Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto



Samankaltaiset tiedostot
Probabilistiset mallit (osa 1) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 1 Jorma Merikoski Tampereen yliopisto

Poisson-prosessien ominaisuuksia ja esimerkkilaskuja

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

3. laskuharjoituskierros, vko 6, ratkaisut

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

J. Virtamo Jonoteoria / Poisson-prosessi 1

Normaalijakaumasta johdettuja jakaumia

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

Valintahetket ja pysäytetyt martingaalit

Mat Sovellettu todennäköisyyslasku A

Tutkimustiedonhallinnan peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

l (φ; y) = l(θ(φ); y) Toinen derivaatta saadaan tulon derivaatan laskusäännöllä Uudelleenparametroidun mallin Fisherin informaatio on

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta

(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?

4. laskuharjoituskierros, vko 7, ratkaisut

Sovellettu todennäköisyyslaskenta B

8. Muita stokastisia malleja 8.1 Epölineaariset mallit ARCH ja GARCH

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi

Esimerkki: Tietoliikennekytkin

Sovellettu todennäköisyyslaskenta B

riippumattomia ja noudattavat samaa jakaumaa.

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

ABHELSINKI UNIVERSITY OF TECHNOLOGY

1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.

dx=5&uilang=fi&lang=fi&lvv=2014

Tilastollisia peruskäsitteitä ja Monte Carlo

Estimointi. Vilkkumaa / Kuusinen 1

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Testejä suhdeasteikollisille muuttujille

Sovellettu todennäköisyyslaskenta B

x 4 e 2x dx Γ(r) = x r 1 e x dx (1)

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

5. Stokastiset prosessit (1)

ABTEKNILLINEN KORKEAKOULU

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

6. laskuharjoitusten vastaukset (viikot 10 11)

Tilastollinen aineisto Luottamusväli

3. Teoriaharjoitukset

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

D ( ) E( ) E( ) 2.917

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

Sovellettu todennäköisyyslaskenta B

Tilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

Yleistä tietoa kokeesta

Mat Sovellettu todennäköisyyslasku A

Sovellettu todennäköisyyslaskenta B

c) A = pariton, B = ainakin 4. Nyt = silmäluku on5 Koska esim. P( P(A) P(B) =, eivät tapahtumat A ja B ole riippumattomia.

Harjoitus 2: Matlab - Statistical Toolbox

Todennäköisyysjakaumia

5. laskuharjoituskierros, vko 8, ratkaisut

Osa 2: Otokset, otosjakaumat ja estimointi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Tilastomatematiikka Kevät 2008

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

STOKASTISET PROSESSIT Peruskäsitteitä

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa

Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61

MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)

Moniulotteisia todennäköisyysjakaumia

Johdatus tn-laskentaan torstai

Kohdassa on käytetty eksponentiaalijakauman kertymäfunktiota (P(t > T τ ) = 1 P(t T τ ). λe λτ e λ(t τ) e 3λT dτ.

b) Jos Ville kaataisikin karkit samaan pussiin ja valitsisi sieltä sattumanvaraisen karkin, niin millä todennäköisyydellä hän saisi merkkarin?

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Suotuisien tapahtumien lukumäärä Kaikki alkeistapahtumien lukumäärä

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko

Mat Sovellettu todennäköisyyslasku A

3.6 Su-estimaattorien asymptotiikka

Sovellettu todennäköisyyslaskenta B

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely

Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen

MTTTP5, luento Luottamusväli, määritelmä

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Mat Sovellettu todennäköisyyslasku 5. harjoitukset/ratkaisut. Jatkuvat jakaumat

Transkriptio:

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita t:ssä päivässä, b)tietyssä maassa syntyy lapsia t:ssä vuodessa, c) tietty jalkapalloilija tekee maaleja t:ssä ottelussa. Kussakin kohdassa mallinnamme I:tä satunnaismuuttujalla N(t), joka ilmoittaa, kuinka monta kertaa I on tapahtunut ajanhetkeen t mennessä. Täten meillä on satunnaismuuttujajoukko eli stokastinen prosessi {N(t) t 0}. mat. mallinnus, luento 12 osa 2 kalvo nro 2

Laskentaprosessi Stokastinen prosessi N = {N(t) t 0} on laskentaprosessi, jos kaikki N(t):t ovat kokonaislukuarvoisia ja N(0) 0, s < t fi N(s) N(t). N(t) ilmoittaa, kuinka monta kertaa I on tapahtunut ajanhetkeen t mennessä. N(t) N(s) ilmoittaa, kuinka monta kertaa se on tapahtunut ajanhetkien s ja t välillä. Voidaanko esimerkin I:t mallintaa laskentaprosesseina? Voidaan. mat. mallinnus, luento 12 osa 2 kalvo nro 3

Riippumattomat lisäykset Laskentaprosessi N = {N(t) t 0} on riippumattomien lisäysten prosessi, jos erillisinä aikaväleinä tapahtuvien I:den lukumäärät eivät riipu toisistaan. Toisin sanoen, kun 0 s 1 < t 1 < s 2 < t 2, niin satunnaismuuttujat N(t 1 ) N(s 1 ) ja N(t 2 ) N(s 2 ) ovat riippumattomat. Voidaanko esimerkin I:t mallintaa riippumattomien lisäysten prosesseina? a) Voidaan (tiettyjä ääritilanteita lukuunottamatta). b) Ei pitkällä aikavälillä. Syntyneiden lasten lukumäärä vaikuttaa syntyvien lasten lukumäärään, kun nämä lapset saavat lapsia. c) Voidaan, ellei pelaajaan vaikuta aiempi menestys. mat. mallinnus, luento 12 osa 2 kalvo nro 4

