Puzzle SM 2005 15. 25.7.2005. Pistelasku

Puzzle SM 2005 15. 25.7.2005. Pistelasku Puzzle SM 005 5. 5.7.005 Pistelasku Jokaisesta oikein ratkotusta tehtävästä saa yhden () pisteen, minkä lisäksi saa yhden () bonuspisteen jokaisesta muusta ratkojasta, joka ei ole osannut ratkoa tehtävää.

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko

DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko Alkuviikon tuntitehtävä 1: Montako kahdeksaan yhtäsuureen sektoriin leikattua pitsaa voidaan tehdä kolmesta täytteestä siten, että kukin sektori

Lisätiedot

Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5

Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5 Kenguru 2010 Cadet (8. ja 9. luokka) sivu 1 / 5 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6

Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6 Kenguru 2010 Ecolier (4. ja 5. luokka) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

8-99- vuotiaille taikuri + yleisö

8-99- vuotiaille taikuri + yleisö 8-99- vuotiaille taikuri + yleisö Pelin tavoite: Tulla taikuriksi FI Sisältö: 61 korttia (48 kortin pakka + 6 tuplatausta korttia + 1 lyhyt kortti + 6 temppukorttia 4 perhettä (punainen, sininen, vihreä,

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

Loppukilpailu perjantaina OSA 1 Ratkaisuaika 30 min Pistemäärä 20. Peruskoulun matematiikkakilpailu

Loppukilpailu perjantaina OSA 1 Ratkaisuaika 30 min Pistemäärä 20. Peruskoulun matematiikkakilpailu Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 31.1.2014 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Kaikkiin tehtäviin laskuja, kuvia tai muita perusteluja näkyviin.

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

Ongelmanratkaisutehtävien analysointia

Ongelmanratkaisutehtävien analysointia Ongelmanratkaisutehtävien analysointia Tero Vedenjuoksu 29.3.2014 Matemaattisten tieteiden laitos OPH:n ongelmanratkaisutaitojen tutkimus I Ajatuksia ja keskustelua artikkelista (Leppäaho, Silfverberg

Lisätiedot

Pienin askelin Kulttuuri, luonto ja liikunta

Pienin askelin Kulttuuri, luonto ja liikunta Pienin askelin Kulttuuri, luonto ja liikunta Korttisarja sisältää 69 tehtäväkorttia sekä 2 infokorttia. Sarja on jaettu kahteen osaan, Kulttuuri (40 korttia) sekä Luonto & Liikunta (29 korttia). Korttien

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada

OTATKO RISKIN? peli. Heitä noppaa 3 kertaa. Tavoitteena on saada OTATKO RISKIN? peli 1. Heitä noppaa 20 kertaa. Tavoitteena on saada vähintään 10 kertaa silmäluku 4, 5 tai 6. Jos onnistut, saat 300 pistettä. Jos et onnistu, menetät 2. Heitä noppaa 10 kertaa. Tavoitteena

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

Yhtälönratkaisu oppilaan materiaali

Yhtälönratkaisu oppilaan materiaali Yhtälönratkaisu oppilaan materiaali Nimi: Luokka: 1 1. Tosia ja epätosia väitteitä Alkupalat Kirjoita taulukkoon T, jos väite on tosi ja E, jos väite on epätosi. Väite 5 > 3 16 < 8 19 = 26 9 < 28 64 =

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

ohjekortti #1 Tämä on ehto. Kun se täyttyy pelissä, seuraa tämän siirron sääntöjä.

ohjekortti #1 Tämä on ehto. Kun se täyttyy pelissä, seuraa tämän siirron sääntöjä. ohjekortti #1 tämä on siirron nimi Tämä on ehto. Kun se täyttyy pelissä, seuraa tämän siirron sääntöjä. Tässä on säännöt, joita siirto noudattaa. Säännöt käydään läpi ylhäältä alaspäin Noppien kohdalla