Stationaariset lisäykset Laskentaprosessi N = {N(t) t 0} on stationaaristen lisäysten prosessi, jos tietyllä aikavälillä sattuvien I:den jakauma riippuu vain aikavälin pituudesta. Siis, kun s 0 ja t > 0, niin satunnaismuuttujan N(t+s) N(s) jakauma riippuu vain t:stä eikä s:stä. Ovatko esimerkin prosessit tällaisia? a) On, jos asiakkaiden halukkuus ostoksille ei riipu päivästä. b) Ei, koska maapallon väkiluku muuttuu. c) On, jos pelaajan mahdollisuus menestyä eri otteluissa on suunnilleen sama. Näin voitaneen olettaa lyhyellä aikavälillä. mat. mallinnus, luento 12 osa 2 kalvo nro 5

Poissonin prosessi Olkoon kasvukerroin l > 0. Riippumattomien lis äysten prosessi N = {N(t) t 0} on Poissonin prosessi, jos N(0) = 0 ja jos jokaisella t:n pituisella aikavälillä tapahtuvien I:den lukumäärä noudattaa Poissonin jakaumaa odotusarvolla lt. Tällöin kaikilla t, s 0, n = 0, 1, 2,... on p () t = P N( t + s) - N() s = n e n joten N on stationaaristen lisäysten prosessi. Odotusarvo E(N(t)) = lt. Myös varianssi D(N(t)) = lt. ( t) n! t l ( ) = - l n, mat. mallinnus, luento 12 osa 2 kalvo nro 6

Poissonin prosessin luonnehdinta Kasvukertoimen l omaava Poissonin prosessi on ainoa stationaarinen riippumattomien lisäysten prosessi N = {N(t) t 0}, jolle N(0) = 0 ja kaikilla h > 0 P(N(h) = 1) = lh + o(h), P(N(h) 2) = o(h). Tässä o(h) tarkoittaa jotakin sellaista funktiota, joka jaettuna h:lla Æ 0, kun h Æ 0. Havainnollisesti voidaan sanoa, että kun h on pieni, niin P(N(h) = 1) ª lh, P(N(h) 2) ª 0. mat. mallinnus, luento 12 osa 2 kalvo nro 7

Poissonin prosessin väliajat Tarkastelemme kasvukertoimen l omaavaa Poissonin prosessia. Olkoon X n satunnaismuuttuja, joka ilmoittaa, milloin I tapahtuu n:nnen kerran. Olkoon edelleen T n satunnaismuuttuja, joka ilmoittaa I:n (n 1):nnen ja n:nen sattumisen välisen ajan. Siis T n = X n X n-1 (X 0 = 0). Väliajat T n ovat riippumattomia ja noudattavat eksponenttijakaumaa parametrilla l. Siis P(T n t) = 1 e -lt, joten P(T n > t) = e -lt. Odotusarvo E(T n ) = 1/ l. Varianssi D(T n ) = 1/ l 2. mat. mallinnus, luento 12 osa 2 kalvo nro 8

Esimerkki Autokauppias myy keskimäärin yhden auton (työ)päivässä. Millä todennäköisyydellä hän myy kahdessa päivässä (täsmälleen) kolme autoa? Ratkaisu. Poissonin prosessin kasvukerroin l = 1. n t ( t) pn() t = e - l l, n! joten kysytty todennäköisyys on p 3 ( 2) 3-2 2 4 = e = ª 2 3! 3e 018,. mat. mallinnus, luento 12 osa 2 kalvo nro 9

Esimerkki, jatkoa Millä todennäköisyydellä viidennen ja kuudennen kaupan väli ylittää kaksi päivää? Ratkaisu. (n 1):nnen ja n:nnen kaupan väli T n ylittää t päivää todennäköisyydellä P(T n > t) = e -lt. Koska l = 1, niin kysytty todennäköisyys on P(T 6 > 2) = e -2 ª 0,14. (Se on sama kaikilla muillakin n:llä. Erityisesti arvolla n = 1 saamme P(T 1 > 2) = P(X 1 > 2) = P(N(2) = 0) = e -2.) mat. mallinnus, luento 12 osa 2 kalvo nro 10

Esimerkki, jatkoa Missä ajassa kauppias keskimäärin myy kymmenen autoa? Ratkaisu. Satunnaismuuttujalle X n voidaan johtaa jakauma, mutta siihen perustuva ratkaisu on liian monimutkainen. Yleisesti on E(X n ) = E(T 1 + + T n ) = E(T 1 ) + + E(T n ) = n(1/l) = n/l, joten kysytty aika on E(X 10 ) = 10 (päivää). mat. mallinnus, luento 12 osa 2 kalvo nro 11

Kirjallisuus S.M.Ross, Introduction to Probability Models. 6th ed. Acad. Pr.,1997. mat. mallinnus, luento 12 osa 2 kalvo nro 12