Lisätiedot

Palloultimate Soveltaminen:

Palloultimate Soveltaminen: Liikuntaseikkailu Liikuntavinkit2013 Palloultimate Peliä pelataan suurehkolla kentällä, ulkona alueeksi sopii esimerkiksi puolikas jalkapallokenttä. Kentän molemmissa päädyissä on koko kentän levyinen

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Koostanut Juulia Lahdenperä ja Rami Luisto. Salakirjoituksia

Koostanut Juulia Lahdenperä ja Rami Luisto. Salakirjoituksia Salakirjoituksia Avainsanat: salakirjoitus, suoraan numeroiksi, Atblash, Caesar-salakirjoitus, ruudukkosalakirjoitus, julkisen avaimen salakirjoitus, RSA-salakirjoitus Luokkataso: 3.-5. luokka, 6.-9. luokka,

Lisätiedot

Sisällysluettelo. 1. Johdanto

Sisällysluettelo. 1. Johdanto Säännöt Sisällysluettelo 1. Johdanto 3 2. Sisältö 4 3. Alkuvalmistelut 5 4. Pelin aloitus ja kulku 6 5. Pelin lopetus 9 6. Vaikea peli ja muut pelimuunnelmat 10 1. Johdanto Pelilauta on 25 ruudusta muodostuva

Lisätiedot

Pienin askelin Yleinen

Pienin askelin Yleinen Pienin askelin Yleinen Korttisarja sisältää 32 tehtäväkorttia sekä 2 infokorttia. Korttien tarkoitus on aktivoida tekemään asioita, jotka tuovat ilon ja onnistumisen kokemuksia sekä uusia elämyksiä, kannustaa

Lisätiedot

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2

Uolevin reitti. Kuvaus. Syöte (stdin) Tuloste (stdout) Esimerkki 1. Esimerkki 2 Uolevin reitti Kuvaus Uolevi on ruudukon vasemmassa ylänurkassa ja haluaisi päästä oikeaan alanurkkaan. Uolevi voi liikkua joka askeleella ruudun verran vasemmalle, oikealle, ylöspäin tai alaspäin. Lisäksi

Lisätiedot

Koodaamme uutta todellisuutta FM Maarit Savolainen https://blog.edu.turku.fi/matikkaajakoodausta/

Koodaamme uutta todellisuutta FM Maarit Savolainen https://blog.edu.turku.fi/matikkaajakoodausta/ Koodaamme uutta todellisuutta FM Maarit Savolainen 19.1.2017 https://blog.edu.turku.fi/matikkaajakoodausta/ Mitä on koodaaminen? Koodaus on puhetta tietokoneille. Koodaus on käskyjen antamista tietokoneelle.

Lisätiedot

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen

Algebran perusteet. 44 ϕ(105) = (105). Näin ollen Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman

Lisätiedot

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,

Lisätiedot

Tulosta tämä pdf-tiedosto 4 eri väriä + itse keksityt valkoisella

Tulosta tämä pdf-tiedosto 4 eri väriä + itse keksityt valkoisella Hassuttelukortit Tuula Stenius Pienten lasten huumoritutkimus Itä-Suomen yliopisto Tulosta tämä pdf-tiedosto 4 eri väriä + itse keksityt valkoisella Leikkaa kortit irti. Voit laminoida kortit ja asettaa

Lisätiedot

Matriisilaskenta Luento 8: LU-hajotelma

Matriisilaskenta Luento 8: LU-hajotelma Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Pienin askelin Nepsy

Pienin askelin Nepsy Pienin askelin Nepsy Korttisarja sisältää 40 tehtäväkorttia sekä 2 infokorttia. Tehtävät on jaettu kuuteen kategoriaan: Ajanhallinta (5), Organisointi (10), Sosiaalisuus (5), Stressinhallinta (8), Talouden

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen

Lisätiedot

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta

Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka

Lisätiedot